▶ 第6章 環境影響評価項目の選定

6.1 影響要因の選定

事業特性に基づき抽出された環境影響要因は、表 6.1-1 に示すとおりである。

なお、平成24年1月30日に実施された環境影響評価審査会の段階では約4.3haの調整池を設置する計画であったが、その後の計画の見直しにより調整池は設置しないことに変更となった。よって、調整池の工事及び存在による影響を考慮して選定していた環境影響要因の「建築物等の建築」については、選定しないものとする。

表 6.1-1 環境影響要因の抽出

項目	が想定定され
用いる工事用車両の走行が想定されるため、環境影響要因と 定する。 重機の稼動 工事の実施に伴い、事業区域における重機の稼動による影響 されるため、環境影響要因として選定する。 切土・盛土・発破・掘削等 工事の実施に伴い、事業区域において広範囲に渡る盛土が想 るため、環境影響要因として選定する。 工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため 影響要因として選定する。	が想定定され
定する。 重機の稼動 工事の実施に伴い、事業区域における重機の稼動による影響されるため、環境影響要因として選定する。 切土・盛土・発破・掘削等 工事の実施に伴い、事業区域において広範囲に渡る盛土が想るため、環境影響要因として選定する。 工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため、影響要因として選定する。	が想定
重機の稼動 工事の実施に伴い、事業区域における重機の稼動による影響されるため、環境影響要因として選定する。 切土・盛土・発破・掘削等 工事の実施に伴い、事業区域において広範囲に渡る盛土が想るため、環境影響要因として選定する。 工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため、影響要因として選定する。	定され
されるため、環境影響要因として選定する。 切土・盛土・発破・掘削等 工事の実施に伴い、事業区域において広範囲に渡る盛土が想るため、環境影響要因として選定する。 工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため、影響要因として選定する。	定され
切土・盛土・発破・掘削等 工事の実施に伴い、事業区域において広範囲に渡る盛土が想 るため、環境影響要因として選定する。 工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため 影響要因として選定する。	
るため、環境影響要因として選定する。 工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため 影響要因として選定する。	
工事に伴う排水 工事の実施に伴い、仮設調整池からの排水が想定されるため 影響要因として選定する。)、環境
影響要因として選定する。)、環境
存在による影響 改変後の地形 事業の実施に伴い、事業区域において地形及び農業用排水路	
	の改変
が想定されるため、環境影響要因として選定する。	
樹木伐採後の状態 事業の実施に伴い、事業予定地の樹林(居久根)は維持する	方針で
あるが、区画道路の整備等必要最小限の改変が想定されるた	_め、環
境影響要因として選定する。	
工作物等の出現事業区域には軟弱な地盤が分布することから、工作物の出現	による
地盤沈下の影響が想定されるため、環境影響要因として選択	官する。
供用による影響 施設の稼働 事業の実施に伴い、事業区域において新たな施設の稼働が想	定され
ることから、環境影響要因として選定する。	
人の居住・利用 事業の実施に伴い、事業区域において新たな人の居住・利用	が想定
されることから、環境影響要因として選定する。	
資材・製品・人等の運 事業の実施に伴い、事業区域及び周辺地域において資材・製	記・人
搬・輸送 等の運搬・輸送に係る交通量の増加が想定されることから、	環境影
響要因として選定する。	

6.2 環境影響要素の抽出及び環境影響評価項目の選定

6.2.1 環境影響要素の抽出

抽出された環境影響要因に基づき、影響を受ける恐れのある環境影響要素を選定した。 環境影響要素の抽出にあたっては、「仙台市環境影響評価技術指針マニュアル」(平成 11 年 11 月 仙台市)における考え方に準拠するものとした。

6.2.2 環境影響評価項目の選定

「仙台市環境影響評価技術指針」(平成11年 仙台市告示第189号)(以下、「技術指針」とする。)に基づき、対象事業の実施に伴い環境影響を及ぼすおそれがある要因(環境影響要因)と、環境影響要因により影響を受けるおそれがある環境の構成要素(環境影響要素)との関連について、事業特性及び地域特性を踏まえて検討し、環境影響評価項目を選定した。

環境影響評価項目として選定する理由及び選定しない理由をあわせて示した。

環境影響評価項目の選定にあたっては、「仙台市環境影響評価技術指針マニュアル」(平成 11年11月 仙台市)に準拠するものとした。

なお、平成24年1月30日に実施された環境影響評価審査会の段階では大規模な調整池を 設置する計画であったが、その後の計画の見直しにより調整池は設置しないことに変更とな った。よって、調整池の工事及び存在による影響を考慮して配慮項目として選定していた 「pH」及び「熱帯材の使用」については、選定しないものとする。

表 6.2-1 環境影響要因と環境影響要素のマトリクス表

		衣 0. 2-1	現現於音安凶 C 現場											ψP#		711	т.	_ ,	7 E'	ψp17			
			影響要因の区分		上事	いこ	にる。	影響				こよる		響	.,	11.			5影		~>		
				資	重機の稼動	切土·盛土·発破·	建築物等の建築	工	その他	改変後の地形	樹木伐採後の状態	改変後の河川・湖沼	工作物等の出現	その他	自動車・鉄道等の走行	施設の稼働	Ý	有害物質の使用	農薬・肥料の使用	資材・製品・人等の運搬・輸送	その他		
				材等の運搬	機	土	築	事	(1)	炎	木	发	作	(J)	動	設	人の居住・利用	害	楽	材	(J)		
				等	(/)	盛	物	()	JII.	後	伐	後	物	TUL	車	の	店	物	肥	製	TU		
				海の	修動	干.	等	1半		(/)	採	河	等の		鉄	(水 (紙)	生	質	料	品			
				埋	勁	₹×	(/) (本	7		地形	俊	[1] [H]	() ()		渞	割	利	は	0	•			
				1月又		光	筑	排		ハシ	か (か	71	捐		等		用	伊田	使	人			
						1収	采	水			能能	湖	九		め			Л	用	等の			
						掘削等					165	沼			走					海			
						削									行					盤			
						等														1/1/			
																				輸			
																				迗			
環境要素の区分																							
環境の自然的構成	大気環境	大気質	二酸化窒素	•	•															•			
要素の良好な状態			二酸化硫黄																				
の保持を旨として			浮遊粒子状物質		•															•			
調査, 予測及び評			粉じん等		•																		
価されるべき項目			有害物質																				
			その他																				
		騒音	騒音	•																			
		振動	振動	ŏ																Š			
		低周波音	低周波音		_											-	-						
		悪臭	悪臭													_							
	小理坛	その他	その他													-	_						
	水環境	水質	水の汚れ																				
			水の濁り																				
			富栄養化																				
			溶存酸素																				
			有害物質																				
			水温																				
			その他																				
		底質	底質																				
		地下水汚染	地下水汚染																				
		水象	水源																				
			河川流·湖沼							Ж													
			地下水・湧水			*				/•\			*										
			海域			/• \							/•\										
			水辺環境																				
		その他	pH																				
	上掩帶培	地形及び	現状地形																				
	上環垛児	地質																					
		地貝	注目すべき地形																				
		III BELIA	土地の安定性																				
		-		地盤沈下	地盤沈下																		
		土壌汚染	土壌汚染			*																	
		その他	その他																				
	その他の		電波障害																				
	環境要素		日照阻害																				
		風害	風害																				
	<u></u>	その他	その他																				
生物の多様性の確	植物		植物相及び注目すべき種																				
保及び自然環境の			植生及び注目すべき群落			•				•													
体系的保全を旨と			樹木・樹林等								•												
して調査, 予測及			森林等の環境保全機能							Ж	Ť												
び評価されるべき	動物		動物相及び注目すべき種																				
項目	->4 1/4		注目すべき生息地		ě					ě													
	生態系		地域を特徴づける生態系							Ť						-	-						
人と自然との豊か	景観		自然的景観資源	_		_				Ĭ						-							
な触れ合いの確保	八明儿		<u>日然的京観質源</u> 文化的景観資源							=						_							
及び歴史的, 文化			火化的京観質源 眺望							-						-	-						
	白外しのな									-						-	_						
旨として調査,予		よれい古いいの場	自然との触れ合いの場	•						•						_	_						
測及び評価される	文化財		指定文化財等																				
べき項目																							
		-	皮 棄版																				
環境への負荷の少廃棄物等			廃棄物 産业			Z										lacktriangle							
ない持続的な発展が可能な対すの構			残土													\•/	\•/						
が可能な都市の構			水利用													*	*						
築及び地球環境	VIII	18 - hate	その他														<u>.</u>			\ <u>.</u>			
保全への貢献を旨	温室効果	ガス等	二酸化炭素		*											*	*			*			
として予測及び評価されるべき項目			その他の温室効果ガス																				
価されるべき項目			オゾン層破壊物質																				
			熱帯材使用														_ 1						
			その他																				

表 6.2-2 環境影響評価項目の選定結果

			1 2000		項目の選定和未
	環境要素		影響要因	選定 の 可否	可否の理由・根拠
大気環境	大気質	二酸化窒素	工事	0	事業区域周辺には、住宅、学校等が存在する。これらの保全対象について、重機の稼動や工事用車両の運行に伴う排出ガスの影響が考えられる。
			供用	0	事業区域周辺には、住宅、学校等が存在する。これらの保全対象について、供用後の資材・製品・人等の運搬・輸送に用いる車両の走行に伴う排出ガスの影響が考えられる。
		二酸化硫黄		×	事業区域の土地利用は主に住宅及び商業地であり、 大量の化石燃料を使用する施設の立地は想定されな いため、選定しない。
		浮遊粒子状 物質	工事	0	事業区域周辺には、住宅、学校等が存在する。これ らの保全対象について、重機の稼動や工事用車両の 運行に伴う排出ガスの影響が考えられる。
			供用	0	事業区域周辺には、住宅、学校等が存在する。これらの保全対象について、供用後の資材・製品・人等の運搬・輸送に用いる車両の走行に伴う排出ガスの影響が考えられる。
		粉じん等	工事	0	事業区域周辺には、住宅、学校等が存在する。これらの保全対象について、工事中の資材等の運搬に用いる車両の走行、重機の稼動並びに切土・盛土・掘削等に伴う粉じんの影響が考えられる。
		有害物質		×	事業区域の土地利用は主に住宅、商業地であり、有 害化学物質を使用、保管、生成する施設の立地は想 定されないため選定しない。
	騒音	騒音	工事	0	事業区域周辺には、住宅、学校等が存在する。これ らの保全対象について、重機の稼動や工事用車両の 運行に伴う騒音の影響が考えられる。
			供用	0	事業区域周辺には、住宅、学校等が存在する。これらの保全対象について、供用後の資材・製品・人等の運搬・輸送に用いる車両の走行に伴う騒音の影響が考えられる。
	振動	振動	工事	0	事業区域周辺には、住宅、学校等が存在する。これ らの保全対象について、重機の稼動や工事用車両の 運行に伴う振動の影響が考えられる。
			供用	0	事業区域周辺には、住宅、学校等が存在する。これらの保全対象について、供用後の資材・製品・人等の運搬・輸送に用いる車両の走行に伴う振動の影響が考えられる。
	低周波音	低周波音	_	×	事業区域の土地利用は主に住宅及び商業地であり、 低周波音が発生する施設の立地は想定されないた め、選定しない。
	悪臭	悪臭		×	事業区域の土地利用は主に住宅及び商業地であり、 悪臭が発生する施設の立地は想定されないため、選 定しない。
水環境	水質	水の汚れ	一 一	X	河川への生活排水の排出がないよう下水道への接続 を予定しているため、選定しない。
		水の濁り	工事	O	造成工事中の実施で裸地が出現することにより、降 雨により用水路への濁水流入が想定され、影響が考 えられる。
		富栄養化	_	×	河川への生活排水の排出がないよう下水道への接続 を予定しているため、選定しない。
		溶存酸素	_	×	河川への生活排水の排出がないよう下水道への接続 を予定しているため、選定しない。

				選定	
	環境要素		影響要因	<i>の</i>	可否の理由・根拠
			女囚	可否	
水環境	水質	有害物質	_	×	事業区域の土地利用は主に住宅及び商業地であり、
					有害化学物質を排出する施設の立地は想定されない
					ため、選定しない。
		水温		×	河川への生活排水の排出がないよう下水道への接続
					を予定しているため、選定しない。
	底質	底質		×	事業区域の土地利用は主に住宅及び商業地であり、
					有害化学物質を排出する施設の立地は想定されない
					ため、選定しない。
	地下水汚染	地下水汚染		×	事業区域の土地利用は主に住宅及び商業地であり、
					有害化学物質を排出する施設の立地は想定されな
					い、また、現在の土地利用は水田であり造成による
					汚染は想定されないため、選定しない。
	水象	水源		×	事業区域及びその周辺に水源は存在しないため、選 定しない。
		河川流・湖沼	存在	*	事業区域周辺には農業用水路が存在する。事業区域
		1517117/11 11971	行化	**	内の農業用水路は、廃止する方針であり、事業区域
					下流側の流量等に影響が生じないよう、事業計画で
					配慮する。
		地下水・湧水	工事	*	仮設調整池の掘削工事に伴い、一時的な地下水位へ
		101八百分八	上尹	*	の影響が生じないよう、工事事業計画で配慮する。
			存在	*	仮設調整池の存在により、局所的に地下水の水位へ
			17-17-	^~	の影響が生じないよう、事業計画で配慮する。
		海域		X	事業区域周辺に海域は存在しないため、選定しない。
		水辺環境		X	事業区域及び周辺の水辺環境はコンクリート護岸の
		7122896			農業用排水路で、自然度の高い水辺環境は存在しな
					いため、選定しない。なお、大沼は事業区域からの
					排水経路ではないため影響はないと考えられる。
	その他	Hq	_	×	掘削土の再利用は行わず、セメント系固化剤等を使
		1			用しないため、選定しない。
土壌環境	地形及び地質	現状地形	存在	0	農地から住宅地等への用途変更であり、改変が生じ
					ることから、影響が考えられる。
		注目すべき	_	×	事業区域及び周辺に注目すべき地形は存在しないた
		地形			め、選定しない。
		土地の安定	_	×	事業区域及び周辺に地すべり地形等不安定な地形地
		性			質等は存在しないため、選定しない。
土壤環境	地盤沈下	地盤沈下	工事	0	軟弱地盤上に盛土を行うため、工事中の地盤沈下の
					影響が考えられる。
			存在	0	軟弱地盤上に盛土を行うため、工作物の出現により
					過度の圧密沈下が発生し、地盤沈下の影響が考えら
	I falls New NJ	I Into You VI			ns.
	土壤汚染	土壤汚染	工事	*	本事業での有害物質の使用はないが、事業実施の際
					は資料調査により事前に地歴を確認し、土壌汚染対
					策法に基づき適切に対応するよう、事業計画で配慮
7. 116 0	(表):(b) (立) (立)	最小吃少			する。
その他の	電波障害	電波障害		×	電波障害が発生するような高層の建築物は計画しな
環境要素	□ 07 70 d>	n m m 歩			いため、選定しない。
	日照阻害	日照阻害		×	日照阻害が発生するような高層の建築物は計画しないため、深宮しない。
	風害	風害		X	いため、選定しない。 風害が発生するような高層の建築物は計画しないた
)))))	八八日			風舌が発生するような高層の建築物は計画しないに め、選定しない。
 植物	 植物相及び注目	 	工事		寒寒しない。 事業区域内は既存宅地の一部を除き、改変されるた
11旦70/	世物性及い往間	ョッ゛ヽさ作	上尹	0	事業区域内は既存毛地の一部を除さ、以変されるに め、切土・盛土・掘削等による植物個体及び生育地
					の、切工・強工・畑削寺による他物値体及び生育地 への影響が考えられる。
			存在	0	事業区域内は既存宅地の一部を除き、改変されるた
			1十1土		事業区域内は既存宅地の一部を除さ、以変されるに め、改変後の地形による植物個体及び生育地への影
					一 の、以変後の地形による他物画体及の生育地への影響が考えられる。
			l		買パワ~ワイレ′┛。

		1	選定	
	環境要素	影響要因	の	可否の理由・根拠
	T.,		可否	
植物	植生及び注目すべき群落	工事	0	事業区域内は既存宅地の一部を除き、改変されるため、周は、成は、根地などよる技術との影響が表さ
				め、切土・盛土・掘削等による植生への影響が考え られる。
		存在	0	事業区域内は既存宅地の一部を除き、改変されるた
		11, 117		め、改変後の地形による植生への影響が考えられる。
	樹木・樹林等	存在	0	事業区域内には天然記念物、保存樹・保存樹林、大
				径木等は存在しないが、事業区域の居久根について
				区画道路の整備等必要最小限の改変が想定されるた
		+++	\ 0 /	め、影響が考えられる。
	森林等の環境保全機能	存在	*	事業区域の殆どを占める水田の改変により影響を受
				ける洪水防止機能及び地下水かん養機能について、 公園等の設計等事業計画で配慮する。
 動物	動物相及び注目すべき種	工事	0	工事中に発生する騒音、振動、排水等により、動物
到100	動物作及い任日外では個	上事		エザーに光エッる融音、振動、排水やにより、動物 の生息や繁殖に対する影響が考えられる。
		存在	0	事業区域内は既存宅地の一部を除き、改変されるた
				め、改変後の地形による生息環境への影響が考えら
				れる。
	注目すべき生息地	工事	0	工事中に発生する騒音、振動、排水等により、動物
				の生息や繁殖に対する影響が考えられる。
		存在	0	事業区域内は既存宅地の一部を除き、改変されるた
				め、改変後の地形による生息環境への影響が考えら
生態系	地域を特徴づける生態系	工事	0	れる。 工事中に発生する騒音、振動、排水等により、動物
土思不	地域を付扱うける主席示	上事		工事中に完全する融目、派動、排水等により、動物 の生息や繁殖に対する影響が考えられる。
		存在	0	事業区域内は既存宅地の一部を除き、改変されるた
		13 133		め、改変後の地形による生息環境への影響が考えら
				れる。
景観	自然的景観資源	存在	0	事業区域内は既存宅地の一部を除き、改変されるた
				め、事業区域に広がる居久根や田園景観への影響が
				考えられる。
	文化的景観資源	存在	0	対象事業範囲及び周辺に居久根が点在することか
	以下中	<i>t:t:</i>		ら、影響が考えられる。
	眺望	存在	0	事業区域内は平地上にあり高層の建築物は計画しないが、既存宅地の一部を除き、改変されるため、近
				景への影響が考えられる。
自然との	自然との触れ合いの場	工事	0	事業区域及び周辺には自然公園等既知の自然との触
触れ合いの場		- ,		れ合いの施設は存在しないが、居久根や田園環境な
				どの身近な触れ合いの場について、一部改変される
				ため、切土・盛土・掘削等による影響が考えられる。
		存在	0	事業区域及び周辺には自然公園等既知の自然との触
				れ合いの施設は存在しないが、居久根や田園環境な
				どの身近な触れ合いの場について、一部改変される ため、改変後の地形による影響が考えられる。
文化財	指定文化財等	存在	0	事業区域内に保全対象となる有形文化財、天然記念
又化网	相足文化與等	1于1工		物等の指定文化財は存在しないが、歴史的背景を持
				つ居久根が存在するため、改変による影響が考えら
				na.
廃棄物等	廃棄物	工事	0	既存建築物等の撤去等により廃棄物が発生するため
				影響が考えられる。
		供用	0	区域内に商業・業務地及び住宅地を計画しており、
	and the state of t			影響が考えられる。
	残土	工事	0	仮設調整池掘削に伴う残土の発生が想定されるため
				選定する。
	-			

	環境要素	影響要因	選定 の 可否	可否の理由・根拠
廃棄物等	水利用	供用	*	事業区域に大量の水を使用する工場等の立地予定はないが、新たに住宅や商業施設が増えることで水の使用量増加が想定されるため、水の使用量抑制、雨水・処理水等の有効利用について事業計画で配慮する。
温室効果ガス等	二酸化炭素	工事	*	工事中は、重機の稼動により排出される CO2 を抑制 するよう、稼動スケジュールや使用方法などを工事 計画で配慮する。
		供用	*	供用後は住居や商業施設などが新たに出現し、排出 される CO2 量も増加すると考えられることから、事 業計画で配慮する。
	その他の温室効果ガス	_	×	事業区域に工場等の立地予定はなく、メタン等その 他の温室効果ガスを大量に排出する施設の出現は想 定されないため、選定しない。
	オゾン層破壊物質		×	事業区域に工場等の立地予定はなく、ハイドロフル オロカーボン等オゾン層破壊物質を大量に排出する 施設の出現は想定されないため、選定しない。
	熱帯材使用		×	環境影響評価技術審査会時点では、調整池に熱帯材 の使用が想定されたが、調整池を作らないこととし たため、選定しない。

注)選定の可否 〇:環境影響評価項目として選定する ※:配慮項目として選定する ×:選定しない

第7章 選定項目ごとの調査、予測及び評価

地域の環境特性と震災の影響を考慮し、以下の事項に留意し調査、予測及び評価を行った。

地域の環境特性としては、事業区域はほとんどが水田であり、周辺は宅地となっているほか、小学校、幼稚園・保育園、老人福祉施設が存在する。農業用排水路(コンクリートの三面張り水路など)が主に西→東方向に数本はいるが、事業区域の農業用排水路が将来廃止となる予定である。事業区域内の居久根については区画道路の整備等必要最小限の改変にとどめ現状を維持する方針とした。

東日本大震災の状況については、事業区域において津波の浸水による直接的な被害はなかったものの、浸水地域に近接しており、事業区域内でも建築物や構造物の影響が見られた。また、平成 23 年 10 月 26 日に実施した騒音・振動・交通量の現況調査と平成 22 年道路交通センサス(推計値)を比較したところ、復旧・復興の作業車両によると考えられる交通量の増加が見られた。復旧・復興の状況については、その進展により変化していくことが予想されるため、予測評価を行う時点で、明確になっている事項や確実に想定できる復旧・復興の状況を予測条件に加味した。

また、事業区域周辺でも、土地区画整理等複数の事業が進行していることから、交通量等、周辺 事業の影響についてもその時点で把握可能な条件を適宜加味した。

調査、予測及び評価で留意する事項を以下に示す。

○交通量に対する震災の影響

- ・交通量は、平日の調査時に"震災復旧車両"の明示がある車両を別に集計し、震災の影響を識別した。
- ・"震災復旧車両"の明示をしない車両も存在すると推察されることから、「大気質」、「騒音」、「振動」の予測条件を設定する際は、平成 22 年度道路交通センサスデータ(推計値)との 比較も行い、増加量を把握して設定した。

○大気質に対する震災の影響

・「大気質」のバックグラウンドとして、最寄りの一般大気測定局である七郷測定局のデータを 用いるが、震災前後でデータの傾向が異なる場合には、震災の影響を考慮して設定することと したが、平成23年度の大気質の状況(3月までの速報値)は、震災前の5年間と比較し傾向 の違いは認められなかった。

○霞目飛行場の存在

- ・事業区域は霞目飛行場に隣接し、日常的にヘリコプターによる航空機騒音のある地域である ため、地域の状況として現地調査を実施し航空機騒音を把握し、WECPNL及びLdenについ て評価した。
- ・一般環境騒音及び道路交通騒音について、航空機騒音を除外した場合と除外しない場合のLAeqを比較した。

○居久根の存在

・居久根については仙台平野の水田地帯に浮かぶ緑の浮島群として、農村の風土を形づくる独特の風景であり、区画道路の整備等必要最小限の改変にとどめ現状を維持する方針とした。「植物」、「動物」、「生態系」、「景観」に関して居久根の存在に留意し調査地点を設定した。その他、「自然との触れ合いの場」、「文化財」においても取り扱った。

○ガンカモ類の取り扱い

・大沼はガンカモ類等の越冬地であり、事業区域及び周辺の水田を採餌に利用する可能性も考えられることから、秋~春の鳥類調査の際に大沼及び調査地域周辺の飛来状況及び利用状況を確認した。

7.1.1 調 査

1)調査項目

調査項目は、表 7.1-1 に示すとおり、大気質、気象及び交通量とした。

| The content of the

表 7.1-1 調査項目

2)調査地域及び調査地点

調査

(6)

(7)

交差点

交通量

調査地域は、事業の実施に伴い、窒素酸化物及び二酸化窒素、浮遊粒子状物質に係る環境 影響を受けるおそれがあると認められる地域とし、事業区域界より 500mの範囲とした。

調査地点は、表 7.1·2 に示すとおり、大気質及び気象については、事業区域周辺の土地利用・地形等の環境を代表する地点とし、事業区域内北側 1 地点とした。また、交通量については、工事中・供用後の主要な道路のうち、住居地域や学校等、特に配慮が必要な施設及び土地利用等を考慮した 5 地点(断面)及び工事中及び供用後、関連車両が流入する主要な交差点3 地点とした。調査地点の位置図は、図 7.1·1 に示すとおりである。

調査項目	地点 番号	調査地点	選定理由等
大気質、 気象	①	事業区域内北側	住宅地と農地の境界に立地し、海岸平野が広がって平坦な当該地域の大 気質・気象の条件を代表する地点として設定する。
	2	市立蒲町保育所	工事用車両、供用後関連車両の走行ルートに存在する保全施設(保育所) を対象とする地点として設定する。
	3	県道 235 号荒井荒町線	工事用車両、供用後関連車両の走行ルートにある保全施設(住宅・医療施設)を対象とする地点として設定する。
断面交通量	4	県道 137 号荒浜原町線	工事用車両、供用後関連車両の走行ルートにある保全施設(住宅・医療施設)を対象とする地点として設定する。
	(5)	リハビリパーク仙台東及 びくつろぎ保養館仙台東	供用後関連車両の走行ルートにある保全施設(福祉施設)を対象とする地点として設定する。
	9	市道蒲の町南梅ノ木線	供用後関連車両の走行ルートにある保全施設(住宅)を対象とする地点として

れる交差点として設定する。

れる交差点として設定する。

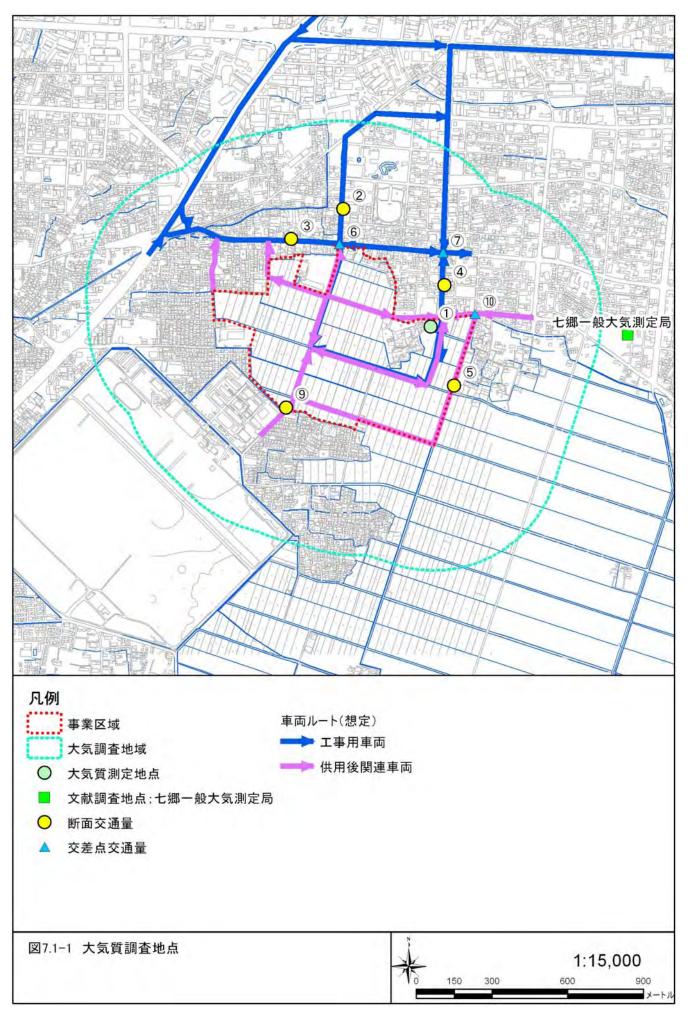
として設定する。

県道 235 号荒井荒町線・ 工事用車両、供用後関連車両の走行ルートにあり、特に交通の増加が想定さ

工事用車両、供用後関連車両の走行ルートにあり、特に交通の増加が想定さ

供用後関連車両の走行ルートにあり、特に交通の増加が想定される交差点

設定する。


県道 235 号荒井荒町線・

市道蒲の町南梅ノ木線

県道 137 号荒浜原町線

県道 137 号荒浜原町線

表 7.1-2 調査地点

3)調査方法

調査方法は、資料調査及び現地調査とした。

(1)資料調査

既存測定局の測定結果に係る調査方法は、文献及びその他の資料の収集・整理とし、調査 区域における大気汚染常時監視測定局として、事業区域の東側約 450m に位置している一般 環境大気測定局の七郷測定局(七郷小学校敷地内)、及び内陸部の榴岡測定局、中山測定局、 宮城測定局の測定データ(仙台市「公害関係資料集」及び宮城県保健環境センター「大気常 時監視速報」)について整理した。

(2)現地調査

①大気質

窒素酸化物、二酸化窒素及び浮遊粒子状物質の濃度の状況に係る調査方法は、表 7.1-3 に示すとおりである。

		と ハニ マ アイアイテード のうじゅう	4774		
調査	E項目	調査方法	調査方法の概要		
大気質	窒素酸化物、 二酸化窒素	「二酸化窒素に係る環境基準について」(昭和53年7月11日、環境庁告示第38号)に規定する方法	ザルツマン試薬を用いる吸光光度 法に基づく自動計測器 (JIS B 7953) による連続測定		
八刈貝	浮遊粒子状物 質	「大気の汚染に係る環境基準について」(昭和 48年5月8日、環境 に生まで第 25 号) に担定する方法	ベータ線吸収法に基づく自動計測 器(JIS B 7954) による連続測定		

表 7.1-3 大気質に係る現地調査方法

2)気象

気象の状況(風向、風速)に係る調査方法は、表 7.1-4 に示すとおりである。

į	表 7.1-4	気象に係る現地調査方	法

Ī	調査		調査方法	調査方法の概要		
	気象	風向、風速	「地上気象観測指針」(気象庁、 1993) に規定する方法	風車型微風向風速計による連続 測定		

③交诵量

交通量に係る調査方法は、表 7.1-5 に示すとおりである。

表 7.1-5 交通量に係る現地調査方法

調査	項目	調査方法
交通量	断面交通量	ハンドカウンターを用いて、時間帯別・車種別・方向別の自動車台数を計測した。 また、ストップウォッチを用いて、目視により車両が通過する時間を計測し、走行速度を算出した。
	交差点交通量	ハンドカウンターを用いて、時間帯別・車種別・方向別の自動車台 数を計測した。

4)調査期日

(1)資料調査

資料調査の調査期日は、表 7.1-6 に示すとおりである。

表 7.1-6 調査期日

調査項目	調査期日
大気質	調査期間は1年以上の期間とした。
気 象	調査期間は1年以上の期間とした。

(2)現地調査

現地調査の調査期日は、表 7.1-7 に示すとおりである。

表 7.1-7 調査期日

調査項目	季節	調査期日
	夏季	平成 23 年 9 月 12 日~9 月 18 日
大気質	秋季	平成 23 年 10 月 23 日~10 月 29 日
八刈貝	冬季	平成 23 年 12 月 8 日~12 月 14 日
	春季	平成 24 年 4 月 19 日~4 月 25 日
	夏季	平成 23 年 9 月 12 日~9 月 18 日
気 象	秋季	平成 23 年 10 月 23 日~10 月 29 日
×(**	冬季	平成 23 年 12 月 8 日~12 月 14 日
	春季	平成 24 年 4 月 19 日~4 月 25 日
交通量	秋季	(休日) 平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00 (平日) 平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00

5)調査結果

(1)資料調査

事業区域及びその周辺の大気質及び気象の状況は、「第5章 地域の概況 5.1 自然的状況 等 5.1.1 大気環境」に示すとおりである。

(2)現地調査

①大気質

大気質の現地調査結果は、表 7.1-8 に示すとおりである。

窒素酸化物の季節別の期間平均値は、0.007~0.037ppm であり、冬季が高い濃度になる傾向を示した。二酸化窒素の季節別の期間平均値は、0.006~0.019ppm であり、これも冬季が高い傾向を示しているが、環境基準を全て下回る結果であった。

また、浮遊粒子状物質の季節別の期間平均値は、0.013~0.035mg/m³であり、夏季が高い傾向を示した。この中で、2011年9月16日9時のみ、1時間値が環境基準を超過していた。その時間帯は、一般環境大気測定局の七郷測定局においても、環境基準値を超過しなかったものの同様な傾向が見られた。

表 7.1-8 現地調査結果(大気質)

調査項目	I	季節	期間平均値	日平均値の 最大値	1時間値の 最大値	環境基準
		夏季	0.012	0.018	0.051	
窒素酸化物	(ppm)	秋季	0.018	0.035	0.085	_
(NO _x)	(ppm)	冬季	0.037	0.084	0.221	_
		春季	0.007	0.012	0.031	
		夏季	0.009	0.012	0.036	1時間値の1日平均値が
二酸化窒素	(ppm)	秋季	0.014	0.022	0.047	0.04ppm から 0.06ppm ま
(NO_2)	(ppiii)	冬季	0.019	0.026	0.045	でのゾーン内又はそれ以
		春季	0.006	0.011	0.026	下であること。
		夏季	0.035	0.057	0.211	1時間値の1日平均値が
浮遊粒子状物質	(ma cr/ma 3)	秋季	0.014	0.020	0.046	0.10mg/m ³ 以下であり、か
(SPM)	(mg/m ³)	冬季	0.013	0.019	0.039	つ、1 時間値が 0.20mg/m³
		春季	0.023	0.035	0.070	以下であること。

現地調査の結果と七郷測定局の測定データとの比較を図 7.1·2 に示す。これによると、二酸化窒素、窒素酸化物、浮遊粒子状物質について、現地調査の結果と七郷測定局の測定データは、概ね相関が見られた。

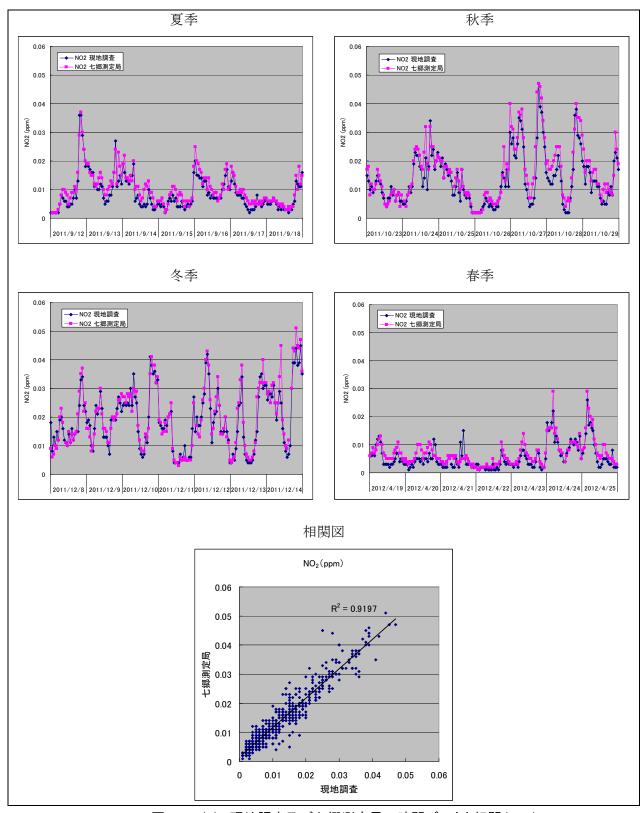


図 7.1-2(1) 現地調査及び七郷測定局の時間データと相関(NO2)

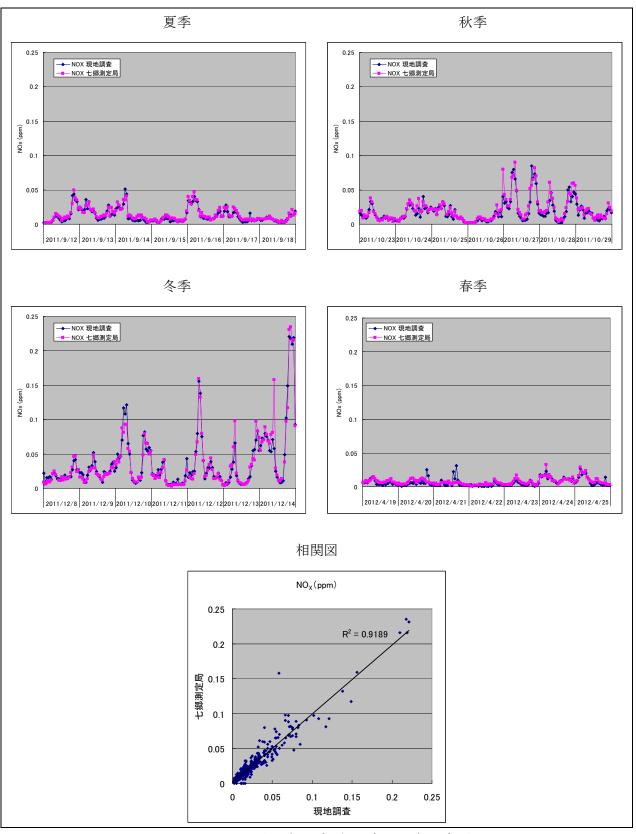


図 7.1-2(2) 現地調査及び七郷測定局の時間データ(NO_x)

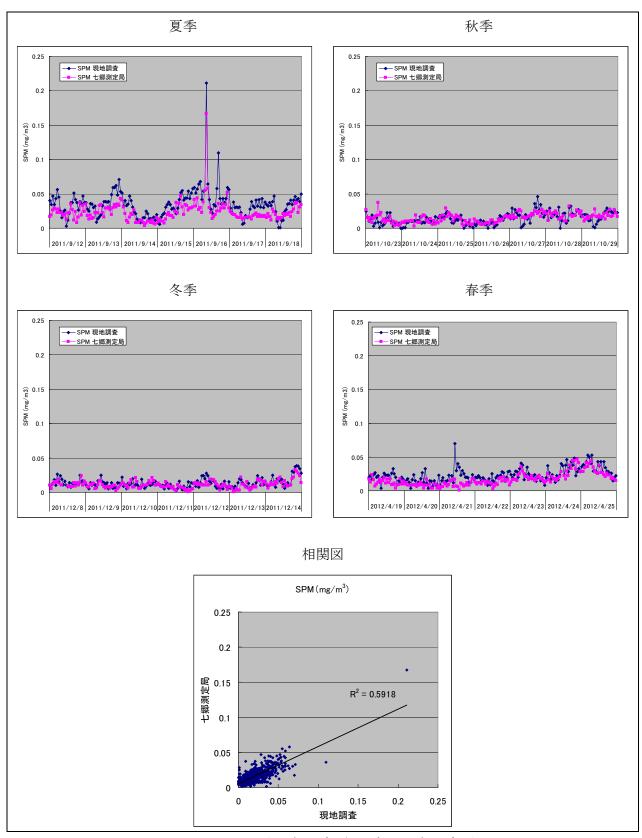
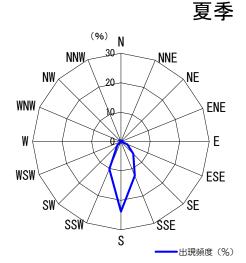
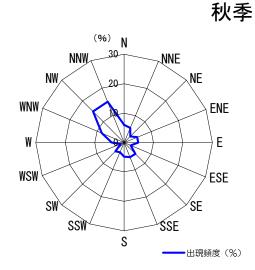
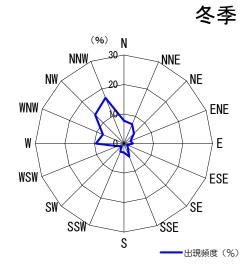


図 7.1-2(3) 現地調査及び七郷測定局の時間データ(SPM)


②気象


気象の現地調査結果は、表 7.1-9 及び図 7.1-3 に示すとおりである。


風向は、夏季及び春季が南よりの風、秋季及び冬季が北よりの風がそれぞれ卓越していた。 また、平均風速は 1.2~3.1m/s であった。

速 (m/s) 季節 最多風向 期間平均 期間最大 夏季 \mathbf{S} 6.6 1.2 秋季 NW 1.9 7.1 冬季 NNW 1.7 7.0 春季 SSE 3.1 9.5

表 7.1-9 現地調査結果(風向・風速)

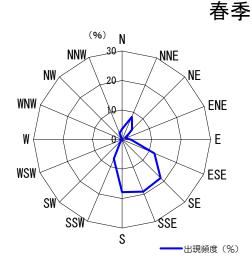


図 7.1-3 風配図(現地調査結果)

現地調査の結果と七郷測定局の測定データとの比較を図 7.1-4 に示す。これによると、風向、風速について、現地調査の結果と七郷測定局の測定データは、概ね相関が見られた。

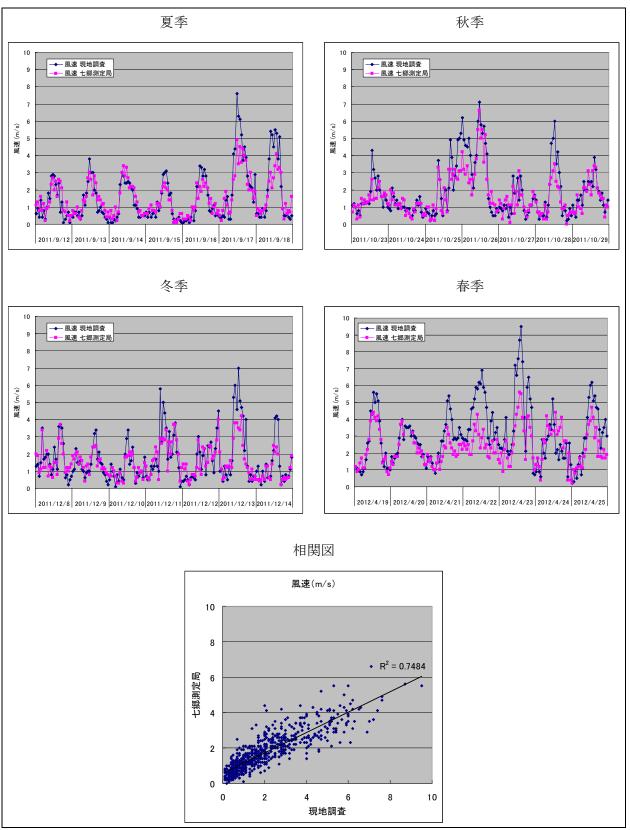


図 7.1-4 現地調査及び七郷測定局の時間データ(風速)

表 7.1-10 風向相関(四季)

									現地	調査網	桔果							
		N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
	N	14	8	0	0	0	0	0	0	0	0	0	0	0	0	2	9	5
	NNE	7	24	7	1	1	1	0	0	0	0	0	0	0	1	1	4	8
	NE	0	2	9	4	0	0	0	0	0	1	0	0	0	0	0	0	3
	ENE	0	0	2	9	3	0	0	0	0	0	0	0	0	0	0	0	2
	Е	0	0	0	1	11	21	9	0	0	0	0	0	0	0	0	0	5
	ESE	0	0	0	0	0	5	21	13	2	0	0	0	0	0	0	0	0
七	SE	0	0	0	0	0	0	17	27	5	1	0	0	0	0	0	0	0
七郷測定局	SSE	0	0	1	0	0	1	1	15	18	1	0	0	0	0	1	0	2
川定	S	0	0	0	0	0	0	2	11	46	8	0	0	0	0	0	0	5
局	SSW	0	0	0	0	0	0	1	0	10	24	2	0	1	0	0	0	10
	SW	0	0	0	0	0	0	0	1	0	4	8	1	0	0	0	0	15
	WSW	0	0	0	0	0	0	-	0	0	0	1	4	8	10	_	0	10
	WNW	0	0	0	0	0	0	0	0	0	0	1 0	0	11 2	19	7 15	0	2
	NW	1	0	0	0	0	0	0	0	0	0	0	0	1	4	17	1 5	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
	NNW	7	0	0	0	0	0	0	0	0	0	0	0	0	0	5	35	1
	CALM	2	1	2	0	3	1	0	1	1	1	1	1	1	1	1	2	29

現地調査結果と七郷測定局と風向が同じであった時間数(253)

CALM を除く全時間数 (546) に対し、現地調査結果と七郷測定局と風向が 1 方位以内であった時間数は、上記のとおり、253+230=483 であり、88.5%を示していた。

③交通量

交通量の現地調査結果は、表 7.1-11 に示すとおりである。

表 7.1-11 交通量調査結果

				交证	通量		
区分	番号	調査地点	区分	合 計 (台/24h)	震災復興 関連車両 (台/24h)	大型車混入率 (%)	平均走行速度 (km/h)
	2	市立蒲町保育所	休日	3,381		1.6	40.6
	(4)	11 立備門 休月別	平日	5,434	30	4.5	41.0
	(3)	県道 235 号荒井荒町線	休日	11,639		2.2	46.2
	0	<u> 保担 233 万元开加可脉</u>	平日	15,892	316	6.8	45.9
断 面	ĭ通量 (4) ∫	県道 137 号荒浜原町線	休日	4,448	_	1.7	33.4
交通量		<u> 保担 137 万元供原可</u> 脉	平日	6,038	109	8.1	30.3
	(5)	リハビリパーク仙台東及び	休日	1,629	_	0.7	_
	0	くつろぎ保養館仙台東	平日	2,296	4	2.4	_
	9	市道蒲の町南梅ノ木線	休日	1,666	_	6.2	37.9
	9)	川垣浦が川用悔ノ水豚	平日	2,583	24	9.6	35.3
	6	県道 235 号荒井荒町線・	休日	14,025		2.5	
	0	市道蒲の町南梅ノ木線	平日	19,644	370	6.7	_
交差点	(7)	県道 235 号荒井荒町線・	休日	14,421	_	2.4	_
交通量	(/)	市道蒲の町南梅ノ木線	平日	18,987	327	7.4	_
	(10)	県道 137 号荒浜原町線	休日	4,989	_	2.0	_
	10)	不足 101 ケル状 外門 豚	平日	7,070	164	6.5	_

型 現地調査結果と七郷測定局と風向が1方位分異なっていた時間数(230)

7.1.2 予 測

1) 工事による影響(資材等の運搬)

(1) 予測内容

工事用車両の走行に伴い発生する大気中の二酸化窒素濃度、浮遊粒子状物質及び粉じんと した。なお、粉じんについては、「4)工事による影響(粉じん)(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)」として後述する。

(2)予測地域及び予測地点

予測地域は、工事用車両の走行に伴い大気質の変化が想定される地域とし、表 7.1-12 に示す事業区域近傍の 3 路線とした。

予測地点は、事業区域周辺において、住居地域、学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.1-12 及び図 7.1-6 に示す地点(道路交通騒音現地調査地点と同じ地点)とした。

 地点番号
 予測地域(対象道路)
 予測地点
 保全対象

 ②
 市道七郷伊在改良 8 号線
 市立蒲町保育所
 公共施設、住居

 ③
 県道 235 号荒井荒町線
 県道 235 号荒井荒町線
 住居、医療施設

 ④
 県道 137 号荒浜原町線
 県道 137 号荒浜原町線
 住居、医療施設

表 7.1-12 予測地域及び予測地点(工事による影響(資材等の運搬))

(3)予測時期

予測時期は、図 7.1-5 に示すとおり、工事用車両の走行に伴う大気汚染物質排出量が最大となる時期として、平成 25 年 4 月~平成 26 年 3 月の 1 年間とした。

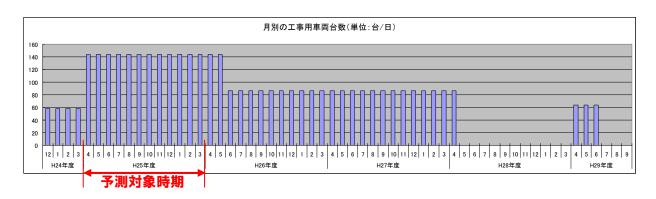
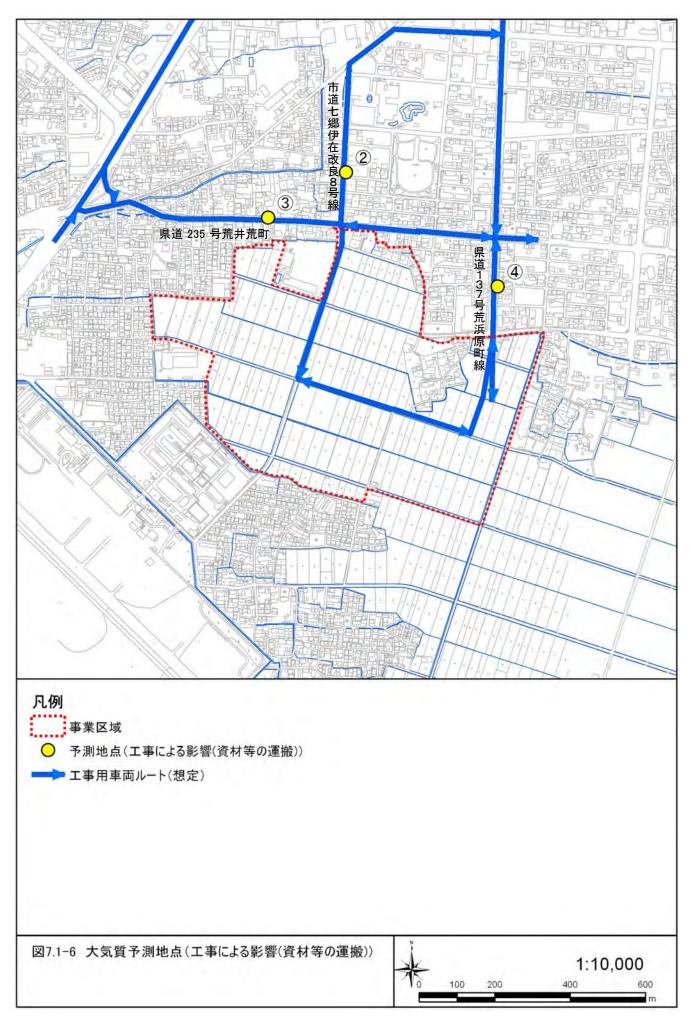



図 7.1-5 月別の工事用車両の経時変化

注) 地点番号は、道路交通騒音の調査地点番号と同じとした。

(4)予測方法

①予測手順

予測手順は、図 7.1-7 に示すとおりである。

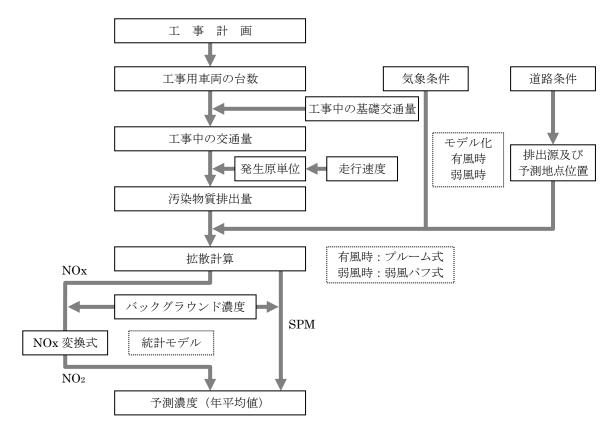


図 7.1-7 予測手順(工事による影響(資材等の運搬))

②予測式

予測式は、「道路環境影響評価の技術手法 (2007 改訂版)」((財)道路環境研究所、平成 19 年 9 月) に基づき、有風時 (風速 1.0m/s を超える場合) にはプルーム式、弱風時 (風速 1.0m/s 以下の場合) にはパフ式を用いた。

ア. 大気拡散式

大気拡散式は、表 7.1-13 に示すとおりである。

表 7.1-13 大気拡散式(工事による影響(資材等の運搬))

区 分	拡 散 式
有風時 風速 1.0m/s 超	$ \mathcal{C}(x, y, z) = \frac{Q}{2 \pi \cdot u \cdot \sigma_{y} \cdot \sigma_{z}} \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) \\ \times \left[\exp \left\{-\frac{\left(z - H\right)^{2}}{2 \sigma_{z}^{2}}\right\} + \exp \left\{-\frac{\left(z + H\right)^{2}}{2 \sigma_{z}^{2}}\right\}\right] $
弱風時 風速 1.0m/s 以下	$C(x, y, z) = \frac{Q}{(2\pi)^{3/2} \cdot \alpha^2 \cdot \gamma} \left\{ \frac{1 - \exp\left(-\frac{l}{t_0^2}\right)}{2l} + \frac{1 - \exp\left(-\frac{m}{t_0^2}\right)}{2m} \right\}$ $l = \frac{1}{2} \cdot \left\{ \frac{x^2 + y^2}{\alpha^2} + \frac{(z - H)^2}{\gamma^2} \right\}$ $m = \frac{1}{2} \cdot \left\{ \frac{x^2 + y^2}{\alpha^2} + \frac{(z + H)^2}{\gamma^2} \right\}$
記号説明	C(x, y, z) : (x,y,z)地点における濃度 [ppm または mg/m³] Q : 点煙源の排出量 [mL/s 又は mg/s] x : 風向に沿った風下距離 [m] y : x 軸に直角な水平距離 [m] z : x 軸に直角な鉛直距離 [m] u : 平均風速 [m/s] σy、σz : 水平 (y)、鉛直 (z) 方向の拡散幅 [m] α、γ : 拡散幅に関する係数 (α=0.3、γ=0.18(昼間)、γ=0.09(夜間)) H : 排出源の高さ [m] t0 : 初期拡散に相当する時間 [s] (t ₀ =W/2 α) W : 車道部幅員 [m]

出典:道路環境影響評価の技術手法(2007 改訂版)((財)道路環境研究所、平成 19 年 9 月)

年平均濃度は表 7.1-14 に示す式を用いて、有風時の風向別基準濃度及び弱風時の昼夜別基準濃度、時間帯別平均排出量、時間帯別気象条件から予測点の時間帯別平均濃度を求め、これを 24 時間平均して算出した。

表 7.1-14 年平均濃度計算式(工事による影響(資材等の運搬))

区 分	拡 散 式
計算式	$C_{a} = \frac{\sum_{t=1}^{24} Ca_{t}}{24}$ $Ca = \left[\sum_{s=1}^{16} \left\{ \left(Rw_{s} / uw_{ts} \right) fw_{ts} \right\} + Rc_{dn} \cdot fc_{t} \right] \cdot Q_{t}$
	Ca : 年平均濃度 [ppm または mg/m³] Ca _t : 時刻 t における年平均濃度 [ppm または mg/m³] Rw _c : プルーム式により求められた風向別基準濃度 [m⁻¹]
記号説明	Rc_{dn} : パフ式により求められた昼夜別基準濃度 $[s/m^2]$ fw_{ts} : 年平均時間別風向出現割合
	fc_s :年平均時間別弱風時出現割合 uw_{rs} :年平均時間別風向別平均風速 $[m/s]$
	Q_t : 年平均時間別平均排出量 $[mL/m \cdot s \ Z \ lt \ mg/m \cdot s]$ なお、 s は風向(16 方位)、 t は時間、 dn は昼夜の別、 w は有風時、 c は弱風時を示す。

出典:道路環境影響評価の技術手法(2007 改訂版)((財)道路環境研究所、平成19年9月)

イ. 拡散幅

水平方向と鉛直方向の拡散幅は、表 7.1-15 に示す計算式を用いた。

表 7.1-15 拡散幅の計算式(工事による影響(資材等の運搬))

区 分	拡 散 式
	水平方向の拡散幅 鉛直方向の拡散幅
計算式	$\sigma_{y} = \frac{w}{2} + 0.46L^{0.81} \qquad \qquad \sigma_{z} = 1.5 + 0.31L^{0.83}$
	σ _ν : 水平 (y) 方向の拡散幅 [m]
	σ_z : 鉛直(\mathbf{z})方向の拡散幅 $[\mathbf{m}]$
記号説明	L : 車道部端からの距離 $[m]$ $L = x - w/2$
	W : 車道部幅員 [m]
	なお、 $x\langle W/2$ の場合は $\sigma_y = W/2, \sigma_z = 1.5$ とする

出典:道路環境影響評価の技術手法(2007改訂版)((財)道路環境研究所、平成19年9月)

(5)予測条件

①交通量

ア. 工事用車両の台数

予測対象時点における工事用車両の台数は、大型車(10t ダンプトラック)144 台/日である。

時間別工事用車両台数は、表 7.1-16 に示すとおりである。

場外(出) 時刻 小型車 大型車 合計 大型重 小型車 合計 大型重 小型車 合計 7:00 8:00 9:00 18 13:00 18 14:00 18 36 15:00 18 16:00 18 17:00 18 18:00 19:00 0 20:00 0 21:00 22:00 0 0:00 3:00 4:00 5:00 144 144 144 昼間合計 144 夜間合計

表 7.1-16 工事用車両台数

イ. 工事中の基礎交通量

工事中の基礎交通量は、現況の交通量が工事中も変わらないものと想定して、交通量現地 調査結果を使用した。なお、この現地調査結果には、震災復旧関連車両も含まれている。

ウ. 工事中の交通量

工事中の交通量は、各地点の基礎交通量に、工事用車両台数を加えたものとした。なお、 工事用車両台数の方向別配分は、各地点概ね 1/3 ずつ走行するものとした。

各地点の工事中の交通量は表 7.1-17 に示すとおりである。

表 7.1-17(1) 工事中の交通量(②市立蒲町保育所(市道七郷伊在改良 8 号線))

②市立蒲町保育所(市道七郷伊在改良8号線)

0.11		本月川()	11 12 12 734	伊在改長	50万째/																													
m+-	Ĺ						基礎图											工事用車両										工事中の						
開	and a dead		北行	īέ			南行	丁き			合	計			北行き			南行き			合 計			北行	řき			南行	j き			合	計	
区分	時刻	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車
Ш		(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率
	6:00	3	75	78	3.8%	2	59	61	3. 3%	5	134	139	3.6%	0	0	0	0	0	0	0	0	0	3	75	78	3.8%	2	59	61	3.3%	5	134	139	3.6%
	7:00	10	339	349	2.9%	7	167	174	4.0%	17	506	523	3.3%	0	0	0	0	0	0	0	0	0	10	339	349	2.9%	7	167	174	4.0%	17	506	523	3.3%
	8:00	6	272	278	2. 2%	18	234	252	7.1%	24	506	530	4.5%	0	0	0	0	0	0	0	0	0	6	272	278	2. 2%	18	234	252	7.1%	24	506	530	4.5%
	9:00	10	175	185	5.4%	19	156	175	10.9%	29	331	360	8.1%	6	0	6	6	0	6	12	0	12	16	175	191	8.4%	25	156	181	13.8%	41	331	372	11.0%
	10:00	10	129	139	7.2%	10	168	178	5.6%	20	297	317	6.3%	6	0	6	6	0	6	12	0	12	16	129	145	11.0%	16	168	184	8.7%	32	297	329	9.7%
	11:00	7	114	121	5.8%	10	157	167	6.0%	17	271	288	5.9%	6	0	6	6	0	6	12	0	12	13	114	127	10.2%	16	157	173	9.2%	29	271	300	9.7%
	12:00	8	85	93	8.6%	4	160	164	2.4%	12	245	257	4.7%	0	0	0	0	0	0	0	0	0	8	85	93	8.6%	4	160	164	2.4%	12	245	257	4.7%
昼	13:00	9	112	121	7.4%	10	143	153	6.5%	19	255	274	6.9%	6	0	6	6	0	6	12	0	12	15	112	127	11.8%	16	143	159	10.1%	31	255	286	10.8%
間	14:00	13	88	101	12.9%	5	185	190	2.6%	18	273	291	6.2%	6	0	6	6	0	6	12	0	12	19	88	107	17.8%	11	185	196	5.6%	30	273	303	9.9%
	15:00	11	144	155	7.1%	8	179	187	4.3%	19	323	342	5.6%	6	0	6	6	0	6	12	0	12	17	144	161	10.6%	14	179	193	7.3%	31	323	354	8.8%
	16:00	11	159	170	6.5%	6	246	252	2.4%	17	405	422	4.0%	6	0	6	6	0	6	12	0	12	17	159	176	9. 7%	12	246	258	4.7%	29	405	434	6.7%
	17:00	7	190	197	3.6%	2	289	291	0.7%	9	479	488	1.8%	6	0	6	6	0	6	12	0	12	13	190	203	6.4%	8	289	297	2.7%	21	479	500	4.2%
	18:00	2	143	145	1.4%	13	257	270	4.8%	15	400	415	3.6%	0	0	0	0	0	0	0	0	0	2	143	145	1.4%	13	257	270	4.8%	15	400	415	3.6%
	19:00	3	84	87	3.4%	4	182	186	2. 2%	7	266	273	2.6%	0	0	0	0	0	0	0	0	0	3	84	87	3.4%	4	182	186	2.2%	7	266	273	2.6%
	20:00	0	59	59	0.0%	0	119	119	0.0%	0	178	178	0.0%	0	0	0	0	0	0	0	0	0	0	59	59	0.0%	0	119	119	0.0%	0	178	178	0.0%
-	21:00	0	51	51	0.0%	2	64	66	3.0%	2	115	117	1.7%	0	0	0	0	0	0	0	0	0	0	51	51	0.0%	2	64	66	3.0%	2	115	117	1.7%
	22:00	0	36	36	0.0%	0	35	35	0.0%	0	71	71	0.0%	0	0	0	0	0	0	0	0	0	0	36	36	0.0%	0	35	35	0.0%	0	71	71	0.0%
	23:00	1	21	22	4.5%	0	22	22	0.0%	1	43	44	2.3%	0	0	0	0	0	0	0	0	0	1	21	22	4.5%	0	22	22	0.0%	1	43	44	2.3%
1	0:00	0	13	13	0.0%	0	9	9	0.0%	0	22	22	0.0%	0	0	0	0	0	0	0	0	0	0	13	13	0.0%	0	9	9	0.0%	0	22	22	0.0%
_ I	1:00	0	6	6	0.0%	0	4	4	0.0%	0	10	10	0.0%	0	0	0	0	0	0	0	0	0	0	6	6	0.0%	0	4	4	0.0%	0	10	10	0.0%
間	2:00	3	3	6	50.0%	1	3	4	25.0%	4	6	10	40.0%	0	0	0	0	0	0	0	0	0	3	3	6	50.0%	1	3	4	25.0%	4	6	10	40.0%
1 H	3:00	0	12	12	0.0%	0	4	4	0.0%	0	16	16	0.0%	0	0	0	0	0	0	0	0	0	0	12	12	0.0%	0	4	4	0.0%	0	16	16	0.0%
	4:00	0	6	6	0.0%	2	8	10	20.0%	2	14	16	12.5%	0	0	0	0	0	0	0	0	0	0	6	6	0.0%	2	8	10	20.0%	2	14	16	12.5%
	5:00	2	11	13	15.4%	5	13	18	27. 8%	7	24	31	22.6%	0	0	0	0	0	0	0	0	0	2	11	13	15.4%	5	13	18	27.8%	7	24	31	22.6%
	明合計	110	2, 219	2, 329	4. 7%	120	2, 765	2, 885	4. 2%	230	4, 984	5, 214	4.4%	48	0	48	48	0	48	96	0	96	158	2,219	2, 377	6.6%	168	2, 765	2, 933	5. 7%	326	4, 984	5, 310	6.1%
	目合計	6	108	114	5. 3%	8	98	106	7. 5%	14	206	220	6.4%	0	0	0	0	0	0	0	0	0	6	108	114	5. 3%	8	98	106	7.5%	14	206	220	6.4%
総	合計	116	2, 327	2, 443	4.7%	128	2, 863	2, 991	4. 3%	244	5, 190	5, 434	4.5%	48	0	48	48	0	48	96	0	96	164	2,327	2, 491	6.6%	176	2, 863	3, 039	5.8%	340	5, 190	5, 530	6.1%

表 7.1-17(2) 工事中の交通量(③県道 235 号荒井荒町線)

3	県道235·	号荒井荒	町線																															
							基礎多	ē通量										工事用車両										工事中の	の交通量					
時間			西行	řき			東行	řŧ			合	31			西行き			東行き			合 計			西行	j き			東行	うき			合	計	
区分	時刻	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車
		(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率
	6:00	7	165	172	4. 1%	7	181	188	3.7%	14	346	360	3.9%	0	0	0	0	0	0	0	0	0	7	165	172	4.1%	7	181	188	3.7%	14	346	360	3.9%
	7:00	32	510	542	5. 9%	31	536	567	5.5%	63	1,046	1, 109	5.7%	0	0	0	0	0	0	0	0	0	32	510	542	5. 9%	31	536	567	5.5%	63	1,046	1, 109	5. 7%
	8:00	50	505	555	9.0%	52	522	574	9.1%	102	1,027	1, 129	9.0%	0	0	0	0	0	0	0	0	0	50	505	555	9.0%	52	522	574	9.1%	102	1,027	1, 129	9.0%
	9:00	67	481	548	12. 2%	61	412	473	12.9%	128	893	1,021	12.5%	6	0	6	6	0	6	12	0	12	73	481	554	13.2%	67	412	479	14.0%	140	893	1,033	13.6%
	10:00	55	507	562	9.8%	52	473	525	9.9%	107	980	1,087	9.8%	6	0	6	6	0	6	12	0	12	61	507	568	10.7%	58	473	531	10.9%	119	980	1,099	10.8%
	11:00	36	505	541	6.7%	44	445	489	9.0%	80	950	1,030	7.8%	6	0	6	6	0	6	12	0	12	42	505	547	7.7%	50	445	495	10.1%	92	950	1,042	8.8%
	12:00	21	485	506	4. 2%	29	446	475	6.1%	50	931	981	5.1%	0	0	0	0	0	0	0	0	0	21	485	506	4. 2%	29	446	475	6.1%	50	931	981	5.1%
昼	13:00	49	483	532	9. 2%	52	441	493	10.5%	101	924	1,025	9.9%	6	0	6	6	0	6	12	0	12	55	483	538	10.2%	58	441	499	11.6%	113	924	1,037	10.9%
間	14:00	57	519	576	9. 9%	55	489	544	10.1%	112	1,008	1, 120	10.0%	6	0	6	6	0	6	12	0	12	63	519	582	10.8%	61	489	550	11.1%	124	1,008	1, 132	11.0%
	15:00	45	528	573	7. 9%	57	455	512	11.1%	102	983	1,085	9.4%	6	0	6	6	0	6	12	0	12	51	528	579	8.8%	63	455	518	12.2%	114	983	1, 097	10.4%
	16:00	47	614	661	7.1%	44	487	531	8.3%	91	1, 101	1, 192	7.6%	6	0	6	6	0	6	12	0	12	53	614	667	7.9%	50	487	537	9.3%	103	1,101	1, 204	8.6%
	17:00	28	626	654	4. 3%	17	488	505	3.4%	45	1, 114	1, 159	3.9%	6	0	6	6	0	6	12	0	12	34	626	660	5. 2%	23	488	511	4.5%	57	1, 114	1, 171	4.9%
	18:00	10	626	636	1.6%	14	452	466	3.0%	24	1,078	1, 102	2. 2%	0	0	0	0	0	0	0	0	0	10	626	636	1.6%	14	452	466	3.0%	24	1,078	1, 102	2.2%
	19:00	3	452	455	0.7%	9	323	332	2.7%	12	775	787	1.5%	0	0	0	0	0	0	0	0	0	3	452	455	0.7%	9	323	332	2.7%	12	775	787	1.5%
	20:00	2	319	321	0.6%	4	211	215	1.9%	6	530	536	1.1%	0	0	0	0	0	0	0	0	0	2	319	321	0.6%	4	211	215	1.9%	6	530	536	1.1%
	21:00	3	207	210	1.4%	4	189	193	2.1%	7	396	403	1.7%	0	0	0	0	0	0	0	0	0	3	207	210	1.4%	4	189	193	2.1%	7	396	403	1.7%
	22:00	2	117	119	1. 7%	1	124	125	0.8%	3	241	244	1. 2%	0	0	0	0	0	0	0	0	0	2	117	119	1.7%	1	124	125	0.8%	3	241	244	1.2%
	23:00	1	71	72	1.4%	1	76	77	1.3%	2	147	149	1.3%	0	0	0	0	0	0	0	0	0	1	71	72	1.4%	1	76	77	1.3%	2	147	149	1.3%
	0:00	4	43	47	8. 5%	2	46	48	4. 2%	6	89	95	6.3%	0	0	0	0	0	0	0	0	0	4	43	47	8.5%	2	46	48	4.2%	6	89	95	6.3%
攸	1:00	3	20	23	13.0%	0	34	34	0.0%	3	54	57	5.3%	0	0	0	0	0	0	0	0	0	3	20	23	13.0%	0	34	34	0.0%	3	54	57	5. 3%
間	2:00	3	15	18	16. 7%	5	23	28	17. 9%	8	38	46	17.4%	0	0	0	0	0	0	0	0	0	3	15	18	16.7%	5	23	28	17.9%	8	38	46	17.4%
	3:00	1	16	17	5. 9%	0	21	21	0.0%	1	37	38	2.6%	0	0	0	0	0	0	0	0	0	1	16	17	5.9%	0	21	21	0.0%	1	37	38	2.6%
	4:00	6	16	22	27. 3%	0	32	32	0.0%	6	48	54	11.1%	0	0	0	0	0	0	0	0	0	6	16	22	27. 3%	0	32	32	0.0%	6	48	54	11.1%
L	5:00	9	36	45	20.0%	2	36	38	5. 3%	11	72	83	13.3%	0	0	0	0	0	0	0	0	0	9	36	45	20.0%	2	36	38	5.3%	11	72	83	13.3%
_	問合計	512	7,532	8, 044	6. 4%	532	6, 550	7, 082	7.5%	1, 044	14, 082	15, 126	6.9%	48	0	48	48	0	48	96	0	96	560	7, 532	8, 092	6.9%	580	6,550	7, 130	8.1%	1, 140		15, 222	7.5%
_	問合計	29	334	363	8.0%	11	392	403	2. 7%	40	726	766	5. 2%	0	0	0	0	0	0	0	0	0	29	334	363	8.0%	11	392	403	2.7%	40	726	766	5. 2%
1	総合計	541	7,866	8, 407	6.4%	543	6, 942	7, 485	7.3%	1,084	14,808	15, 892	6.8%	48	0	48	48	0	48	96	0	96	589	7,866	8, 455	7.0%	591	6,942	7,533	7.8%	1, 180	14,808	15, 988	7.4%

表 7.1-17(3) 工事中の交通量(④県道 137 号荒浜原町線)

4	県道137	号荒浜原	町線																															
							基礎	で通量										工事用車両										工事中の)交通量					
瞬間	and a dead		北行	řŧ			南名	丁き			合	計			北行き			南行き			合 計			北行	řき			南行	īき			合	計	
区公	時刻	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車
,,,		(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率
	6:00	5	68	73	6.8%	4	42	46	8.7%	9	110	119	7.6%	0	0	0	0	0	0	0	0	0	5	68	73	6.8%	4	42	46	8.7%	9	110	119	7.6%
	7:00	13	301	314	4.1%	6	106	112	5.4%	19	407	426	4.5%	0	0	0	0	0	0	0	0	0	13	301	314	4.1%	6	106	112	5.4%	19	407	426	4.5%
	8:00	15	229	244	6.1%	15	100	115	13.0%	30	329	359	8.4%	0	0	0	0	0	0	0	0	0	15	229	244	6.1%	15	100	115	13.0%	30	329	359	8.4%
	9:00	25	160	185	13.5%	21	125	146	14.4%	46	285	331	13.9%	6	0	6	6	0	6	12	0	12	31	160	191	16.2%	27	125	152	17.8%	58	285	343	16.9%
	10:00	23	202	225	10.2%	29	203	232	12.5%	52	405	457	11.4%	6	0	6	6	0	6	12	0	12	29	202	231	12.6%	35	203	238	14.7%	64	405	469	13.6%
	11:00	31	263	294	10.5%	36	208	244	14.8%	67	471	538	12.5%	6	0	6	6	0	6	12	0	12	37	263	300	12.3%	42	208	250	16.8%	79	471	550	14.4%
1_	12:00	19	165	184	10.3%	21	179	200	10.5%	40	344	384	10.4%	0	0	0	0	0	0	0	0	0	19	165	184	10.3%	21	179	200	10.5%	40	344	384	10.4%
昼	13:00	19	198	217	8.8%	23	164	187	12.3%	42	362	404	10.4%	6	0	6	6	0	6	12	0	12	25	198	223	11. 2%	29	164	193	15.0%	54	362	416	13.0%
間	14:00	13	225	238	5.5%	33	212	245	13.5%	46	437	483	9.5%	6	0	6	6	0	6	12	0	12	19	225	244	7.8%	39	212	251	15. 5%	58	437	495	11.7%
	15:00	36	232	268	13.4%	26	183	209	12. 4%	62	415	477	13.0%	6	0	6	6	0	6	12	0	12	42	232	274	15.3%	32	183	215	14. 9%	74	415	489	15. 1%
	16:00	18	232	250	7. 2%	15	200	215	7.0%	33	432	465	7.1%	6	0	6	6	0	6	12	0	12	24	232	256	9.4%	21	200	221	9.5%	45	432	477	9.4%
	17:00	16	251	267	6.0%	6	248	254	2.4%	22	499	521	4. 2%	6	0	6	6	0	6	12	0	12	22	251	273	8. 1%	12	248	260	4.6%	34	499	533	6. 4%
	18:00	5	148 88	153	3.3%	6	267	273	2. 2%	11	415	426	2.6%	0	0	0	0	0	0	0	0	0	5	148 88	153	3.3%	6	267	273	2. 2%	11	415	426	2.6%
	19:00	1	51	89 51	1.1%	1	145 89	146 90	0. 7%	2	233 140	235	0.9%	0	0	0	0	0	0	0	0	0	1	88 51	89 51	1.1%	1	145 89	146 90	0.7%	2	233 140	235	0.9%
	21:00	0	44	44	0.0%	1	47	49	4 10	1	91	141	2. 2%	0	0	0	0	0	0	0	0	0	0	44	44	0.0%	1	47	49	4. 1%	2	91	141 93	0. 7% 2. 2%
-	22:00	0	29	29	0.0%	0	27	27	0, 0%	0	56	56	0.0%	0	0	0	0	0	0	0	0	0	0	29	29	0.0%	0	27	27	0.0%	0	56	56	0, 0%
	23:00	0	7	7	0.0%	1	21	22	4. 5%	1	28	29	3.4%	0	0	0	0	0	0	0	0	0	0	7	7	0.0%	1	21	22	4.5%	1	28	29	3. 4%
	0:00	1	5	6	16, 7%	0	11	11	0.0%	1	16	17	5, 9%	0	0	0	0	0	0	0	0	0	1	5	6	16, 7%	0	11	11	0.0%	1	16	17	5, 9%
夜	1:00	1	3	4	25.0%	0	4	4	0.0%	1	7	8	12.5%	0	0	0	0	0	0	0	0	0	1	3	4	25.0%	0	4	4	0.0%	1	7	8	12.5%
開	2:00	1	7	8	12.5%	1	6	7	14. 3%	2	13	15	13.3%	0	0	0	0	0	0	0	0	0	1	7	8	12.5%	1	6	7	14. 3%	2	13	15	13.3%
	3:00	0	2	2	0.0%	0	2	2	0.0%	0	4	4	0.0%	0	0	0	0	0	0	0	0	0	0	2	2	0.0%	0	2	2	0.0%	0	4	4	0.0%
	4:00	1	4	5	20.0%	0	9	9	0.0%	1	13	14	7.1%	0	0	0	0	0	0	0	0	0	1	4	5	20.0%	0	9	9	0.0%	1	13	14	7.1%
	5:00	0	24	24	0.0%	0	12	12	0.0%	0	36	36	0.0%	0	0	0	0	0	0	0	0	0	0	24	24	0.0%	0	12	12	0.0%	0	36	36	0.0%
E	是問合計	239	2,857	3, 096	7.7%	245	2, 518	2, 763	8.9%	484	5, 375	5, 859	8.3%	48	0	48	48	0	48	96	0	96	287	2,857	3, 144	9.1%	293	2, 518	2,811	10.4%	580	5, 375	5, 955	9.7%
君	友問合計	4	81	85	4.7%	2	92	94	2.1%	6	173	179	3.4%	0	0	0	0	0	0	0	0	0	4	81	85	4.7%	2	92	94	2.1%	6	173	179	3.4%
	総合計	243	2, 938	3, 181	7.6%	247	2,610	2, 857	8. 6%	490	5, 548	6, 038	8.1%	48	0	48	48	0	48	96	0	96	291	2,938	3, 229	9.0%	295	2,610	2,905	10.2%	586	5, 548	6, 134	9.6%

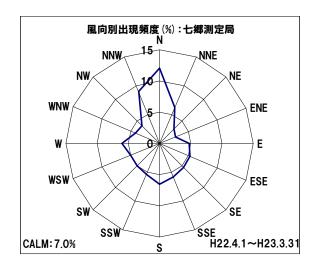
②走行速度及び排出係数

走行速度及び排出係数は、表 7.1-18 に示すとおりである。なお、走行速度は、現地調査結果と同じとした。

表 7.1-18 走行速度及び排出係数

				排出係数	(g/km·台)	
No.	地点名	走行速度	窒素酸化	公物(NOx)	浮遊粒子状	物質(SPM)
			小型車	大型車	小型車	大型車
2	市立蒲町保育所(市道七郷伊在改良8号線)	41.0km/h	0.076	1. 32	0.004	0.070
3	県道235号荒井荒町線	45.9km/h	0.069	1. 22	0.004	0.064
4	県道137号荒浜原町線	30.3km/h	0.096	1.66	0.006	0.086

出典:「道路環境影響評価の技術手法(2007改訂版)」((財)道路環境研究所、平成19年)」


③汚染物質排出量

汚染物質排出量は、工事中の交通量及び排出係数を用いて、時間帯ごとに求めた。

④気象条件

気象条件(風向・風速)は、事業区域の最寄の仙台市大気汚染常時監視測定局である七郷 測定局(若林区荒井字堀添 53-2:七郷小学校校庭)の平成 22 年度の測定データを用いた。

風向別出現頻度及び風向別平均風速を示した風配図は、図 7.1-8 に示すとおりであり、北よりの風が卓越している。

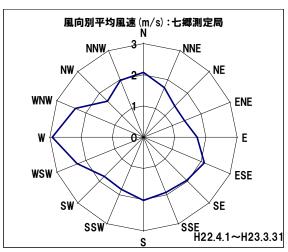


図 7.1-8 風配図(七郷測定局:平成22年4月1日~平成23年3月31日)

なお、平成 22 年度の測定データは、風向及び風速階級別に異常年検定を行った結果、表 7.1-19 に示すとおり、特異ではないことを確認した。

表 7.1-19 異常年検定結果(七郷測定局)

風向						統計	年度						検定 年度	検定量	○ 括	判定 採択,×	棄却	棄却限	見界(5%)
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	平均	S	2010	F0	5%	2.5%	1%	上限	下限
NNE	526	486	500	365	375	446	540	523	450	424	464	58.9	550	1.76	0	0	0	611	316
NE	273	271	248	243	251	281	260	307	307	242	268	23.0	297	1.27	0	0	0	326	211
ENE	259	211	231	319	285	257	264	285	338	220	267	39.0	252	0.12	0	0	0	364	169
Е	323	361	332	494	368	446	470	388	460	415	406	57.1	413	0.01	0	0	0	549	263
ESE	420	500	466	577	450	543	523	457	526	525	499	46.4	460	0.57	0	0	0	615	383
SE	525	613	518	614	591	540	544	485	464	463	536	53.6	475	1.05	0	0	0	670	402
SSE	701	627	540	559	574	597	543	620	485	451	570	68.4	506	0.71	0	0	0	741	399
S	576	512	509	537	515	516	481	523	562	518	525	25.9	576	3.18	0	0	0	590	460
SSW	396	394	390	454	488	412	435	477	457	436	434	33.4	475	1.24	0	0	0	517	350
SW	248	267	468	418	493	457	384	486	453	434	411	82.5	443	0.12	0	0	0	617	204
WSW	202	206	586	674	706	449	382	468	478	418	457	161.7	443	0.01	0	0	0	861	52
W	546	695	623	417	494	887	675	648	678	503	617	126.6	527	0.41	0	0	0	933	300
WNW	715	535	320	289	307	346	347	352	409	242	386	132.7	376	0.00	0	0	0	718	54
NW	563	464	398	461	468	350	324	318	336	212	389	96.1	352	0.12	0	0	0	630	149
NNW	923	981	785	945	1020	785	1003	863	899	711	892	98.5	786	0.94	0	0	0	1138	645
N	970	952	873	663	646	966	1122	986	949	807	893	141.7	1051	1.01	0	0	0	1248	539
Calm	572	671	540	699	554	455	455	558	486	423	541	86.6	613	0.56	0	0	0	758	325

風速階級		統計年度										検定 年度	判定 検定量 ○採択,×棄却		棄却限界(5%)				
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	平均	S	2010	F0	5%	2.5%	1%	上限	下限
0.0~0.4	572	671	540	700	554	455	455	558	486	423	541	86.8	613	0.56	0	0	0	759	324
0.5~0.9	1765	1869	1526	1761	1646	1260	1371	1485	1578	1360	1562	189.2	1575	0.00	0	0	0	2035	1089
1.0~1.9	3029	2945	2966	3170	3033	2789	2892	3001	2962	2556	2934	157.0	2977	0.06	0	0	0	3327	2541
2.0~2.9	1769	1805	1903	1827	1937	2165	2121	2049	2069	1718	1936	149.2	1985	0.09	0	0	0	2310	1563
3.0~3.9	889	891	869	777	805	1209	1133	1029	956	849	941	134.5	933	0.00	0	0	0	1277	604
4.0~5.9	562	470	439	418	475	705	669	540	603	471	535	93.3	458	0.56	0	0	0	769	302
6.0~	152	95	84	100	135	150	111	99	83	67	108	27.6	54	3.08	0	0	0	177	38

風向は 16 方位に、風速は有風時 (風速 1.0m/秒を超える) 及び弱風時 (無風時:風速 1.0m/ 秒以下) に分類した。

また、風速は、以下に示すとおり、べき法則により排出源高さの風速に補正した。 時刻別風向出現頻度及び平均風速表は、表 7.1-20 に示すとおりである。

 $U = U_0 (H/H_0)^P$

ここで、U : 高さH(m)の風速(m/s)

U₀:基準高さH₀の風速(m/s)

H : 排出源の高さ(m) H₀ : 基準とする高さ(m)

P:べき指数(ここでは1/5(郊外の値))

出典:「道路環境影響評価の技術手法(2007改訂版)」(平成19年9月 (財)道路環境研究所)

表 7.1-20 時刻別風向出現頻度及び平均風速表

地点:七郷(地上1.0m換算)

期間:平成22年4月1日~平成23年3月31日

朔⊫	11 1 17/	44-4	, J T I	十八人2	の牛りた	JOIH												
時	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	弱風時 出現頻度 (%)	
1	6.4	3.9 1.3	0.8	0.0	0.6	0.8	0.6 1.9	0.0	0.3	1.1 1.5	2.2	2.5 1.8	2.2	1.9 1.4	0.6	6.1	69.9	観測頻度(%) 平均風速(m/s)
2	9.2	1.9	0.3	0.6	1.4	0.3	0.8	0.0	0.3	1.7	1.7	1.4	3.3	1.4	1.4	6.1	68.2	観測頻度(%)
	1.4	1.5	1.1	1.0	1.2	1.1	1.5	1.1	1.1	1.9	2.0	1.8	1.8	1.5	1.3	1.6	00.2	平均風速(m/s)
3	7.2	1.4	0.8	0.8	0.0	0.3	0.3	0.3 2.1	1.1	0.8	2.4	1.4 2.3	2.2	0.8	1.4	7.8	71.9	観測頻度(%) 平均風速(m/s)
4	8.4	2.2	0.6	0.3	0.6	0.3	0.3	0.3	0.6	1.7	1.4	1.9	1.7	1.1	1.7	5.6	71.6	観測頻度(%)
F	6.1	1.4 2.8	0.0	2.6	2.7	0.8	0.0	2.1	0.3	1.7	2.1	1.9	2.3	0.3	1.5	7.0	50.5	平均風速(m/s) 観測頻度(%)
5	1.5	1.3	0.0	1.2	4.3	1.7	0.0	1.5	3.0	1.9	1.9	1.8	2.0	1.3	1.6	1.5	72.7	平均風速(m/s)
6	10.3	1.4	0.6	0.6 1.0	0.6	1.1 2.5	0.6 2.1	2.0	0.8	1.7	1.1	3.1	2.2	1.1	0.6	6.7	68.5	観測頻度(%) 平均風速(m/s)
7	9.2	2.8	1.1	0.8	1.4	1.1	1.1	0.3	1.1	1.9	1.9	1.9	2.5	0.8	0.6	5.8	65.5	観測頻度(%)
	1.6	1.4	1.2	1.5 0.6	0.6	1.8	1.8	1.4 0.3	2.5	1.8 3.3	2.0	2.1	2.1	1.5	0.6	1.4 6.7		平均風速(m/s) 観測頻度(%)
8	1.5	1.2	1.5	1.5	1.6	2.2	1.1	1.1	1.2	1.8	1.7	1.6	1.9	1.7	1.3	1.5	58.8	平均風速(m/s)
9	7.5	4.5	0.8	0.8	3.1	6.4	2.8	1.1	4.2	4.7	2.2	3.1	4.2 2.2	3.1	0.8	8.1	42.6	観測頻度(%) 平均風速(m/s)
10	7.3	1.5 3.6	1.1	0.0	1.3 4.2	9.8	6.7	5.3	1.5 4.2	1.8 3.9	3.4	1.9 3.1	5.3	3.9	1.1	1.5 7.0	30.0	観測頻度(%)
10	1.9	1.6	1.5	0.0	1.8	1.6	1.4	1.3	1.6	1.9	2.1	2.5	2.6	2.0	1.4	1.7	30.0	平均風速(m/s)
11	7.8	3.4	1.4	0.8	3.6 2.0	9.0	11.5	8.7 1.5	5.3	4.2 1.6	2.0	1.7 2.9	9.5 2.7	3.4	1.4	3.9	22.4	観測頻度(%) 平均風速(m/s)
12	6.4	2.8	1.7	0.6	4.2	11.7	11.7	10.3	6.7	3.9	1.7	2.8	6.1	5.0	2.8	4.7	16.8	観測頻度(%)
	2.1 5.0	1.6 2.8	1.5	1.5 0.8	1.7 4.5	1.7	1.7	1.6	1.8 8.4	1.9	2.7	2.6 3.6	2.8 6.4	2.4 6.4	1.7 3.3	1.8 5.0		平均風速(m/s) 観測頻度(%)
13	2.1	1.7	1.6	1.9	1.7	1.6	1.7	1.5	1.9	1.8	1.9	2.7	2.8	2.4	1.9	2.0	12.5	平均風速(m/s)
14	5.3 1.9	1.9	0.3	1.1 2.4	5.0	8.9	13.1	14.2	8.1	2.5 1.9	0.8 3.1	3.9 2.7	7.0	4.5 2.1	3.9	5.6	11.5	観測頻度(%) 平均風速(m/s)
15	7.9	4.2	1.4	1.7	5.9	6.7	8.1	12.9	12.1	2.8	1.7	2.8	7.6	5.6	2.8	3.9	11.8	観測頻度(%)
15	1.9	1.7	1.7	2.2	1.7	1.7	1.5	1.6	1.7	1.9	2.2	2.6	2.5	2.4	1.8	2.2	11.0	平均風速(m/s)
16	7.3	3.9	0.6 2.7	1.7	2.8	6.5	6.2	9.3	11.3	2.0	2.0	2.3	8.2	4.5 2.2	5.1	4.5 1.9	19.7	観測頻度(%) 平均風速(m/s)
17	7.3	5.0	0.6	1.4	3.1	5.3	3.1	5.3	13.4	2.5	2.2	3.9	5.9	4.5	3.9	3.9	28.6	観測頻度(%)
	9.2	1.3 2.5	1.7	1.6	2.0	3.9	1.6 2.5	1.3 2.5	1.6 8.4	1.9	1.6	2.3	1.9 5.0	2.3	2.0	3.9		平均風速(m/s) 観測頻度(%)
18	1.7	1.4	1.3	1.4	1.4	1.3	1.2	1.3	1.5	2.0	1.7	1.9	2.5	1.8	1.3	1.7	44.0	平均風速(m/s)
19	7.6	5.6 1.5	1.1	2.5	3.6	1.1	0.6	1.1	2.8	1.7	2.5	3.9	4.5 1.7	2.8	1.4	3.6	53.5	観測頻度(%) 平均風速(m/s)
20	9.5	3.6	2.0	1.1	2.2	0.8	0.8	0.3	3.1	2.8	1.7	5.3	2.8	2.2	1.1	2.8	57.8	観測頻度(%)
	1.6 8.4	1.4 3.4	1.5 2.5	1.2	1.6	1.7	1.2 0.6	0.3	1.6 0.8	1.3 2.8	2.0	1.8 2.8	2.3	2.0	1.6 0.6	1.4 3.6		平均風速(m/s) 観測頻度(%)
21	1.4	1.3	1.3	1.4	1.2	1.6	1.5	1.9	1.2	1.4	1.8	1.5	1.9	1.8	1.5	1.6	61.7	平均風速(m/s)
22	7.0	2.8	1.4	0.8	0.6	0.8	0.3	1.1	1.1	1.7	2.8	1.9	3.9	1.4	1.7	4.2	66.6	観測頻度(%)
20	1.8 5.8	1.5 3.6	1.5	1.3 0.6	1.1	0.6	0.3	1.5 0.6	1.8	1.5 2.2	2.1	1.8	1.9 3.3	1.6	1.5	6.1	64.1	平均風速(m/s) 観測頻度(%)
23	1.6	1.4	1.2	1.6	1.3	1.0	1.8	1.5	1.6	1.5	1.5	1.7	1.9	1.7	1.6	1.3	64.1	平均風速(m/s)
24	9.5	1.9	1.1	0.3	0.0	0.6	0.6	0.3	1.9	1.9	3.0	3.1	3.1	1.9	$\frac{1.1}{1.4}$	1.3	69.1	観測頻度(%) 平均風速(m/s)
Ь—	1.0	1.0	1.0	1.1	0.0	1.4	1.0	1.0	1.0	1.0	5.0	1.0	۵.1	1.0	1.1	1.0	L	1 / / (111/ 3/

⑤道路条件

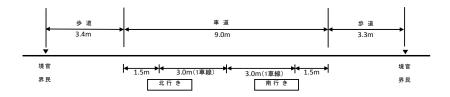
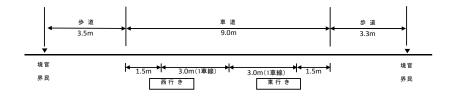

予測地点の道路条件は表 7.1-21 及び図 7.1-9 に示すとおりである。なお、予測位置の高さは、地上 1.5m とした。

表 7.1-21 予測地点の道路条件


地点番号	予測地域 (対象道路)	予測地点	道路構造
2	市道七郷伊在改良8号線	市立蒲町保育所	平面
3	県道 235 号荒井荒町線	県道 235 号荒井荒町線	平面
4	県道 137 号荒浜原町線	県道 137 号荒浜原町線	平面

注)地点番号は、道路交通騒音の調査地点番号と同じとした。

<②市立蒲町保育所(市道七郷伊在改良8号線)>

<③県道235号荒井荒町線>

<④県道137号荒浜原町線>

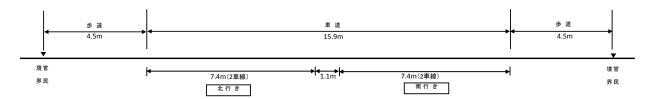
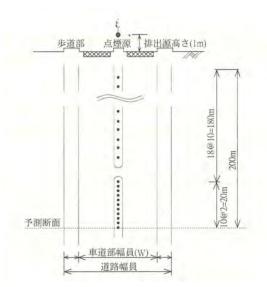



図 7.1-9 予測地点断面図

⑥排出源位置

排出源位置は、図 7.1-10 に示すとおり、各予測断面の前後 20m は 2m 間隔、その両側 180m は 10m 間隔とし、前後 400m の範囲の道路中央部上に連続点煙源を設定した。各々の排出源高さは 1.0m とした。

出典:「道路環境影響評価の技術手法(2007改訂版)」(平成19年9月 (財)道路環境研究所)

図 7.1-10 排出源の配置

⑦バックグラウンド濃度

バックグランド濃度は、表 7.1-22 に示すとおり、七郷測定局における測定値を使用した。 平成 18 年度~22 年度の過去 5 年間(確定値として公表されている最新の 5 年間)における 七郷測定局の年平均値は、概ね横這いで推移している。したがって、この期間の平均値をバックグランド濃度とした。

表 7.1-22 バックグラウンド濃度(平成 18 年度~22 年度の平均値)

窒素酸化物	二酸化窒素	浮遊粒子状物質
(ppm)	(ppm)	(mg/m³)
0.021	0.014	0.020

⑧窒素酸化物変換式

NO_xをNO₂に変換する式は、「道路環境影響評価技術手法 I・Ⅱ・Ⅲ(2007 改訂版)」(H19.9、(財)道路環境研究所) に準拠し、以下に示す式を用いた。

 $[NO_2]$ = 0. 0683 $[NO_x]^{0.499} (1 - [NO_x]_{BG} / [NO_x]_T)^{0.507}$

ここで、[NO_x]: 窒素酸化物の対象道路の寄与濃度(ppm)

[NO₂]:二酸化窒素の対象道路の寄与濃度(ppm)

[NO_v]_{RG}: 窒素酸化物のバックグラウンド濃度(ppm)

[NO_x]_T: 窒素酸化物のバックグラウンド濃度と対象道路の寄与濃度の合計値(ppm)([NO_x]_T=[NO_x]+[NO_x]_{EC})

9日平均值換算式

二酸化窒素及び浮遊粒子状物質の予測値は年平均値であるため、評価値である二酸化窒素の日平均値の年間 98%値及び浮遊粒子状物質の日平均値の年間 2%除外値への換算を行った。

換算式は、「道路環境影響評価技術手法 I・II・III(2007 改訂版)」(H19.9、(財)道路環境研究所)に準拠し、以下に示す式を用いた。

ア. 二酸化窒素

[年間 98%値]=a([NO₂]_{BG}+[NO₂]_R)+b

ここで、a=1.10+0.56・exp(-[NO $_2$] $_R$ /[NO $_2$] $_{BG}$)

b=0.0098-0.0036 • $\exp(-[NO_2]_R/[NO_2]_{RG})$

[NO₂]_R :二酸化窒素の対象道路の寄与濃度の年平均値(ppm)

 $[NO_2]_{BG}$:二酸化窒素のバックグラウンド濃度の年平均値(ppm)

イ. 浮遊粒子状物質

[年間 2%除外值]=a([SPM]_{BG}+[SPM]_R)+b

ここで、 $a=2.12+0.10 \cdot \exp(-[SPM]_R/[SPM]_{BG})$

b=-0.0155+0.0213 • $\exp(-[SPM]_R/[SPM]_{BG})$

[SPM]_R:浮遊粒子状物質の対象道路の寄与濃度の年平均値(mg/m³)

[SPM]_{RG}: 浮遊粒子状物質のバックグラウンド濃度の年平均値(mg/m³)

(6) 予測結果

①年平均值

予測結果(年平均値)は表 7.1-23に示すとおりである。

二酸化窒素は、予測地点における工事中交通量の寄与濃度が $0.0004 \sim 0.0011$ ppm であり、バックグランド濃度を付加すると年平均値が $0.0144 \sim 0.0151$ ppm であると予測される。

浮遊粒子状物質は、予測地点における工事中交通量の寄与濃度が $0.0001 \sim 0.0003 mg/m^3$ であり、バックグランド濃度を付加すると年平均値が $0.0201 \sim 0.0203 mg/m^3$ であると予測される。

表 7.1-23(1) 二酸化窒素の予測結果(年平均値)

(単位:ppm)

						(±	FIT hhim
	予測地点		2		3		Ð
			東側	南側	北側	西側	東側
対象道路の	基礎交通量(A)	0.0004	0.0003	0.0008	0.0011	0.0006	0.0005
寄与濃度	工事中交通量(B)	0.0004	0.0004	0.0009	0.0011	0.0007	0.0006
(年平均値)	增加分(B-A)	0.0000	0.0001	0.0001	0.0000	0.0001	0.0001
バックグラウン	ンド濃度(年平均値)(C)	0.014	0.014	0.014	0.014	0.014	0.014
環境濃度	基礎交通量(A'=A+C)	0.0144	0.0143	0.0148	0.0151	0.0146	0.0145
(年平均値)	工事中交通量(B'=B+C)	0.0144	0.0144	0.0149	0.0151	0.0147	0.0146

表 7.1-23(2) 浮遊粒子状物質の予測結果(年平均値)

(単位·mg/m³)

						(+1	L.IIIg/III /
	予測地点		2		3		Ð
			東側	南側	北側	西側	東側
対象道路の	基礎交通量(A)	0.0001	0.0001	0.0002	0.0003	0.0001	0.0001
寄与濃度	工事中交通量(B)	0.0001	0.0001	0.0002	0.0003	0.0002	0.0001
(年平均値)	增加分(B-A)	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000
バックグラウン	ンド濃度(年平均値)(C)	0.020	0.020	0.020	0.020	0.020	0.020
環境濃度	基礎交通量(A'=A+C)	0.0201	0.0201	0.0202	0.0203	0.0201	0.0201
(年平均値)	工事中交通量(B'=B+C)	0.0201	0.0201	0.0202	0.0203	0.0202	0.0201

②日平均値の年間 98%値等

予測結果(日平均値の年間98%値等)は表7.1-24に示すとおりである。

二酸化窒素の日平均値の年間 98%値は、0.0313~0.0324ppm であり、環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

浮遊粒子状物質の日平均値の年間 2%除外値は、0.0503~0.0505 mg/m³であり、環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

表 7.1-24 予測結果(日平均値の年間 98%値等)

	予測地点		2		3		4	
			東側	南側	北側	西側	東側	
NO_2	環境濃度(年平均値)	0.0144	0.0144	0.0149	0.0151	0.0147	0.0146	
	日平均値の年間98%値	0.0314	0.0313	0.0320	0.0324	0.0318	0.0316	
(ppm)	環境基準	0.04~0.06のゾーン内又はそれ以下、0.04以下**					┌ ※	
SPM	環境濃度(年平均値)	0.0201	0.0201	0.0202	0.0203	0.0202	0.0201	
(/ 3)	日平均値の年間2%除外値	0.0503	0.0503	0.0504	0.0505	0.0504	0.0503	
(mg/m°)	環境基準		0.10以下					

※仙台市環境基本計画における定量目標

2) 工事による影響(重機の稼動)

(1) 予測内容

重機の稼動に伴い発生する大気中の二酸化窒素濃度、浮遊粒子状物質及び粉じんとした。 なお、粉じんについては、「4)工事による影響(粉じん)(資材等の運搬、重機の稼動、切 土・盛土・発破・掘削等)」として後述する。

(2)予測地域及び予測地点

予測地域は、重機の稼動に伴い大気質の変化が想定される地域とし、調査地域と同様に、図 7.1-12 に示す事業区域より 500m の範囲とした。

予測地点は、事業区域周辺における最大着地濃度出現地点のほか、住居地域、学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.1-25 及び図 7.1-12 に示す地点とした。


記号	予測地点	保全対象
1	最大着地濃度地点	_
2	リハビリパーク付近	福祉施設
3	地区南側住居付近	住居
(4)	蒲町小学校付近	学校

表 7.1-25 予測地点(工事による影響(重機の稼動))

(3)予測時期

予測時期は、図 7.1-11 に示すとおり、重機の稼動に伴う大気汚染物質排出量が最大となる時期として、平成 26 年 4 月~平成 27 年 3 月の 1 年間とした。

(窒素酸化物)

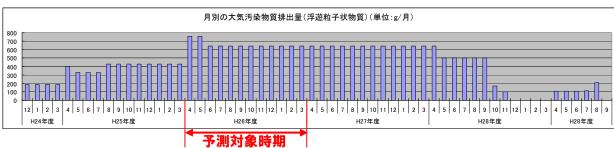
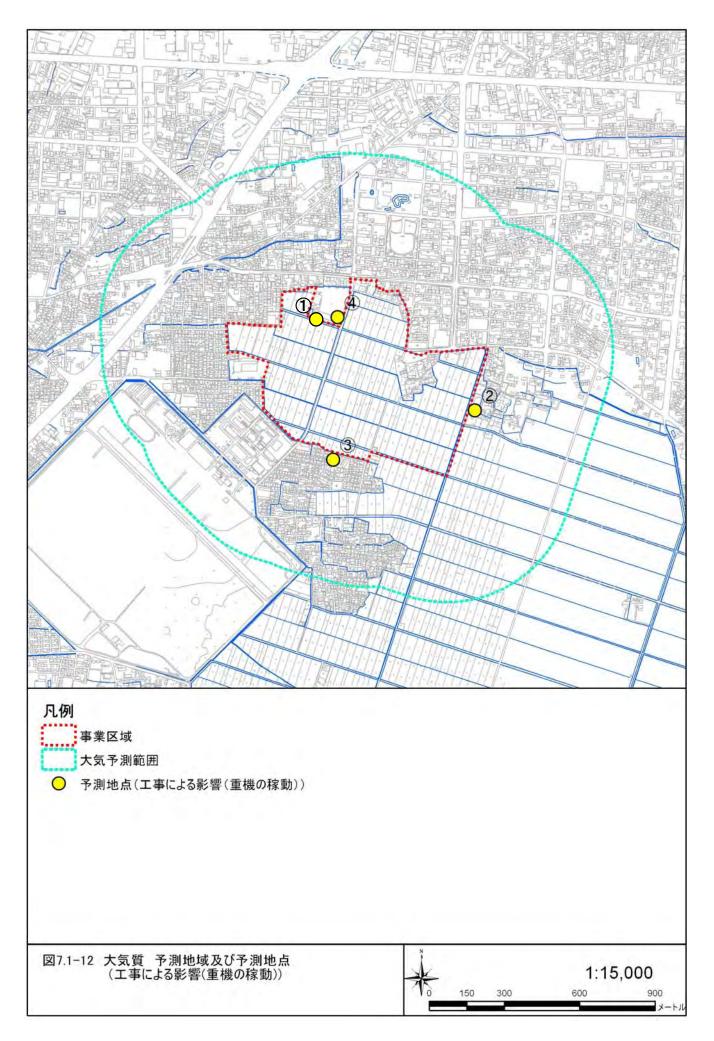



図 7.1-11 月別の汚染物質排出量の経時変化

(4)予測方法

①予測手順

予測手順は、図 7.1-13 に示すとおりである。

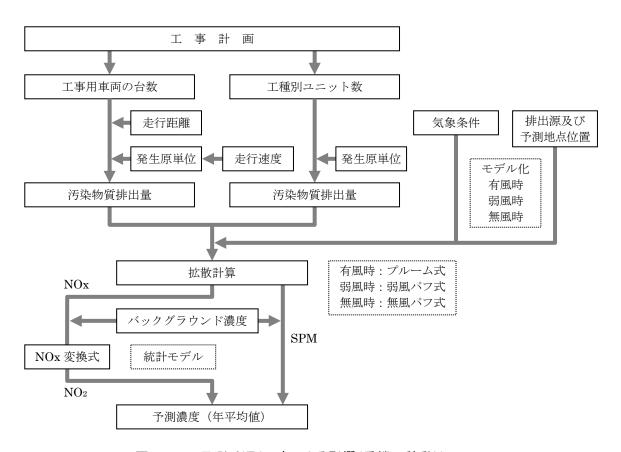


図 7.1-13 予測手順(工事による影響(重機の稼動))

②予測式

予測式は、「窒素酸化物総量規制マニュアル〔新版〕」(公害研究対策センター、平成 12 年 12 月) に基づき、有風時(風速 1.0m/s 以上) にはプルーム式、弱風時(風速 0.5m/s 以上、0.9m/s 以下) には弱風パフ式、無風時(風速 0.4m/s 以下) には無風パフ式を用いた点煙源拡散式とした。

ア. 大気拡散式

大気拡散式は、表 7.1-26 に示すとおりである。

表 7.1-26 大気拡散式(工事による影響(重機の稼動))

区分	拡 散 式
有風時 風速 1.0m/s 以上	$C(R,z) = \sqrt{\frac{1}{2\pi}} \frac{Q}{\frac{\pi}{8} \cdot R \cdot \sigma_z \cdot u} \left[exp \left\{ -\frac{(z-H)^2}{2\sigma_z^2} \right\} + exp \left\{ -\frac{(z+H)^2}{2\sigma_z^2} \right\} \right]$
弱風時 風速 0.5~0.9m/s	弱風パプ式 $C(R, z) = \frac{1}{\sqrt{2\pi}} \frac{Q_{\rho}}{\frac{\pi}{8} \cdot \gamma} \left\{ \frac{1}{\eta_{-}^{2}} \exp\left(-\frac{u^{2}(z-H)^{2}}{2\gamma^{2}\eta_{-}^{2}}\right) + \frac{1}{\eta_{+}^{2}} \exp\left(-\frac{u^{2}(z+H)^{2}}{2\gamma^{2}\eta_{+}^{2}}\right) \right\}$ $\eta_{-}^{2} = R^{2} + \frac{\alpha^{2}}{\gamma^{2}} (z-H)^{2}$ $\eta_{+}^{2} = R^{2} + \frac{\alpha^{2}}{\gamma^{2}} (z+H)^{2}$ $R^{2} = x^{2} + y^{2}$
無風時 風速 0.4m/s 以下	無風パプ式 $C(R, z) = \frac{Q}{(2\pi)^{\frac{3}{2}} \gamma} \left\{ \frac{1}{R^2 + \frac{\alpha^2}{\gamma^2} (z - H)^2} + \frac{1}{R^2 + \frac{\alpha^2}{\gamma^2} (z + H)^2} \right\}$
記号説明	C(R,z) : 排出源からの水平距離 R(m)の地点における濃度 [ppm または mg/m³] σ y, σ z : 水平 (y)、鉛直 (z) 方向の拡散幅 [m] Q : 単位時間あたり排出量 [ml/s または mg/s] x 無向に沿った風下距離 [m] y : x 軸に直角な水平距離 [m] z : x 軸に直角な鉛直距離 [m] u : 風速 [m/s] α : 水平 (y) 方向の拡散係数 [m] γ : 鉛直 (z) 方向の拡散係数 [m] H : 重機の排出源の高さ [m]

出典:「窒素酸化物総量規制マニュアル〔新版〕」(公害研究対策センター、平成12年12月)

年平均濃度は表 7.1-27 に示す式を用いて、気象区分ごとに拡散式で求めた濃度にそれぞれの気象条件の出現頻度を重ね合わせて算出した。

表 7.1-27 年平均濃度計算式(工事による影響(重機の稼動))

区 分	拡 散 式					
計算式	$\overline{C} = \sum_{k} \left[\sum_{j} \sum_{i} Cw(i, j, k) \cdot f_{w}(i, j, k) + C_{c}(k) \cdot f_{c}(k) \right]$					
	\overline{C} :年平均濃度[ppm または mg/m 3]					
<u>⇒</u> 7 □ =¥ □□	$\mathit{Cw}(i,j,k)$: 有風時(+弱風時)、風向 i 、風速階級 j 、大気安定度 k のときの 1 時間濃度 $[ppm$ または $mg/m^3]$					
記号説明	$f_{w}(i,j,k)$: 有風時(+弱風時)、風向 i 、風速階級 j 、大気安定度 k の年間に おける出現率					
	$C_c(k)$:無風時、大気安定度 k のときの 1 時間濃度 $[{ m ppm}$ または ${ m mg/m^3}]$					
	$f_c(\mathbf{k})$: 無風時、大気安定度 \mathbf{k} の年間における出現率					

出典:「窒素酸化物総量規制マニュアル〔新版〕」(公害研究対策センター、平成12年12月)

イ. 拡散幅

有風時の拡散幅は表 7.1-28 に示すとおり、Pasquill-Gifford 図の近似式を用いた。

また、弱風時及び無風時に係る拡散幅に関する係数(α 、 γ)は、表 7.1-29 に示すとおり設定した。

表 7.1-28 Pasquill-Gifford 図の近似式 (σ_y, σ_z)

パスキル	$\sigma_{y}(x) = \gamma_{y} \cdot x^{\alpha y}$			$\sigma_{z}(x) = \gamma_{z} \cdot x^{\alpha_{z}}$				
安定度	αy	γ _y	風下距離x (m)	αх	γг	風下距離x (m)		
A	0.901 0.851	0.426 0.602	0∼ 1,000 1,000∼	1.122 1.1514 2.109	0.0800 0.00855 0.000212	$0 \sim 300$ $300 \sim 500$ $500 \sim$		
В	$0.914 \\ 0.865$	0.282 0.396	0∼ 1,000 1,000∼	0.964 1.094	$0.1272 \\ 0.0570$	$0{\sim}~500$		
С	$0.924 \\ 0.885$	$0.1772 \\ 0.232$	0∼ 1,000 1,000∼	0.918	0.1068	0~		
D	0.929 0.889	0.1107 0.1467	0∼ 1,000 1,000∼	0.826 0.632 0.555	0.1046 0.400 0.811	$0 \sim 1,000$ $1,000 \sim 10,000$ $10,000 \sim$		
E	0.921 0.897	0.0864 0.1019	0∼ 1,000 1,000∼	0.788 0.565 0.415	0.0928 0.433 1.732	$0 \sim 1,000$ $1,000 \sim 10,000$ $10,000 \sim$		
F	0.929 0.889	0.0554 0.0733	0∼ 1,000 1,000∼	0.784 0.526 0.323	0.0621 0.370 2.41	$0 \sim 1,000$ $1,000 \sim 10,000$ $10,000 \sim$		
G	0.921 0.896	0.0380 0.0452	0∼ 1,000 1,000∼	0.794 0.637 0.431 0.222	0.0373 0.1105 0.529 2.17	$0 \sim 1,000$ $1,000 \sim 2,000$ $2,000 \sim 10,000$ $10,000 \sim$		

出典:「窒素酸化物総量規制マニュアル〔新版〕」(公害研究対策センター、平成12年12月)

表 7.1-29 弱風時、無風時に係る拡散幅に関する係数 (α, γ)

パスキルの分類	弱風	虱時	無風時		
/ ハイ/VV/// 対	(風速 0.5m/s 以	上 0.9m/s 以下)	(風速 0.4m/s 以下)		
安定度	α	γ	α	γ	
A	0.748	1.569	0.948	1.569	
A∼B	0.659	0.862	0.859	0.862	
В	0.581	0.474	0.781	0.474	
$B \sim C$	0.502	0.314	0.702	0.314	
С	0.435	0.208	0.635	0.208	
$C \sim D$	0.342	0.153	0.542	0.153	
D	0.270	0.113	0.470	0.113	
E	0.239	0.067	0.439	0.067	
F	0.239	0.048	0.439	0.048	
G	0.239	0.029	0.439	0.029	

出典:「窒素酸化物総量規制マニュアル〔新版〕」(公害研究対策センター、平成 12 年 12 月)

(5)予測条件

①工種別ユニット数

大気汚染物質排出量が最大となる時期は、図 7.1-6 に示したとおり、平成 26 年 4 月~平成 27 年 3 月の 1 年間である。この時期の工種別ユニット数を表 7.1-30 に示す。

なお、ユニットの月平均稼動日数は26日間、1日の稼動時間は9時~18時とした。

表 7.1-30 工種別ユニット数(平成 26 年 4 月~平成 27 年 3 月)

工種	ユニット	一般的な重機	稼動ユニット数
仮設防災工事・表土	掘削	ブルドーザ (21t)、クラムシェル (0.8m³)、バ	1
掘削		ックホウ (0.8m³)、ダンプトラック (10t)	1
整地工事	盛土	ブルドーザ (21t)、タイヤローラ (8t)、振動ロ	2
		ーラ (3t)	2
	路床安定処理	トラッククレーン (4.9t 吊)、モーターグレーダ	
		- (3.1m)、スタビライザー (2.0m)、ブルドー	1
		ザ (21t)、バックホウ (0.8m³)、タイヤローラ	1
		(8t)、ロードローラ (10t)	
下水道工事	管渠	ブルドーザ (21t)、クラムシェル (0.8m³)、バ	2
		ックホウ (0.8m³)、ダンプトラック (10t)	Δ
道路工事	アスファルト舗	モーターグレーダー (3.1m)、ブルドーザ (21t)、	
	装	タイヤローラ (8t)、ロードローラ (10t)、散水	
		車 (5500l)、振動ローラ (3t)、タンパ (60kg)、	1
		アスファルトフィニッシャ (2.4m)、ディストリ	
		ビュータ (4000l)、ダンプトラック (10t)	
上水道・ガス工事	管渠	ブルドーザ (21t)、クラムシェル (0.8m³)、バ	1
		ックホウ(0.8m³)、ダンプトラック(10t)	1

②工事用車両の台数

工事用車両の台数は、「1) 工事による影響(資材等の運搬)」と同じとした。

③排出係数

1 ユニットの単位稼動日当たりの排出係数は、表 7.1-31 に示すとおりである。なお、排出係数は、二次排出ガス対策型を使用した。

また、工事用車両の走行速度及び排出係数は、表 7.1-32 に示すとおりである。なお、走行速度は、事業区域内は 20km/h とした。

表 7.1-31 ユニットの排出係数(g/ユニット/日)

		排出	備考	
		(上段:排出)	ガス未対策型	
工種	ユニット	中段:一次排	出ガス対策型	
		下段:二次排出	出ガス対策型)	
		NO_x	SPM	
整地工事	盛土	8,600	260	
		4,800	190	
		3,400	100	
	路床安定処理	11,000	_	
		9,900	-	
		9,600	_	
下水道工事	管渠	9,700	290	土砂掘削を準用
		5,400	220	
		3,800	110	
道路工事	アスファルト舗装	8,600	260	盛土を準用
		4,800	190	
		3,400	100	
上水道・ガス工事	管渠	9,700	290	土砂掘削を準用
		5,400	220	
		3,800	110	
	TT TO A LLANG TO VA. (0		F-1 10 F 0 F	/ D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

出典:「道路環境影響評価の技術手法(2007改訂版)」(平成19年9月 (財)道路環境研究所)

表 7.1-32 走行速度及び排出係数

		排出係数(g/km·台)					
地点名	走行速度	窒素酸化物(NOx)		浮遊粒子状物質(SPM)			
		小型車	大型車	小型車	大型車		
事業区域内	20.0km/h	0. 118	2, 08	0.007	0. 107		

出典:「道路環境影響評価の技術手法 (2007改訂版)」 ((財)道路環境研究所、平成19年)」

④污染物質排出量

年間の汚染物質排出量は、表 7.1-33 に示すとおりである。なお、工事用車両の走行距離は、 事業区域内の走行ルートを勘案して、1.2km とした。

表 7.1-33(1) 重機の稼動による窒素酸化物及び浮遊粒子状物質の排出量

工任	<u></u> 1			年間	ユニット	汚染物質排出量 (g/年)	
工種	ユニット	窒素酸化物 (NOx)	浮遊粒子状物質 (SPM)	稼働 日数	数	窒素酸化物 (NOx)	浮遊粒子状物質 (SPM)
仮設防災工事·表土掘削	掘削	3,800	110	52	1	197,600	5,720
整地工事	盛土	3,400	100	312	2	2,121,600	62,400
	路床安定処理	9,600	-	312	1	2,995,200	_
下水道工事	管渠	3,800	110	312	2	2,371,200	68,640
道路工事	アスファルト舗装	3,400	100	312	1	1,060,800	31,200
上水道・ガス工事	管渠	3,800	110	312	1	1,185,600	34,320
# 							202,280

表 7.1-33(2) 工事用車両の走行による窒素酸化物及び浮遊粒子状物質の排出量

		排出係数	て(g/km・台)	走行	年間	汚染物質技	非出量(g/年)
地点名	走行速度	窒素酸化物 (NOx)	浮遊粒子状物質 (SPM)	距離	走行 台数	窒素酸化物	浮遊粒子状物質
		大型車	大型車	(km)	(台)	(NOx)	(SPM)
事業区域内	20.0km/h	2.08	0.107	1.2	29,848	74,501	3,832

⑤排出原位置

排出源位置は重機及び工事用車両が事業区域内を移動するため、平均的な状況を想定して、 排出源を事業区域に分散して配置した。また、排出源の高さは、地上 3m とした。

⑥気象条件

風向・風速は、「(1) 工事中の資材等の運搬による大気質の変化(二酸化窒素 $(N0_2)$ 及び 浮遊粒子状物質 (SPM))」と同じとした。なお、ユニットの 1 日の稼動時間である $9:00\sim 18:00$ のデータを使用することとした。また、風速は、以下に示すとおり、べき法則により 高さ補正を行った。

 $U = U_0 (H/H_0)^{-p}$

ここで、U : 高さH(m)の風速(m/s)

U。: 基準高さH。の風速(m/s)

H : 排出源の高さ(m) H_o : 基準とする高さ(m)

P:べき指数(表 7.1-32に示すとおり、大気安定度階級別に設定)

表 7.1-34 べき指数

パスキル大気安定度	A	В	С	D	Е	FとG
P	0.1	0.15	0.20	0.25	0.25	0.30

出典:「窒素酸化物総量規制マニュアル (新版)」(平成12年12月 公害研究対策センター)

日射量、雲量については、気象庁仙台管区気象台(仙台市宮城野区五輪一丁目3番15号) の平成22年度の観測結果を用いた。また、大気安定度は、表7.1-35に示す日本式に修正したパスキル安定度階級を参考にして区分した。

大気安定度出現頻度を図 7.1-14 及び表 7.1-36 に示す。

日射量(T) kW/m² 昼間 夜間 雲量 風速(U) 0.30 > T上層雲(5~10) 雲量 0.60 > T本墨 $T \ge 0.60$ 0.15 > Tm/s 中・下層雲(5~7) \ge 0.30 \ge 0.15 $(8 \sim 10)$ $(0 \sim 4)$ u<2 G A-B В D 2≦u<3 В С D F А-В D Е В-С D D Е $3 \le u < 4$ В С D C-D D D 4≦u<6 С D D D 6≦u С D D D D D

表 7.1-35 パスキル安定度階級分類表

出典:「窒素酸化物総量規制マニュアル (新版)」(平成12年12月 公害研究対策センター)

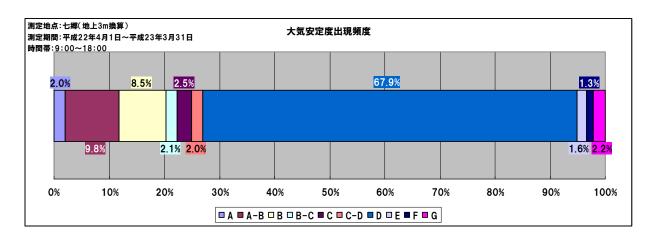


図 7.1-14 大気安定度出現頻度

⑦バックグラウンド濃度

バックグランド濃度は、「1) 工事による影響(資材等の運搬)」と同じとした。

8窒素酸化物変換式

 NO_x を NO_2 に変換する式は、「1) 工事による影響(資材等の運搬)」と同じとした。

9日平均值換算式

日平均値換算式は、「1)工事による影響(資材等の運搬)」と同じとした。

表 7.1-36 風向・風速階級別大気安定度出現頻度

測定地点:七郷(地上3m換算) 測定期間:平成22年4月1日~平成23年3月31日 時間帯:9:00~18:00

時間#:0	$00\sim$	1Ω	· 00

時間带: 安定度		~18:00)																	
	Л		N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	計
0.0	~ ~	0.4	0	9	0	0	1	0	1	2	2	2	0	1	0	2	0	0	0	13
1.0	~	1.9	0	0	1	1	4	4	10	12	11	3	2	0	0	1	2	0		51
2.0	\sim	2.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
3.0 4.0	~	3.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
6.0	~	5.9 7.9	0	0	0		0	0	0	0	0	0	0	0	0	0	0			0
8.0	\sim	99.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
安定度	A-B																			
222			N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	
0.0	~	0.4															_		12	12
0.5 1.0	~	0.9	2	8	2	0	7	24	28	5 38	3 14	14	3	3	1 5	2 5	5 5	6 12		46 168
2.0	~	2.9	0	1	0		3	13	20	26	15	1	2	1	1	5	0			90
3.0	~	3.9	0	0	0		0	0	0	0	0	0	0	0	0	0	0			0
4.0 6.0	\sim	5.9 7.9	0	0	0		0	0	0	0	0	0	0	0	0	0	0			0
8.0	\sim	99.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
安定度	D																			
女化及	D		N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	
0.0	~	0.4																	6	6
0.5 1.0	~	0.9	7	2	5	2	2	0	12	13	0 8	2	1 2	0	2	1	1	2		15 92
2.0	~	2.9	7	5 6	0		6	8 24	18	20	29	3	0	5 4	14	8 14	6 9			159
3.0	\sim	3.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
4.0 6.0	~	5.9 7.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
8.0	~	99.9	0	0	0		0	0	0	0	0	0	0	0	0	0	0	-		0
	n -																			
安定度	R-C		N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	
0.0	\sim	0.4														******			Ur salvivi	0
0.5	\sim	0.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
1.0 2.0	~	1.9 2.9	0	0	0	0	0 4	2	0 3	2	3	0 4	0	3	20	13	4			68
3.0	~	3.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
4.0	~ ~	5.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
6.0 8.0	~	7.9 99.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		0010	Ů		Ů	Ü	·						Ů	Ů	Ů		Ů	Ü		Ů
安定度	C		N.	NINIE	NIE	ENIE	Е	ECE	CE	ccr	c	ceu	CW	wew	11/	11/5/11/	NIM	NININA	CALM	
0.0	~	0.4	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	0
0.5	\sim	0.9	0	0	0		0	0	0	0	0	0	0	0	0	0	0			0
2.0	~	1.9	1	1	0		1	0	0	0	1	0	2	2	1	4	0	3		17
3.0	\sim	2.9 3.9	0	0	0		0	0	0	3	2	3	1 0	7	6 8	7	1 0			22 29
4.0	\sim	5.9	0	0	0	0	0	0	0	0	0	0	0	3	7	3	0	0		13
6.0 8.0	~	7.9 99.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0.0		33.3	- 0	0	0	0	- 0	- 0	U	- 0	- 0	- 0	0	0	- 0	- 0	0	U		0
principal parties and an																	1			
安定度	C-D						-	nan	an	aan		00111								
	C−D ~	0.4	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	0
0.0	C−D ~ ~	0.4	0	0	NE 0	0	0	0	0	SSE 0	0	0	0	0	0	0	NW 0	0	CALM	0
0.0 0.5 1.0	~ ~	0.9 1.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CALM	0
0.0	~ ~	0.9	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0 1	CALM	0
0.0 0.5 1.0 2.0 3.0 4.0	~ ~	0.9 1.9 2.9 3.9 5.9	0 0 0 3 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 3 1 0	0 0 8 4	0 0 14 18	0 0 4 4 0	0 0 1 1 0	0 0 1 1 0	CALM	0 31 34 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0	~ ~	0.9 1.9 2.9 3.9 5.9 7.9	0 0 0 3 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 1 0	0 0 3 1 0	0 0 8 4 0	0 0 14 18 0	0 0 4 4 0	0 0 1 1 0	0 0 1 1 0 0	CALM	0 31 34 0
0.0 0.5 1.0 2.0 3.0 4.0	~ ~	0.9 1.9 2.9 3.9 5.9	0 0 0 3 0	0 0 0 1	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 3 1 0	0 0 8 4	0 0 14 18	0 0 4 4 0	0 0 1 1 0	0 0 1 1 0 0	CALM	0 0 31 34 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0	2 2 2 2 2 2 2	0.9 1.9 2.9 3.9 5.9 7.9	0 0 0 3 0 0	0 0 0 1 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 1 0 0 0	0 0 3 1 0 0	0 0 8 4 0 0	0 0 14 18 0 0	0 0 4 4 0 0	0 0 1 1 1 0 0	0 0 1 1 0 0		0 31 34 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9	0 0 0 3 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 1 0	0 0 3 1 0	0 0 8 4 0	0 0 14 18 0	0 0 4 4 0	0 0 1 1 0	0 0 1 1 0 0	CALM	0 0 31 34 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0	2 2 2 2 2 2 2	0.9 1.9 2.9 3.9 5.9 7.9 99.9	0 0 0 3 0 0	0 0 0 1 0 0 0 0 NNE	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 ESE	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 S	0 0 0 1 0 0 0 0 SSW	0 0 3 1 0 0 0 SW	0 0 8 4 0 0 0 WSW	0 0 14 18 0 0 0	0 0 4 4 4 0 0 0 0 WNW	0 0 1 1 0 0 0 0	0 0 1 1 1 0 0 0		0 31 34 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 安定度 0.0 0.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9	0 0 0 3 0 0 0 0 N	0 0 0 1 0 0 0 0 NNE	0 0 0 0 0 0 0 0 0 NE	0 0 0 0 0 0 0 0 ENE	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 ESE	0 0 0 0 0 0 0 0 SE	0 0 0 0 0 0 0 0 SSE	0 0 0 0 0 0 0 0 S	0 0 0 1 1 0 0 0 SSW	0 0 3 1 0 0 0 SW	0 0 8 4 0 0 0 0 WSW	0 0 14 18 0 0 0 W	0 0 4 4 0 0 0 0 WNW	0 0 1 1 1 0 0 0 0 NW	0 0 1 1 0 0 0 0 NNW	CALM	0 0 31 34 0 0 0 0 98 416 1162
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 安定度 0.0 0.5 1.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9	0 0 0 3 0 0 0 0 N	0 0 0 1 0 0 0 0 NNE	0 0 0 0 0 0 0 0 0 NE	0 0 0 0 0 0 0 0 ENE	0 0 0 0 0 0 0 0 E	0 0 0 0 0 0 0 0 ESE 24 165	0 0 0 0 0 0 0 0 SE 56 161	0 0 0 0 0 0 0 0 SSE 50 153	0 0 0 0 0 0 0 0 S	0 0 0 1 0 0 0 0 SSW	0 0 3 1 0 0 0 SW	0 0 8 4 0 0 0 0 WSW	0 0 14 18 0 0 0 0 W	0 0 4 4 0 0 0 0 0 WNW 8 20 34	0 0 1 1 0 0 0 0	0 0 1 1 0 0 0 0 NNW	CALM	0 0 31 34 0 0 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 安定度 0.0 0.5 1.0 2.0		0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9	0 0 0 3 0 0 0 0 N 34 117 65 7	0 0 0 1 0 0 0 0 NNE 26 76 24 0	0 0 0 0 0 0 0 0 0 NE	0 0 0 0 0 0 0 0 0 ENE	0 0 0 0 0 0 0 0 0 E 27 83 19 2	0 0 0 0 0 0 0 0 ESE 24 165 20 7	0 0 0 0 0 0 0 0 SE 56 161 12 1	0 0 0 0 0 0 0 0 0 5SSE 50 153 13 0	0 0 0 0 0 0 0 0 5 8 49 126 39 4	0 0 0 1 0 0 0 0 SSW 36 51 17 7	0 0 3 1 0 0 0 0 SW 15 21 14 8	0 0 8 4 0 0 0 0 WSW 17 11 25 12	0 0 14 18 0 0 0 0 W 8 31 43 23	0 0 4 4 0 0 0 0 0 WNW 8 20 34 12	0 0 1 1 0 0 0 0 NW 8 31 18 0	0 0 1 1 0 0 0 0 NNW 25 73 49 6	CALM	98 416 1162 400 89 20
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 9.5 1.0 2.0 3.0 4.0 6.0		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9	0 0 0 3 0 0 0 0 N 34 117 65	0 0 0 1 0 0 0 0 NNE 26 76 24 0 0	0 0 0 0 0 0 0 0 0 NE	0 0 0 0 0 0 0 0 0 ENE 15 22 22 3 0	0 0 0 0 0 0 0 0 0 E 27 83 19 2 2	0 0 0 0 0 0 0 0 0 ESE 24 165 20 7	0 0 0 0 0 0 0 0 56 161 12 1	0 0 0 0 0 0 0 0 0 5SSE 50 153 13 0 0	0 0 0 0 0 0 0 0 0 S 49 126 39 4	0 0 0 1 0 0 0 0 SSW 36 51 17	0 0 3 1 0 0 0 0 SW 15 21 14 8 8	0 0 8 4 0 0 0 0 WSW 17 11 25 12 3 0	0 0 14 18 0 0 0 0 W	0 0 4 4 0 0 0 0 0 WNW 8 20 34 12 1	0 0 1 1 0 0 0 0 NW 8 31 18	0 0 1 1 0 0 0 0 0 0 0 0 7 7 7 3 49 6 0 0	CALM	98 416 1162 400 0
0.0 0.5 1.0 2.0 3.0 6.0 8.0 安定度 0.5 1.0 0.5 1.0 4.0 6.0 8.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9	0 0 0 3 0 0 0 0 N 34 117 65 7	0 0 0 1 0 0 0 0 NNE 26 76 24 0	0 0 0 0 0 0 0 0 0 NE 18 21 5 0 0	0 0 0 0 0 0 0 0 0 ENE 15 22 22 3 0	0 0 0 0 0 0 0 0 0 E 27 83 19 2	0 0 0 0 0 0 0 0 ESE 24 165 20 7	0 0 0 0 0 0 0 0 SE 56 161 12 1	0 0 0 0 0 0 0 0 0 5SSE 50 153 13 0	0 0 0 0 0 0 0 0 5 8 49 126 39 4	0 0 0 1 0 0 0 SSW 36 51 17 7	0 0 3 1 0 0 0 0 SW 15 21 14 8	0 0 8 4 0 0 0 0 WSW 17 11 25 12	0 0 14 18 0 0 0 0 W 8 31 43 23 7	0 0 4 4 0 0 0 0 0 WNW 8 20 34 12 1	0 0 1 1 0 0 0 0 NW 8 31 18 0 0	0 0 1 1 0 0 0 0 0 0 0 0 7 7 7 3 49 6 0 0	CALM	98 416 1162 400 89 20
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 9.5 1.0 2.0 3.0 4.0 6.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9	0 0 0 3 0 0 0 0 0 N 34 117 65 7 0 0 0	0 0 0 1 0 0 0 0 0 NNE 26 76 24 0 0	0 0 0 0 0 0 0 0 0 18 21 5 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 24 165 20 7 0 0	0 0 0 0 0 0 0 0 0 SE 56 161 12 1 0 0	0 0 0 0 0 0 0 50 153 13 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 0 0 0 0 0 5 5 1 1 7 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3 1 0 0 0 0 SW 15 21 14 8 8 3 0	0 0 8 4 0 0 0 0 0 WSW 17 11 25 12 3 0 0	0 0 144 188 0 0 0 0 0 0 W 8 31 433 233 7 0 0 0 0	0 0 4 4 0 0 0 0 0 0 0 0 0 0 34 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 NW 8 31 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 0 0 0 NNW 25 73 49 9 6 0 0	CALM 98	98 416 1162 400 0
0.0 0.5 1.0 2.0 3.0 6.0 8.0 安定度 0.5 1.0 0.5 1.0 4.0 6.0 8.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9	0 0 0 3 0 0 0 0 N 34 117 65 7	0 0 0 1 0 0 0 0 NNE 26 76 24 0 0	0 0 0 0 0 0 0 0 0 NE 18 21 5 0 0	0 0 0 0 0 0 0 0 0 ENE 15 22 22 3 0	0 0 0 0 0 0 0 0 0 E 27 83 19 2 2	0 0 0 0 0 0 0 0 0 ESE 24 165 20 7	0 0 0 0 0 0 0 0 56 161 12 1	0 0 0 0 0 0 0 0 0 5SSE 50 153 13 0 0	0 0 0 0 0 0 0 0 0 5 8 49 126 39 4	0 0 0 1 0 0 0 SSW 36 51 17 7	0 0 3 1 0 0 0 0 SW 15 21 14 8 8	0 0 8 4 0 0 0 0 WSW 17 11 25 12 3 0	0 0 144 188 0 0 0 0 0 0 W 8 31 433 233 7 0 0 0 0	0 0 4 4 0 0 0 0 0 WNW 8 20 34 12 1	0 0 1 1 0 0 0 0 0 0 NW 8 31 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 0 0 0 NNW 25 73 49 9 6 0 0	CALM 98	98 416 1162 400 0 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 0.5 1.0 2.0 3.0 4.0 6.2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 0.4 0.9	0 0 0 0 3 3 0 0 0 0 0 0 N 3 3 4 1177 65 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 26 76 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 5 5 1 1 7 7 7 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 3 3 1 1 1 0 0 0 0 0 0 SW 15 21 144 8 8 3 3 0 0 0 0 SW SW	0 0 8 4 0 0 0 0 0 WSW 17 11 12 5 12 3 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W 8 31 433 233 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0 0 NW 8 31 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 416 1162 400 0 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 2.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 5 2.0 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 3.9 5.9 7.9 99.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 NNE 266 766 24 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 ESE 24 165 20 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 550 153 13 0 0 0 0 0 0 555 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 01 11 00 00 00 SSW 366 51 17 7 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8 8 4 0 0 0 0 0 0 17 111 25 5 122 3 3 0 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W W 8 8 31 23 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 0 0 0 0 25 73 3 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	988 4166 11622 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 0.5 1.0 2.0 3.0 4.0 6.2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 0.4 0.9	0 0 0 0 3 3 0 0 0 0 0 0 N 3 3 4 1177 65 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 26 76 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 5 5 1 1 7 7 7 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 SW SW SW SW SW 15 1 1 1 1 1 1 1	0 0 8 4 0 0 0 0 0 WSW 17 11 125 122 3 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W 8 31 433 233 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 4 4 0 0 0 0 0 0 0 0 34 4 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 1 0 0 0 0 0 NNW 255 733 49 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 416 1162 400 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 4.0 6.0 6.0 0.5 1.0 2.0 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 5.9 7.9 99.9 0.4 0.9 1.9 99.9 99.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 555 50 153 133 0 0 0 0 0 0 0 555 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 SSW 366 51 177 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 33 11 00 00 00 SW 155 21 144 88 33 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 8 8 4 0 0 0 0 WSW 17 11 25 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W W W W W 0 0 0 0 0 0 0	0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 3 4 12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 11 11 00 00 00 NW 88 31 188 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	988 988 416 1162 400 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 4.0 6.0 8.0 0.5 1.0 2.0 3.0 4.0 0.5 1.0 0.5 1.0 0.0 8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 99.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 24 165 20 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 50 153 13 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 SSW 366 51 1 7 7 7 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 3 3 3 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0	0 0 0 8 4 4 0 0 0 0 0 WSW 177 111 255 122 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W W W W W W 0 0 0 0 0 0	0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 8 733 49 0 0 0 0 0 0 NNW 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 98 416 1162 400 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 0.5 1.0 2.0 2.0 2.0 3.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 5.9 7.9 99.9 0.4 0.9 1.9 99.9 99.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 555 50 153 133 0 0 0 0 0 0 0 555 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 SSW 366 51 177 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 33 11 00 00 00 SW 155 21 144 88 33 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 8 8 4 0 0 0 0 WSW 17 11 25 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W W W W W 0 0 0 0 0 0 0	0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 11 11 00 00 00 NW 88 31 188 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 0 1 1 1 0 0 0 0 0 8 733 49 0 0 0 0 0 0 NNW 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	988 988 416 1162 400 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 4.0 6.0 8.0 0.5 1.0 2.0 3.0 4.0 0.5 1.0 0.5 1.0 0.0 8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 99.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 244 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 188 211 55 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 1655 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SE SE SE O O O O O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 555 153 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 SSW SSW 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8 8 4 0 0 0 0 17 111 255 122 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 144 188 0 0 0 0 0 0 0 W W W W W 0 0 0 0 0 0 0	0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 0 0 NNW 255 733 499 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 98 416 1162 400 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 4.0 6.0 8.0 0.5 1.0 0.5 1.0 0.0 8.0 8.0 2.0 3.0 4.0 6.0 8.0 8.0 9.0 5.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1		0.9 1.9 2.9 3.9 5.9 99.9 99.9 99.9 1.9 9.9 9.9 1.9 9.9 9.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 24 165 20 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 50 153 13 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 SSW 366 51 1 7 7 7 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 3 3 3 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0	0 0 0 8 4 4 0 0 0 0 0 WSW 177 111 255 122 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 W W W W W W 0 0 0 0 0 0	0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 0 0 NNW 255 733 499 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	0 0 31 34 0 0 0 0 0 1162 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 0.2 3.0 4.0 6.0 8.0 0.5 1.0 2.0 3.0 4.0 4.0 6.0 8.0 2.0 3.0 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 5.9 99.9 99.9 0.4 0.9 1.9 2.9 3.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 188 21 1 55 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 155 222 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 27 833 19 9 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 24 165 20 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 50 153 13 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 366 511 177 7 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8 4 4 0 0 0 0 0 0 WSW 177 111 255 122 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 W W W W W W W	0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 34 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 11 11 00 00 00 88 31 11 188 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	988 4166 1162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 2.0 3.0 4.0 6.0 8.0 0.5 1.0 6.0 8.0 2.0 3.0 4.0 6.0 8.0 2.0 3.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 5.9 99.9 0.4 0.9 3.9 3.9 99.9 99.9 0.4 0.9 0.9 1.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 277 83 319 9 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 24 165 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SE S	0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 366 51 1177 77 110 00 00 00 00 00 00 00 00 00 00 00 00	00 0 0 0 SW SW SW SW SW SW	0 0 0 8 8 4 0 0 0 0 0 17 11 25 5 12 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 4 4 4 1 20 3 3 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 11 11 00 00 00 88 83 31 118 188 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 416 1162 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 4.0 6.0 8.0 8.0 1.0 2.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		0.9 1.9 2.9 3.9 5.9 99.9 99.9 0.4 0.9 1.9 99.9 99.9 0.4 0.9 9.9 99.9 0.4 0.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 26 76 76 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 15 222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 2 2 7 2 2 0 0 0 0	0 0 0 0 0 0 0 0 0 24 165 20 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SE S	0 0 0 0 0 0 0 0 50 153 13 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 8 8 4 0 0 0 0 17 11 125 12 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 4 4 0 0 0 0 0 0 0 8 8 20 34 4 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 416 1162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 8.0 8.0 8.0 9定度 0.0 5.5 1.0 6.0 8.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 99.9 0.4 0.9 7.9 99.9 0.4 0.9 1.9 9.9 7.9 99.9 0.4 0.9 1.9 1.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 26 6 76 6 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE N	0 0 0 0 0 0 0 0 0 0 15 22 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 27 27 2 2 2 0 0 0 0	0	SE S	0 0 0 0 0 0 0 0 0 558 50 153 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 126 399 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSW	SW S	0 0 0 8 4 4 0 0 0 0 17 111 25 12 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	0	NW N	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98	98 98 416 1162 400 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 2.0 3.0 4.0 6.0 8.0 2.0 2.0 3.0 4.0 4.0 6.0 8.0 2.0 3.0 4.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 9.9 7.9 99.9 0.4 0.9 1.9 99.9 0.4 0.9 1.9 1.9 99.9	0 0 0 0 0 0 0 0 0 0 1117 655 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE NE NE NE O O O O O O O O O O O O O O	ENE ENE ENE O 0 0 0 0 0 0 0 0 0 0 0 0	E E E C O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 165 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SE SE SE SE O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 153 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S 499 1266 399 000 000 000 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SW S	0 0 0 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	NW NW NW NW NW NW NW NW	00 00 11 10 00 00 00 255 733 49 66 60 00 00 00 00 00 00 00 00 00 00 00	CALM 98	988 4166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 8.0 8.0 8.0 9定度 0.0 5.5 1.0 6.0 8.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 99.9 0.4 0.9 7.9 99.9 0.4 0.9 1.9 9.9 7.9 99.9 0.4 0.9 1.9 1.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 26 6 76 6 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE N	ENE ENE ENE O 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 27 27 2 2 2 0 0 0 0	0	SE S	0 0 0 0 0 0 0 0 0 558 50 153 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 126 399 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSW	SW S	0 0 0 8 4 4 0 0 0 0 17 111 25 12 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	0	NW NW NW NW NW NW NW NW	00 00 11 10 00 00 00 255 733 49 66 60 00 00 00 00 00 00 00 00 00 00 00	CALM 98	98 4166 11622 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 2.0 3.0 4.0 6.0 8.0 2.0 2.0 3.0 4.0 4.0 6.0 8.0 2.0 3.0 4.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	D	0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 9.9 7.9 99.9 0.4 0.9 1.9 99.9 0.4 0.9 1.9 1.9 99.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE	ENE ENE ENE ENE ENE ENE ENE O O O O O O O O O O O O O	E E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESE ESE	SE S	0 0 0 0 0 0 0 558E 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1266 399 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSW SSW SSW SSW 0 0 0 0 0 0 0 0 0 0	SW SW SW SW SW SW SW SW O 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8 4 4 0 0 0 177 111 255 122 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	NW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98 CALM	98 416 1162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 8.0 8.0 9定度 0.0 5.5 1.0 2.0 4.0 6.0 8.0 4.0 6.0 8.0 8.0 9.5 1.0 8.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	0 0 0 0 0 0 0 0 0 0 1117 655 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE NE NE NE O O O O O O O O O O O O O O	ENE ENE ENE O 0 0 0 0 0 0 0 0 0 0 0 0	E E E C O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 165 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SE SE SE SE O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 153 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S 499 1266 399 000 000 000 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SW S	0 0 0 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	NW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98 CALM	988 416 1162 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 2.0 3.0 4.0 6.0 8.0 2.0 3.0 4.0 4.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	D	0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0	NE	ENE ENE ENE ENE ENE ENE ENE ENE	E E E E E E E E E E E E E	ESE ESE O O O O O O O O O O O O	SE S	0 0 0 0 0 0 0 0 1533 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S S S S S S S S S S S S S S S S S S S	0	SW S	0 0 0 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 8 8 8 8 8 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0	0	NW NW NW NW NW NW NW NW	00 00 11 10 00 00 00 255 733 49 66 00 00 00 00 00 00 00 00 00 00 00 00	CALM 98 CALM	988 4166 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 3.0 8.0 8.0 9定度 0.0 5.5 1.0 2.0 4.0 6.0 8.0 4.0 6.0 8.0 8.0 9.5 1.0 8.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 8.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 9.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE	ENE	E E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESE ESE	SE S	0 0 0 0 0 0 0 558E 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1266 399 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSW SSW SSW SSW 0 0 0 0 0 0 0 0 0 0	SW SW SW SW SW SW SW SW O 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8 4 4 0 0 0 177 111 255 122 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 144 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	NW	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98 CALM	988 416 1162 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 2.0 3.0 4.0 6.0 8.0 2.0 3.0 4.0 6.0 8.0 2.0 6.0 8.0 2.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 9.9 9.9 1.9 9.9 9.9 9.9 9.9 9.9 9.9 9	N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE	ENE ENE ENE ENE ENE ENE ENE ENE	E E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESE ESE	SE S	SSE	S S S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSW SSW SSW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SW	0 0 0 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 8 8 311 323 77 0	WNW WNW	NW	0	CALM 98 CALM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.5 1.0 0.3 3.0 4.0 6.0 8.0 8.0 2.0 2.0 3.0 4.0 6.0 8.0 5.5 1.0 2.0 3.0 4.0 6.0 8.0 5.5 1.0 6.0 8.0 5.5 1.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 5.9 7.9 99.9 0.4 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE	O O O O O O O O O O	E E E C O O O O O O O O O O O O	ESE	SE S	0 0 0 0 0 0 0 0 0 558 50 153 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 126 399 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSW SSW SSW SSW SSW SSW SSW SSW	SW S	0	W W W W W W W W W W W W W	0	NW NW NW NW NW NW NW NW	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98 CALM	988 416 11162 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0.0 0.5 1.0 2.0 3.0 4.0 6.0 5.5 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2		0.9 1.9 2.9 3.9 5.9 7.9 99.9 0.4 0.9 1.9 99.9 0.4 0.9 1.9 2.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE	ENE ENE ENE ENE ENE ENE ENE ENE OO	E E E E C O O O O O O O O O O O O	ESE ESE	SE S	SSE	S S S S S S S S S S S S S S S S S S S	\$\$\text{SSW}\$ \$\$\text{SSW}\$ \$\$\text{SSW}\$ \$\$\text{0}\$ \$\$\text{0}\$	SW	0	W W W W W W W W W W W W W	WNW WNW S S S S S S S S S	NW NW NW NW NW NW NW NW	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98 CALM	988 416 11162 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
の。 の。 の。 の。 の。 の。 の。 の。 の。 の。		0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 7.9 99.9 0.4 0.9 1.9 2.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NE	ENE ENE ENE ENE ENE ENE OO	E E E C O O O O O O O O O O O O	ESE	SE S	SSE	S S S S S S S S S S S S S S S S S S S	SSW	SW	0 0 0 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 8 8 8 31 32 33 77 00 00 00 00 00 00 00 00 00 00 00 00	WNW WNW	NW NW NW NW NW NW NW NW	00 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	CALM 98 CALM	988 4166 00 00 00 00 00 00 00 00 00 00 00 00 0

(6) 予測結果

①年平均值

予測結果(年平均値)は表 7.1-37 及び図 7.1-15 に示すとおりである。

二酸化窒素は、事業区域境界における重機の稼動からの寄与濃度が 0.0009ppm であり、バックグランド濃度を付加すると年平均値 0.149ppm と予測される。

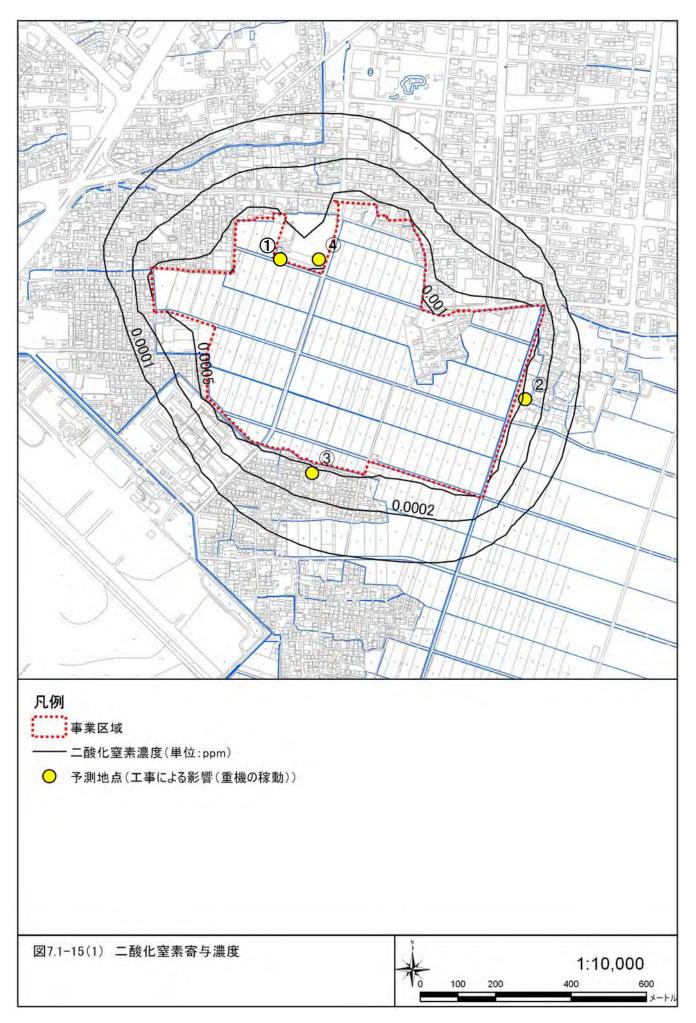
浮遊粒子状物質は、事業区域境界における重機の稼動からの寄与濃度が 0.0001mg/m³であり、バックグランド濃度を付加すると年平均値 0.0201 mg/ m³と予測される。

表 7.1-37 予測結果(年平均値)

	NO	O ₂ (年平均値)(pp	m)	SPM(年平均値)(mg/m³)					
地点名	跡地寄与濃度	バックグラウンド 濃度	環境濃度	跡地寄与濃度	バックグラウンド 濃度	環境濃度			
① 最大着地濃度地点	0.0009	0.014	0.0149	0.0001	0.020	0.0201			
② リハビリパーク付近	0.0003	0.014	0.0143	0.0000	0.020	0.0200			
③ 地区南側住居付近	0.0003	0.014	0.0143	0.0000	0.020	0.0200			
④ 蒲町小学校付近	0.0009	0.014	0.0149	0.0001	0.020	0.0201			

②日平均値の年間 98%値等

予測結果(日平均値の年間98%値等)は表7.1-38に示すとおりである。


二酸化窒素の日平均値の年間 98%値は、0.0312~0.0322ppm であり、環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

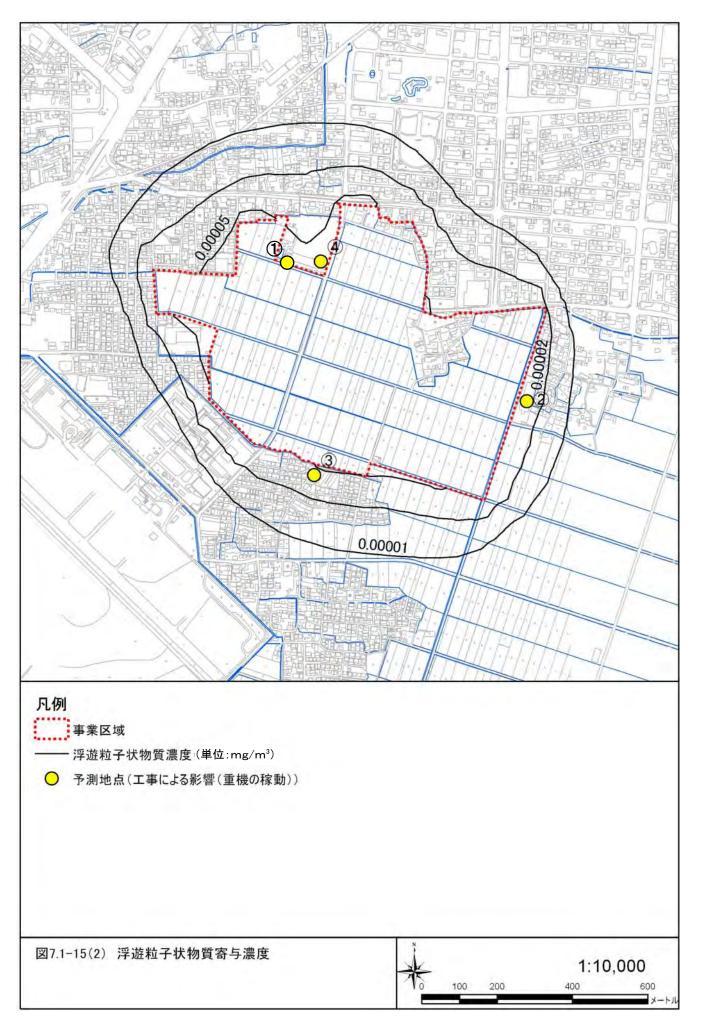

浮遊粒子状物質の日平均値の年間 2%除外値は、0.0502~0.0503 mg/m³であり、環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

表 7.1-38 予測結果(日平均値の年間 98%値等)

		NO ₂ (ppm)		$SPM (mg/m^3)$					
地点名	年平均値 (環境濃度)	日平均値の 年間98%値	環境基準	年平均値 (環境濃度)	日平均値の 年間2%除外値	環境基準			
① 最大着地濃度地点	0.0149	0.0322	0.04~0.06の	0.0201	0.0503				
② リハビリパーク付近	0.0143	0.0312	ゾーン内又はそ	0.0200	0.0502	0.10以下			
③ 地区南側住居付近	0.0143	0.0312	れ以下、	0.0200	0.0502	0.101/			
④ 蒲町小学校付近	0.0149	0.0321	0.04以下**	0.0201	0.0503				

※仙台市環境基本計画における定量目標

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

資材等の運搬及び重機の稼動に伴う複合的な影響は、「1)工事による影響(資材等の運搬)」及び「2)工事による影響(重機の稼動)」の予測結果の合成により行った。

合成に係る予測地点(以下、合成予測地点)は、重機の稼動に伴う予測地点のうち、工事 用車両が走行する地点とし、表 7.1-39 及び図 7.1-16 に示すとおりである。なお、資材等の 運搬の予測位置は、合成予測地点と異なるが、合成予測地点における資材等の運搬の予測結 果は同程度であると想定した。

表 7.1-39 合成予測地点と合成に適用する予測結果

合成予測地点番号	予測地点	合成に適用する予測結果								
口以「例地亦笛ク	1. 60.1022	資材等の運搬の予測結果	重機の稼動の予測結果							
1)	蒲町小学校付近	②市立蒲町保育所(西側)※	④蒲町小学校付近							

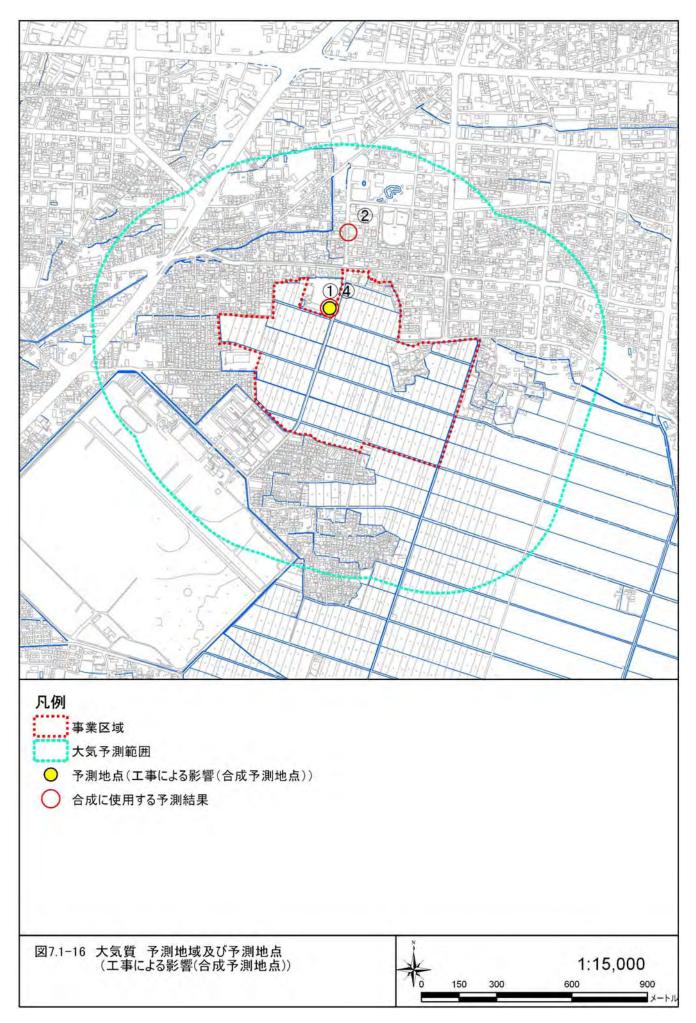
注)※の予測位置は、合成予測地点と異なるが、合成予測地点における資材等の運搬の予測結果は同程度であると想定した。

①年平均值

合成予測結果(年平均値)は表 7.1-40に示すとおりである。

二酸化窒素の合成予測結果 (年平均値) は 0.153ppm、浮遊粒子状物質の合成予測結果 (年平均値) は 0.0202 mg/ m³ と予測される。

表 7.1-40(1) 二酸化窒素の合成予測結果(年平均値)


(単位:ppm)

						(+-
合成予測	資材	等の運搬の予測結果	=	重機の稼動の 予測結果	バックグラウンド	環境濃度(F)
地点番号	基礎交通量(A)	工事中交通量(B)	増加分(C)	重機の稼動による	濃度(E)	= (B)+(D)+(E)
	による濃度	による濃度	= (B)-(A)	寄与濃度(D)		
1	0.0004	0.0004	0.0001	0.0009	0.014	0.0153

表 7.1-40(2) 浮遊粒子状物質の合成予測結果(年平均値)

(単位:mg/m³)

						(十 <u> </u> 工·IIIg/ III /
合成予測	資材	等の運搬の予測結果	1.	重機の稼動の 予測結果	バックグラウンド	環境濃度(F)
地点番号	基礎交通量(A)	工事中交通量(B)	増加分(C)	重機の稼動による	濃度(E)	= (B)+(D)+(E)
	による濃度	による濃度	= (B)-(A)	寄与濃度(D)		
(1)	0.0001	0.0001	0.0000	0.0001	0.020	0.0202

②日平均値の年間 98%値等

合成予測結果(日平均値の年間98%値等)は表7.1-41に示すとおりである。

二酸化窒素の日平均値の年間 98%値は 0.0327ppm、浮遊粒子状物質の日平均値の年間 2% 除外値は 0.0504mg/m³であり、それぞれ環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

表 7.1-41 予測結果(日平均値の年間 98%値等)

合成予測		NO ₂ (ppm)			SPM (mg/m ³)	
地点番号		日平均値の 年間98%値	環境基準	年平均値 (環境濃度)	日平均値の 年間2%除外値	環境基準
1	0.0153	0.0327	0.04~0.06の ゾーン内又はそ れ以下、 0.04以下**	0.0202	0.0504	0.10以下

[※]仙台市環境基本計画における定量目標

4) 工事による影響(粉じん)(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)

(1)予測内容

資材等の運搬、重機の稼動、切土・盛土・発破・掘削等に伴い発生する大気中の粉じんと した。

(2)予測地域及び予測地点

予測地域は、資材等の運搬、重機の稼動、切土・盛土・発破・掘削等に伴い大気質の変化 が想定される地域とし、「2) 工事による影響(重機の稼動)」と同じとした。

(3)予測時期

予測時期は、工事の期間中とした。

(4)予測手法

予測手法は、表 7.1-42 に示す気象庁の風力階級表(ビューフォート風力階級表)と事業区域周辺における気象の状況(風向・風速)とを照らし合わせ、定性的に粉じんの発生を予測した。

ビューフォート風力階級表によると、風力 4 (地上 10m における風速 $5.5\sim7.9m/s$) において、「砂埃がたち、紙片が舞い上がる。」と示されている。そこで、地上 10m における風速が 5.5m/s 以上となる発生頻度を求めることにより、粉じんの発生を予測した。

表 7.1-42 ビューフォート風力階級表

風力階級	地表物の状態(陸上)	相当風速 (m/s)
0	静穏。煙はまっすぐに昇る。	0.0~ 0.2
1	風向きは煙がなびくのでわかるが、風見には感じない。	0.3~ 1.5
2	顔に風を感じる。木の葉が動く。風見も動きだす。	1.6∼ 3.3
3	木の葉や細かい小枝がたえず動く。軽い旗が開く。	3.4~ 5.4
4	砂埃がたち、紙片が舞い上がる。小枝が動く。	5. 5∼ 7. 9
5	葉のある灌木がゆれはじめる。池や沼の水面に波頭がたつ。	8.0~10.7
6	大枝が動く。電線が鳴る。傘はさしにくい。	10.8~13.8
7	樹木全体がゆれる。風に向かっては歩きにくい。	13.9~17.1
8	小枝が折れる。風に向かっては歩けない。	17. 2~20. 7
9	人家にわずかの損害がおこる。	20.8~24.4
10	陸地の内部ではめずらしい。樹木が根こそぎになる。人家に大損害がおこる。	24.5~28.4
11	めったに起こらない広い範囲の破壊を伴う。	28.5~32.6
12		>32. 7

出典:気象庁ホームページ

(5) 予測条件

①気象条件

気象条件は、七郷測定局における平成 22 年度の風向・風速の測定値を用いた。風向、風 速階級(ビュフォード風力階級)別の出現率は表 7.1-43 に示すとおりである。

表 7.1-43 風向・風速階級(ビュフォード風力階級)別出現頻度

測定地点:七郷(測定高さ10m) 測定期間:平成22年4月1日~平成23年3月31日

風力	相当風	读(n	n/e)	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	N	CALM	計	割合
階級	10 = 124) <u>T</u>	11/3/	ININE	NE	ENE	E	ESE	SE	SSE	S	3311	311	WOW	"	MINM	INW	TATAM	11	CALM	PΙ	급기 다
0	0.0	\sim	0.2																	207	207	2.5%
1	0.3	~	1.5	276	201	177	224	136	169	192	226	260	278	197	149	143	202	331	383		3544	43.3%
2	1.6	\sim	3.3	251	90	66	166	288	288	291	280	161	103	142	165	143	130	372	554		3490	42.6%
3	3.4	\sim	5.4	23	5	7	18	31	17	23	68	47	51	86	183	80	19	82	113		853	10.4%
4	5.5	\sim	7.9	0	1	1	5	5	1	0	2	7	11	18	29	10	1	1	1		93	1.1%
5	8.0	\sim	10.7	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0		2	0.0%
6	10.8	\sim	13.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
7	13.9	\sim	17.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
8	17. 2	\sim	20.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
9	20.8	\sim	24.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
10	24. 5	\sim	28.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
11	28.5	\sim	32.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
12	32. 7	\sim		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0.0%
	計			550	297	252	413	460	475	506	576	475	443	443	527	376	352	786	1051	207	8189	100.0%

注) 静穏:0.2m/s以下

(6) 予測結果

事業区域周辺における気象の状況(風向・風速)から、工事中における粉じんの発生が予 測される砂ぼこりが立つ条件(ビュフオード風力階級風力4以上)は、年間95時間(1.2%) 出現し、その中でも西寄りの風向時に比較的多くなっている。

工事期間中は、空気が乾燥した気象条件下では地表面の裸地化に伴い粉じん発生の可能性 がある。主に事業区域の東側において、粉じんの発生による影響を受けるおそれがあると考 えられる。

5)供用による影響(資材・製品・人等の運搬・輸送)

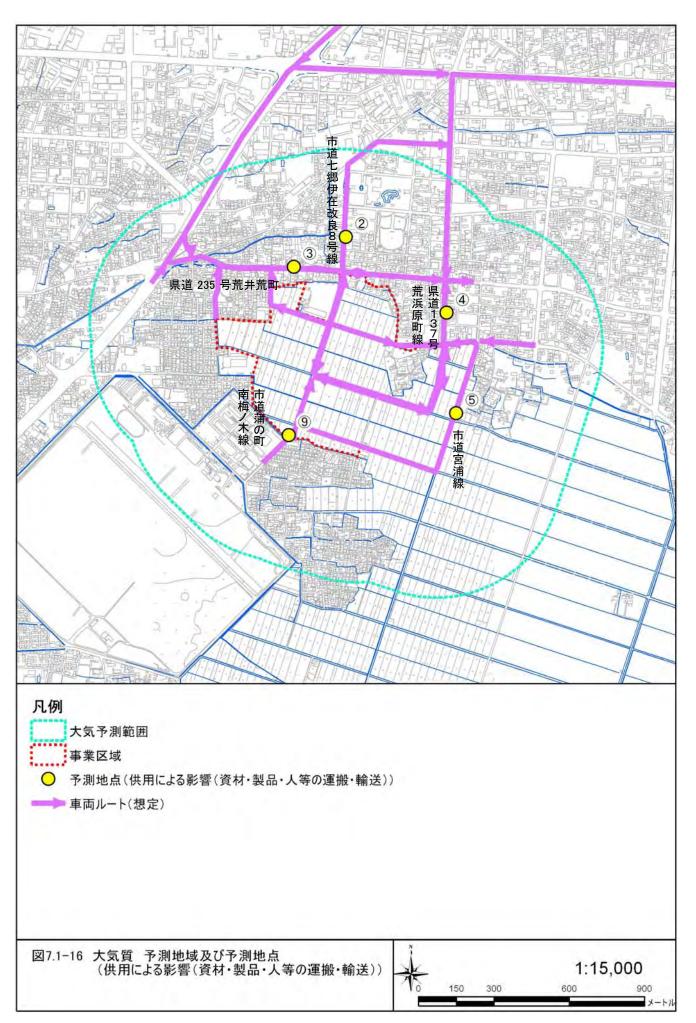
(1)予測内容

供用後の関連車両の走行に伴い発生する大気中の二酸化窒素濃度及び浮遊粒子状物質とした。

(2)予測地域及び予測地点

予測地域は、関連車両の走行に伴い大気質の変化が想定される地域とし、表 7.1-44 に示す 事業区域近傍の 5 路線とした。

予測地点は、事業区域周辺において、住居地域、学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.1-44 及び図 7.1-17 に示す地点(道路交通騒音現地調査地点と同じ地点)とした。


表 7.1-44 予測地域及び予測地点(供用による影響(資材・製品・人等の運搬・輸送))

地点番号	予測地域 (対象道路)	予測地点	保全対象
2	市道七郷伊在改良8号線	市立蒲町保育所	公共施設、住居
3	県道 235 号荒井荒町線	県道 235 号荒井荒町線	住居、医療施設
4	県道 137 号荒浜原町線	県道 137 号荒浜原町線	住居、医療施設
(5)	市道宮浦線	リハビリパーク仙台東及び くつろぎ保養館仙台東	福祉施設
9	市道蒲の町南梅ノ木線	市道蒲の町南梅ノ木線	住居

注) 地点番号は、道路交通騒音の調査地点番号と同じとした。

(3)予測時期

予測時期は、供用後の事業活動が概ね定常状態に達する時期として、工事完了後1年(平成29年度)とした。

(4)予測方法

①予測手順

予測手順は、図 7.1-18 に示すとおりである。

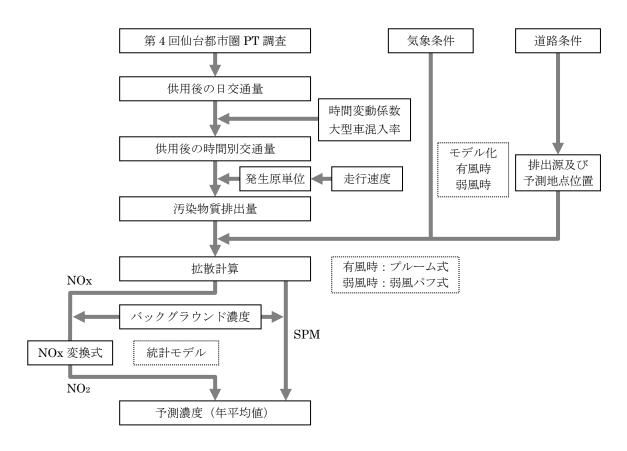


図 7.1-18 予測手順(供用による影響(資材・製品・人等の運搬・輸送))

②予測式

予測式は、「1) 工事による影響(資材等の運搬)」と同じとした。

(5)予測条件

①交通量

ア. 供用後の日交通量

予測に用いる日交通量は図 7.1-19 に示す計画交通量とした。この計画交通量は、「第 4 回 仙台都市圏 PT (パーソントリップ) 調査」において推計された交通量 (2025 年シナリオ 2) に基づき、仙台市が平成 23 年 1 月に決定した「新たな幹線道路網」の検討に用いた道路ネットワークに荒井地区内で計画される道路網を追加したものを作成し、交通配分のシミュレーションを行ったものである。

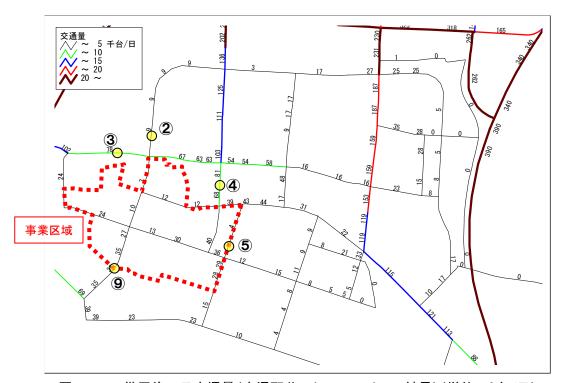


図 7.1-19 供用後の日交通量(交通配分のシミュレーション結果)(単位:千台/日)

イ. 供用後の時間別交通量

供用後の時間別交通量は、配分シミュレーション結果に基づく主要交差点の方向別交通量 算定結果及び現地交通量調査結果による時間変動係数に基づき、表 7.1-45 に示すとおり、算 出した。

表 7.1-45(1) 供用後の時間別交通量(②市立蒲町保育所(市道七郷伊在改良 8 号線))

②市立蒲町保育所(市道七郷伊在改良8号線) 供用時の交通量 小型車 大型車 大型車 小型車 大型車 大型車 小型車 大型車 大型車 合計 合計 合計 40 91 9:00 6. 39 27 10.0 62 8.19 10:00 11:00 12:00 13:00 19 5.09 25 27 7.49 44 47 14:00 11.89 7.49 15:00 31 5.1% 16:00 6. 99 18:00 44 19:00 0.0 0.09 20:00 0.0% 21:00 23:00 0.0 0.0 0:00 0. 0 0. 0 0. 09 0.09 0.09 0.09 0.09 2:00 0.09 3:00 0.09 0.09 0.0% 5:00 昼間合計 382 4. 39 475 495 37 894

表 7.1-45(2) 供用後の時間別交通量(③県道 235 号荒井荒町線)

③県道235号荒井荒町線 供用時の交通量 大型車 小型車 合計 大型車 大型車 小型車 大型車 大型車 小型車 大型車 519 546 8:00 251 8. 1 281 44 10.89 11.3 11.09 239 231 444 499 10:00 241 13:00 8. 09 241 9. 19 43 14:00 24 49 10.09 15:00 262 281 6.89 251 44 532 16:00 305 6. 29 242 311 18:00 311 1. 39 546 1.89 19:00 0.49 160 164 390 20:00 159 0.69 1.99 264 267 103 1.09 8. 79 44 47 1:00 9. 19 12.59 15.4% 14.3% 2:00 11 3:00 22 18, 29 18 19 5, 3 41 12. 29 昼間合計 3, 743 3,964 5.69 3,254 3,483 6.6% 450 6, 997 7,447 6.0% 総合計 233 3, 908 4, 141 233 3,449 3,682

表 7.1-45(3) 供用後の時間別交通量(④県道 137 号荒浜原町線)

④県道137号荒浜原町線

							供用時の	り交通量					
時間	mate about		北往	すき			南行	īð.			合	計	
区分	時刻	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車
		(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率
	6:00	3	95	98	3.1%	3	59	62	4.8%	6	154	160	3.8%
	7:00	9	422	431	2.1%	4	149	153	2.6%	13	571	584	2.2%
	8:00	10	321	331	3.0%	10	140	150	6.7%	20	461	481	4. 2%
	9:00	16	224	240	6.7%	14	175	189	7.4%	30	399	429	7.0%
	10:00	15	283	298	5.0%	19	285	304	6.3%	34	568	602	5.6%
	11:00	20	369	389	5.1%	24	292	316	7.6%	44	661	705	6. 2%
	12:00	13	231	244	5.3%	14	251	265	5.3%	27	482	509	5.3%
昼	13:00	13	278	291	4.5%	15	230	245	6.1%	28	508	536	5. 2%
間	14:00	9	315	324	2.8%	22	297	319	6.9%	31	612	643	4.8%
	15:00	24	325	349	6.9%	17	257	274	6. 2%	41	582	623	6.6%
	16:00	12	325	337	3.6%	10	280	290	3.4%	22	605	627	3.5%
	17:00	11	352	363	3.0%	4	348	352	1.1%	15	700	715	2.1%
	18:00	3	207	210	1.4%	4	374	378	1.1%	7	581	588	1.2%
	19:00	1	123	124	0.8%	1	203	204	0.5%	2	326	328	0.6%
	20:00	0	71	71	0.0%	1	125	126	0.8%	1	196	197	0.5%
	21:00	0	62	62	0.0%	1	66	67	1.5%	1	128	129	0.8%
	22:00	0	41	41	0.0%	0	38	38	0.0%	0	79	79	0.0%
	23:00	0	10	10	0.0%	1	29	30	3.3%	1	39	40	2.5%
	0:00	1	7	8	12.5%	0	15	15	0.0%	1	22	23	4.3%
夜	1:00	1	4	5	20.0%	0	6	6	0.0%	1	10	11	9.1%
間	2:00	1	10	11	9.1%	1	8	9	11.1%	2	18	20	10.0%
	3:00	0	3	3	0.0%	0	3	3	0.0%	0	6	6	0.0%
	4:00	1	6	7	14.3%	0	13	13	0.0%	1	19	20	5.0%
	5:00	0	34	34	0.0%	0	17	17	0.0%	0	51	51	0.0%
昼	問合計	159	4,003	4, 162	3.8%	163	3, 531	3,694	4.4%	322	7, 534	7,856	4.1%
夜	問合計	4	115	119	3.4%	2	129	131	1.5%	6	244	250	2.4%
ź	総合計	163	4, 118	4, 281	3.8%	165	3,660	3,825	4.3%	328	7,778	8, 106	4.0%

表 7.1-45(4) 供用後の時間別交通量(⑤リハビリパーク仙台東及びくつろぎ保養館仙台東(市道宮浦線))

⑤リハビリパーク仙台東及びくつろぎ保養館仙台東(市道宮浦線)

							供用時の	り交通量					
時間			北往	丁き			南行	丁き			合	計	
区分	時刻	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車
		(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率
	6:00	0	8	8	0.0%	0	1	1	0.0%	0	9	9	0.09
	7:00	1	47	48	2.1%	0	6	6	0.0%	1	53	54	1.99
	8:00	1	43	44	2.3%	0	6	6	0.0%	1	49	50	2.09
	9:00	1	19	20	5.0%	1	6	7	14.3%	2	25	27	7.49
	10:00	1	18	19	5.3%	0	10	10	0.0%	1	28	29	3.49
	11:00	0	21	21	0.0%	1	13	14	7.1%	1	34	35	2.99
	12:00	1	9	10	10.0%	0	12	12	0.0%	1	21	22	4.59
昼	13:00	0	12	12	0.0%	0	10	10	0.0%	0	22	22	0.09
間	14:00	0	14	14	0.0%	1	12	13	7. 7%	1	26	27	3. 79
	15:00	0	15	15	0.0%	1	18	19	5. 3%	1	33	34	2. 99
	16:00	0	16	16	0.0%	0	13	13	0.0%	0	29	29	0.09
	17:00	0	12	12	0.0%	0	22	22	0.0%	0	34	34	0.09
	18:00	0	9	9	0.0%	0	25	25	0.0%	0	34	34	0.09
	19:00	0	4	4	0.0%	0	14	14	0.0%	0	18	18	0.09
	20:00	0	2	2	0.0%	0	7	7	0.0%	0	9	9	0.09
	21:00	0	3	3	0.0%	0	4	4	0.0%	0	7	7	0.09
	22:00	0	1	1	0.0%	0	1	1	0.0%	0	2	2	0.09
	23:00	0	0	0	0.0%	0	1	1	0.0%	0	1	1	0.09
	0:00	0	0	0	0.0%	0	1	1	0.0%	0	1	1	0.09
夜	1:00	0	0	0	0.0%	0	0	0	0.0%	0	0	0	0.09
間	2:00	0	0	0	0.0%	0	0	0	0.0%	0	0	0	0.09
	3:00	0	0	0	0.0%	0	0	0	0.0%	0	0	0	0.09
	4:00	0	0	0	0.0%	0	1	1	0.0%	0	1	1	0.09
	5:00	0	2	2	0.0%	0	1	1	0.0%	0	3	3	0.09
昼	問合計	5	252	257	1.9%	4	179	183	2. 2%	9	431	440	2.09
夜	問合計	0	3	3	0.0%	0	5	5	0.0%	0	8	8	0.09
Ŷ	総合計	5	255	260	1.9%	4	184	188	2.1%	9	439	448	2.09

表 7.1-45(5) 供用後の時間別交通量(⑨市道蒲の町南梅ノ木線)

⑨(地区内道路)市道蒲の町南梅の木線

Ŭ		22117 1178	_1112 - 71	判備の不	54-		供用時の	り交通量					
時間			北往	すき			南行	丁き			合	計	
阿区分	時刻	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車	大型車	小型車	合計	大型車
		(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率	(台)	(台)	(台)	混入率
	6:00	7	57	64	10.9%	1	45	46	2. 2%	8	102	110	7.3%
	7:00	11	121	132	8.3%	2	115	117	1.7%	13	236	249	5. 2%
	8:00	3	103	106	2.8%	4	144	148	2.7%	7	247	254	2.8%
	9:00	3	99	102	2.9%	6	83	89	6.7%	9	182	191	4.7%
	10:00	3	84	87	3.4%	3	109	112	2.7%	6	193	199	3.0%
	11:00	3	81	84	3.6%	4	135	139	2.9%	7	216	223	3.1%
	12:00	2	51	53	3.8%	2	95	97	2.1%	4	146	150	2.7%
昼	13:00	3	57	60	5.0%	3	92	95	3. 2%	6	149	155	3.9%
間	14:00	3	63	66	4.5%	6	112	118	5.1%	9	175	184	4.9%
	15:00	4	57	61	6.6%	2	113	115	1.7%	6	170	176	3.4%
	16:00	1	87	88	1.1%	3	176	179	1.7%	4	263	267	1.5%
	17:00	3	99	102	2.9%	5	305	310	1.6%	8	404	412	1.9%
	18:00	2	90	92	2.2%	4	249	253	1.6%	6	339	345	1.7%
	19:00	3	54	57	5. 3%	3	157	160	1.9%	6	211	217	2.8%
	20:00	0	33	33	0.0%	1	102	103	1.0%	1	135	136	0.7%
	21:00	0	22	22	0.0%	2	49	51	3.9%	2	71	73	2.7%
	22:00	0	12	12	0.0%	0	19	19	0.0%	0	31	31	0.0%
	23:00	0	13	13	0.0%	0	33	33	0.0%	0	46	46	0.0%
	0:00	0	3	3	0.0%	0	13	13	0.0%	0	16	16	0.0%
夜	1:00	0	0	0	0.0%	0	6	6	0.0%	0	6	6	0.0%
間	2:00	0	1	1	0.0%	0	6	6	0.0%	0	7	7	0.0%
	3:00	0	1	1	0.0%	0	4	4	0.0%	0	5	5	0.0%
	4:00	0	4	4	0.0%	0	6	6	0.0%	0	10	10	0.0%
	5:00	1	17	18	5. 6%	0	16	16	0.0%	1	33	34	2.9%
昼	問合計	51	1, 158	1, 209	4. 2%	51	2,081	2,132	2.4%	102	3, 239	3, 341	3.1%
夜	問合計	1	51	52	1.9%	0	103	103	0.0%	1	154	155	0.6%
Ý	総合計	52	1, 209	1, 261	4.1%	51	2, 184	2, 235	2.3%	103	3, 393	3, 496	2.9%

②走行速度及び排出係数

⑤地点及び⑨地点の走行速度及び排出係数は、表 7.1-46 に示すとおりである。なお、走行速度は、現地調査結果と同じとした。

②地点、③地点及び④地点の走行速度及び排出係数は、「1)工事による影響(資材等の運搬)」と同じとした。

表 7.1-46 走行速度及び排出係数

			排出係数(g/km·台)					
No.	地点名	走行速度	窒素酸化	公物 (NOx)	浮遊粒子状	で物質(SPM)		
			小型車	大型車	小型車	大型車		
(5)	リハビリパーク仙台東及びくつろぎ保養館仙台東(市道宮浦線)	30.3km/h	0.096	1.66	0.006	0.086		
9	(地区内道路)市道蒲の町南梅の木線	35.3km/h	0.086	1.48	0.005	0.078		

出典:「道路環境影響評価の技術手法(2007改訂版)」((財)道路環境研究所、平成19年)」

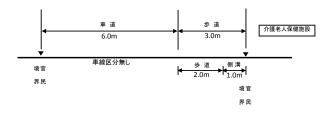
③汚染物質排出量

汚染物質排出量は、供用後の交通量及び排出係数を用いて、時間帯ごとに求めた。

④気象条件

気象条件(風向・風速)は、「1)工事による影響(資材等の運搬)」と同じとした。

⑤道路条件


⑤地点及び⑨地点の道路条件は表 7.1-47 及び図 7.1-20 に示すとおりである。なお、予測 位置の高さは、地上1.5mとした。

②地点、③地点及び④地点の道路条件は、「1) 工事による影響(資材等の運搬)」と同じ とした。

	2		1511
地点番号	予測地域 (対象道路)	予測地点	道路構造
(5)	市道宮浦線	リハビリパーク仙台東及び くつろぎ保養館仙台東	平面
9	市道蒲の町南梅ノ木線	市道蒲の町南梅ノ木線	平面

表 7.1-47 予測地点(⑤)地点及び⑨地点)の道路条件

<⑤リハビリパーク仙台東及びくつろぎ保養館仙台東(市道宮浦線)>

< (9 (地区内道路) 市道蒲の町南梅ノ木線>

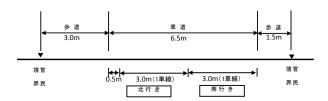


図 7.1-20 予測地点(⑤地点及び⑨地点)断面図

⑥排出源位置

排出源位置は、「1) 工事による影響(資材等の運搬)」と同じとした。

⑦バックグラウンド濃度

バックグランド濃度は、「1)工事による影響(資材等の運搬)」と同じとした。

8窒素酸化物変換式

 NO_x を NO_2 に変換する式は、「1) 工事による影響(資材等の運搬)」と同じとした。

9日平均值換算式

日平均値換算式は、「1)工事による影響(資材等の運搬)」と同じとした。

注) 地点番号は、道路交通騒音の調査地点番号と同じとした。

(6)予測結果

①年平均值

予測結果(年平均値)は表 7.1-48に示すとおりである。

二酸化窒素は、予測地点における供用後交通量の寄与濃度が 0.0001 未満~0.0005ppm であり、バックグランド濃度を付加すると年平均値が 0.0140~0.0145ppm であると予測される。

浮遊粒子状物質は、予測地点における供用後交通量の寄与濃度が 0.0001 未満~ 0.0001mg/m³ であり、バックグランド濃度を付加すると年平均値が $0.0200\sim0.0201$ mg/m³ であると予測される。

表 7.1-48(1) 予測結果(二酸化窒素:NO₂)

(単位:ppm)

						`	- 1-7- · PPIII/
	予測地点	(2	2)		3)	(4	1
	1′侧地点		東側	南側	北側	西側	東側
対象道路の 寄与濃度	供用後交通量(A)	0.0001	0.0001	0.0004	0.0005	0.0005	0.0004
バックグラウン	/ド濃度(年平均値)(B)	0.014	0.014	0.014	0.014	0.014	0.014
環境濃度 (年平均値)	供用後交通量(C=A+B)	0.0141	0.0141	0.0144	0.0145	0.0145	0.0144

(単位:ppm)

				(-	+ liv. hhiii)	
	予測地点	(E)	5)	9		
	1′侧地点	西側	東側	西側	東側	
対象道路の 寄与濃度	供用後交通量(A)	0.0000	0.0000	0.0002	0.0002	
バックグラウン	/ド濃度(年平均値)(B)	0.014	0.014	0.014	0.014	
環境濃度 (年平均値) 供用後交通量(C=A+B)		0.0140	0.0140	0.0142	0.0142	

表 7.1-48(2) 予測結果(浮遊粒子状物質:SPM)

(単位:mg/m³)

						(平1	<u>v.:mg/m</u> /	
	予測地点	(2	2)		3)	4		
丁側地点		西側	東側	南側	北側	西側	東側	
対象道路の 寄与濃度	供用後交通量(A)	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	
バックグラウン	/ド濃度(年平均値)(B)	0.020	0.020	0.020	0.020	0.020	0.020	
環境濃度 (年平均値)	供用後交通量(C=A+B)	0.0200	0.0200	0.0201	0.0201	0.0201	0.0201	

(単位:mg/m³)

	予測地点	Œ	5)	9		
	1′例地点	西側	東側	西側	東側	
対象道路の 寄与濃度	供用後交通量(A)	0.0000	0.0000	0.0000	0.0000	
バックグラウン	/ド濃度(年平均値)(B)	0.020	0.020	0.020	0.020	
環境濃度 (年平均値)	供用後交通量(C=A+B)	0.0200	0.0200	0.0200	0.0200	

②日平均値の年間 98%値等

予測結果(日平均値の年間98%値等)は表7.1-49に示すとおりである。

二酸化窒素の日平均値の年間 98%値は、0.0309~0.0316ppm であり、環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

浮遊粒子状物質の日平均値の年間 2%除外値は、0.0502~0.0503 mg/m³であり、環境基準値及び仙台市環境基本計画の目標値を下回ると予測される。

表 7.1-49 予測結果(日平均値の年間 98%値等)

	予測地点	2		(i	3)	(4	D
			東側	南側	北側	西側	東側
NO_2	環境濃度(年平均値)	0.0141	0.0141	0.0144	0.0145	0.0145	0.0144
	日平均値の年間98%値	0.0309	0.0309	0.0314	0.0316	0.0315	0.0314
(ppm)	環境基準	0.0	0.06€	ゾーン内又	はそれ以「	下、0.04以7	- *
SPM	環境濃度(年平均値)	0.0200	0.0200	0.0201	0.0201	0.0201	0.0201
/ / 3\	日平均値の年間2%除外値	0.0502	0.0502	0.0503	0.0503	0.0503	0.0503
(mg/m°)	環境基準			0.10	以下		

	予測地点		5)	(9	9)		
	1′侧地点	西側	東側	西側	東側		
NO	環境濃度(年平均値)	0.0140	0.0140	0.0142	0.0142		
NO_2	日平均値の年間98%値	0.0309	0.0309	0.0311	0.0311		
(ppm)	環境基準	0.0	0.06€	ゾーン内又はそれ以「		下、0.04以	下**
SPM	環境濃度(年平均値)	0.0200	0.0200	0.0200	0.0200		
(, 3)	日平均値の年間2%除外値	0.0502	0.0502	0.0502	0.0502		
(mg/m°)	環境基準			0.10	以下		

※仙台市環境基本計画における定量目標

7.1.3 環境の保全及び創造のための措置

1) 工事による影響(資材等の運搬)

工事用車両の走行に伴う大気質の影響を予測した結果、環境基準値及び仙台市環境基本計画の目標値を下回ると予測された。

また、本事業の実施にあたっては、工事用車両の走行に伴う大気質への影響に対して、さらに、以下の環境保全措置を講ずることとする。

保全措置の種類	低減	低減	低減	低減
実施内容	一時期に工事用車両 が集中しないよう、工 事工程の平準化を図 るとともに、効率的な 車両の運行管理を行 う。	工事用車両の点検整 備を励行する。	工事用車両の適正運転(過度のアイドリングや空ぶかしの禁止等)を運転手へ徹底する。	過積載を禁止する。
実施期間	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中
効果及び変化	NO ₂ 、SPM の発生の 低減が見込まれる。	NO ₂ 、SPM の発生の 低減が見込まれる。	NO ₂ 、SPM の発生の 低減が見込まれる。	NO ₂ 、SPM の発生の 低減が見込まれる。
副次的な影響等	騒音、振動の影響が緩和される。	騒音、振動の影響が緩和される。	騒音、振動及び動物への影響が緩和される。	騒音、振動の影響が緩和される。

表 7.1-50 工事による影響(資材等の運搬)に対する環境保全措置

2) 工事による影響(重機の稼動)

重機の稼動に伴う大気質の影響を予測した結果、環境基準値及び仙台市環境基本計画の目標値を下回ると予測された。

また、本事業の実施にあたっては、重機の稼動に伴う大気質への影響に対して、さらに、 以下の環境保全措置を講ずることとする。

保全措置の種類	低減	低減 低減		低減
実施内容	一時期に重機が集中	効率的な運用により	重機の点検整備を励	重機の適正運転 (過度
	しないよう、工事工程	使用台数・時間の削減	行する。	のアイドリングや空
	の平準化を図る。	を図る。		ぶかしの禁止等) を運
				転手へ徹底する。
効果及び変化	NO ₂ 、SPM の発生の			
	低減が見込まれる。	低減が見込まれる。	低減が見込まれる。	低減が見込まれる。
実施期間	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中
副次的な影響等	騒音、振動の影響が緩	騒音、振動の影響が緩	騒音、振動の影響が緩	騒音、振動の影響が緩
	和される。	和される。	和される。	和される。

表 7.1-51 工事による影響(重機の稼動)に対する環境保全措置

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

資材等の運搬及び重機の稼動に伴う大気質の複合的な影響を予測した結果、環境基準値及 び仙台市環境基本計画の目標値を下回ると予測された。

本事業の実施にあたっては、工事に伴う大気質への影響に対して、上記、1)、2)に示した環境保全措置を講ずることとする。

4) 工事による影響(切土・盛土・発破・掘削等)

切土・盛土・発破・掘削等に伴う大気質の影響を予測した結果、地表面の裸地化に伴い粉 じん発生の可能性があると予測された。

したがって、本事業の実施にあたっては、可能な限り粉じんの発生を抑制するために、以下の環境保全措置を講ずることとする。

表 7.1-52 工事による影響(切土・盛土・発破・掘削等)に対する環境保全措置

保全措置の種類	低減	低減	低減	低減	低減
	風速測定を行い、	タイヤ洗浄装置	工事区域周辺の	段階的施工によ	風速測定を行い、
	砂ぼこりが立つ	等を用いて地区	民家との境界に	り施工箇所を分	砂ぼこりが立つ
	条件(ビュフオー	内から地区外へ	防塵ネットに相	散する。	条件(ビュフオー
	ド風力階級4よ	出る車両のタイ	当する高さ 5.0m		ド風力階級4よ
実施内容	り強風(5.5m/s以	ヤを洗車する。	の遮音壁(仮囲		り強風(5.5m/s
	上))が予想され		い)を設置する。		以上) 時) に作業
	る時に工事区域、				を控える。
	土砂搬入経路へ				
	散水する。				
実施期間	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中
対用サイドボル	粉じん発生の低	粉じん発生の低	粉じん発生の低	粉じん発生の低	粉じん発生の低
効果及び変化	減が見込まれる。	減が見込まれる。	減が見込まれる。	減が見込まれる。	減が見込まれる。
	なし。	なし。	防塵ネットに相	騒音、振動の影響	なし。
			当する遮音壁(仮	が緩和される。動	
副次的な影響等			囲い)を使うこと	物の移動を促す	
			で騒音への影響	ことが期待でき	
			も緩和される。	る。	

5)供用による影響(資材・製品・人等の運搬・輸送)

供用後の関連車両の走行に伴う大気質の影響を予測した結果、環境基準値及び仙台市環境 基本計画の目標値を下回ると予測された。

また、本事業の実施にあたっては、関連車両の走行に伴う大気質への影響に対して、さらに、以下の環境保全措置を講ずることとする。

表 7.1-53 供用による影響(資材・製品・人等の運搬・輸送)対する環境保全措置

保全措置の種類	低減		
	事業区域内に進出する事業所に対して、以下の環境保全措置を要請することとする。		
実施内容	・通勤車両の相乗りや送迎バスの運行、公共交通機関の利用等により、車両台数の抑制を図る。 ・車両の適正運転(過度のアイドリングや空ぶかしの禁止等)を要請する。		
実施期間	供用後(保留地販売時等)		
効果及び変化	NO_2 、SPM の発生の低減が見込まれる。		
副次的な影響等	騒音、振動の影響が緩和される。		

7.1.4 評 価

1) 工事による影響(資材等の運搬)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、工事用車両の走行に伴う大気質(二酸化窒素及び浮遊粒子状物質)の 影響が、工事手法、保全対策等により、実行可能な範囲で回避・低減が図られているか否か を判断する。

②評価結果

環境保全措置として、工事工程の平準化、効率的な車両の運行管理、工事用車両の点検整備、適正運転の徹底、過積載の禁止等、排出ガスの抑制が図られることから、工事用車両の走行に伴う大気質(二酸化窒素及び浮遊粒子状物質)への影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

二酸化窒素及び浮遊粒子状物質の予測結果(二酸化窒素は年間 98%値、浮遊粒子状物質は 年間 2%除外値)について、以下の基準等と整合が図られているかを判断する。

- ・二酸化窒素に係る環境基準について(昭和53年7月11日 環境庁告示第38号)
- ・大気の汚染に係る環境基準について(昭和48年5月8日 環境庁告示第25号)
- ・仙台市環境基本計画(平成23年3月 仙台市)における定量目標

②評価結果

二酸化窒素、浮遊粒子状物質ともに、予測結果は環境基準値及び「仙台市環境基本計画」 の定量目標値を下回っていることから、工事用車両の走行に伴う大気質(二酸化窒素及び浮 遊粒子状物質)への影響については、基準や目標との整合が図られているものと評価する。

2) 工事による影響(重機の稼動)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、重機の稼動に伴う大気質 (二酸化窒素及び浮遊粒子状物質) の影響が、 工事手法、保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断す る。

②評価結果

環境保全措置として、工事工程の平準化、効率的な重機の運用、重機の点検整備、適正運 転の徹底等、排出ガスの抑制が図られることから、重機の稼動に伴う大気質(二酸化窒素及 び浮遊粒子状物質)への影響は、実行可能な範囲で回避・低減が図られているものと評価す る。

(2)基準や目標との整合性に係る評価

①評価方法

二酸化窒素及び浮遊粒子状物質の予測結果(二酸化窒素は年間 98%値、浮遊粒子状物質は 年間 2%除外値)について、以下の基準等と整合が図られているかを判断する。

- ・二酸化窒素に係る環境基準について(昭和53年7月11日 環境庁告示第38号)
- ・大気の汚染に係る環境基準について (昭和48年5月8日 環境庁告示第25号)
- ・仙台市環境基本計画(平成23年3月 仙台市)における定量目標

②評価結果

二酸化窒素、浮遊粒子状物質ともに、予測結果は環境基準値及び「仙台市環境基本計画」 の定量目標値を下回っていることから、重機の稼動に伴う大気質(二酸化窒素及び浮遊粒子 状物質)への影響については、基準や目標との整合が図られているものと評価する。

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、資材等の運搬及び重機の稼動に伴う大気質(二酸化窒素及び浮遊粒子 状物質)の複合的な影響が、工事手法、保全対策等により、実行可能な範囲で回避・低減が 図られているか否かを判断する。

②評価結果

環境保全措置として、資材等の運搬に関しては、工事工程の平準化、効率的な車両の運行管理、工事用車両の点検整備、適正運転の徹底、過積載の禁止等、また、重機の稼動に関しては、工事工程の平準化、効率的な重機の運用、重機の点検整備、適正運転の徹底等、排出ガスの抑制が図られることから、工事用車両の走行及び重機の稼動に伴う大気質(二酸化窒素及び浮遊粒子状物質)への複合的な影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2) 基準や目標との整合性に係る評価

①評価方法

二酸化窒素及び浮遊粒子状物質の合成予測結果(二酸化窒素は年間 98%値、浮遊粒子状物質は年間 2%除外値)について、以下の基準等と整合が図られているかを判断する。

- ・二酸化窒素に係る環境基準について(昭和53年7月11日 環境庁告示第38号)
- ・大気の汚染に係る環境基準について(昭和48年5月8日 環境庁告示第25号)
- ・仙台市環境基本計画(平成23年3月 仙台市)における定量目標

②評価結果

二酸化窒素、浮遊粒子状物質ともに、合成予測結果は環境基準値及び「仙台市環境基本計画」の定量目標値を下回っていることから、資材等の運搬及び重機の稼動に伴う大気質(二

酸化窒素及び浮遊粒子状物質)への影響については、基準や目標との整合が図られているものと評価する。

4) 工事による影響(切土・盛土・発破・掘削等)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、切土・盛土・発破・掘削等に伴う大気質(粉じん)の影響が、工事手法、保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、強風時の散水、工事用車両の洗車、防塵ネットの設置、工事施工箇所の分散、強風時の作業制限等、粉じん発生の抑制が図られることから、切土・盛土・発破・掘削等に伴う大気質(粉じん)への影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

粉じんに関する基準又は目標値は設定されていないことから、以下の事項を目標として、 整合が図られているかを判断する。

「粉じんの発生を抑えること」

②評価結果

環境保全措置として、強風時の散水、工事用車両の洗車、防塵ネットの設置、工事施工箇所の分散、強風時の作業制限等を実施することにより、粉じん発生の抑制が図られることから、切土・盛土・発破・掘削等に伴う大気質(粉じん)への影響については、基準や目標との整合が図られているものと評価する。

5)供用による影響(資材・製品・人等の運搬・輸送)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、関連車両の走行に伴う大気質(二酸化窒素及び浮遊粒子状物質)への 影響が、保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

本事業の実施にあたっては、事業区域内に進出する事業所に対して、通勤車両の相乗りや 送迎バスの運行、公共交通機関の利用、車両の適正運転等を要請することにより、排出ガス の抑制が図られることから、関連車両の走行に伴う大気質(二酸化窒素及び浮遊粒子状物質) への影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

二酸化窒素及び浮遊粒子状物質の予測結果(二酸化窒素は年間 98%値、浮遊粒子状物質は年間 2%除外値)について、以下の基準等と整合が図られているかを判断する。

- ・二酸化窒素に係る環境基準について(昭和53年7月11日 環境庁告示第38号)
- ・大気の汚染に係る環境基準について(昭和48年5月8日 環境庁告示第25号)
- ・仙台市環境基本計画(平成23年3月 仙台市)における定量目標

②評価結果

二酸化窒素、浮遊粒子状物質ともに、予測結果は環境基準値及び「仙台市環境基本計画」 の定量目標値を下回っていることから、関連車両の走行に伴う大気質(二酸化窒素及び浮遊 粒子状物質)への影響については、基準や目標との整合が図られているものと評価する。

7. 2. 1 調 査

1)調査項目

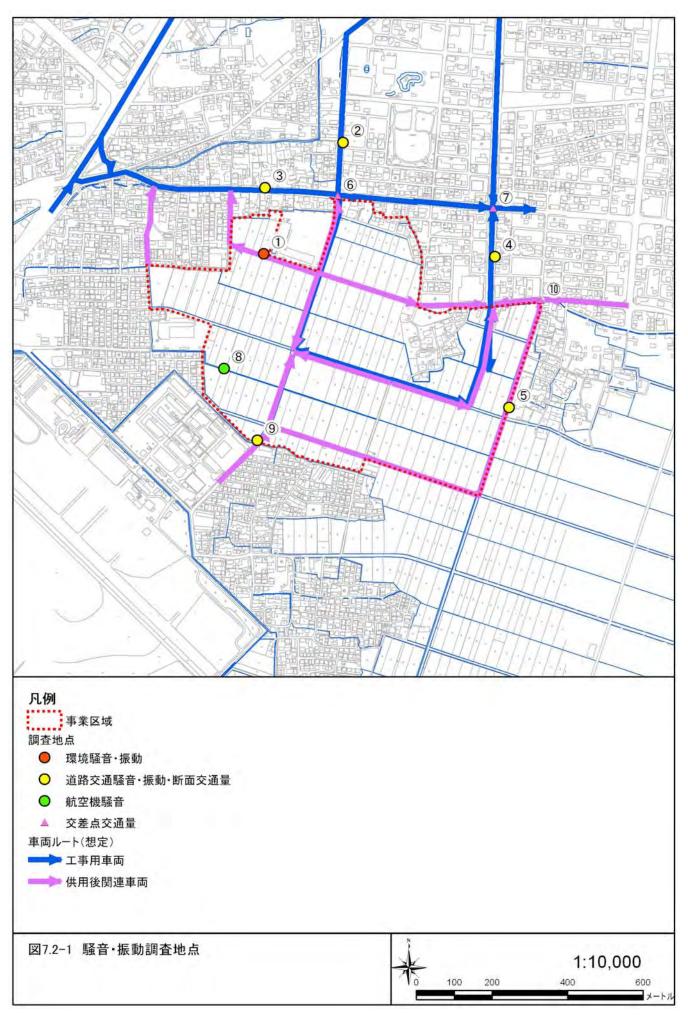
調査項目は表 7.2-1 に示すとおり、騒音及び交通量とした。

表 7.2-1 調査項目

	調査項目
	一般環境騒音
騒音	道路交通騒音
	航空機騒音
六泽县	断面交通量
交通量	交差点交通量

2)調査地域及び調査地点

調査地域は、事業の実施に伴い、騒音に係る環境影響を受けるおそれがあると認められる 地域とし、事業区域界より 200m の範囲とした。


騒音の調査地点は、住居地域や学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.2-2 及び図 7.2-1 に示す 7 地点(一般環境騒音 1 地点、道路交通騒音 5 地点、航空機騒音 1 地点)とした。

また、交通量の調査地点は8地点(断面交通量5地点、交差点交通量3地点)とした。

表 7.2-2 調査地点

調査項目	調査 地点番号	調査地点	道路 構造	車線数	沿道の (用途 上り車線側	v . v =	環境 基準 類型	選定理由等
一般環境	_ ,	市立蒲町小学校	平面	2	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)	_	地区に隣接する保全施設(小学校)を対象とする地点として設定する。
	2	市立蒲町保育所	平面	2	第一種住 居地域	第二種住 居地域	В	工事用車両、供用後関連車両の走行ルートに存在する保 全施設(保育所)を対象とする地点として設定する。
道路	3	県道 235 号荒井荒町線	平面	2	第一種住 居地域	第一種住 居地域	В	工事用車両、供用後関連車両の走行ルートにある保全施 設(住宅・医療施設)を対象とする地点として設定する。
交通 騒音	4	県道 137 号荒浜原町線	平面	4	第二種住 居地域	第二種住 居地域	В	工事用車両、供用後関連車両の走行ルートにある保全施 設(住宅・医療施設)を対象とする地点として設定する。
· 断面 交通量	5	リハビリパーク仙台東及 びくつろぎ保養館仙台東	平面	2	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)	_	供用後関連車両の走行ルートにある保全施設(福祉施設) を対象とする地点として設定する。
	9	市道蒲の町南梅ノ木線	平面	2	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)		供用後関連車両の走行ルートにある保全施設(住宅)を対象とする地点として設定する。
	6	県道 235 号荒井荒町線・ 市道蒲の町南梅ノ木線	平面	2	第一種住 居地域	第二種住 居地域		工事用車両、供用後関連車両の走行ルートにあり、特に交 通の増加が想定される交差点として設定する。
交差点 交诵量	(./)	県道 235 号荒井荒町線・ 県道 137 号荒浜原町線	平面	2 [~] 4	第二種住 居地域	第二種住 居地域	_	工事用車両、供用後関連車両の走行ルートにあり、特に交通の増加が想定される交差点として設定する。
人心里	(9)	県道 137 号荒浜原町線	平面	2	無指定 (市街化調 整区域)	第二種住 居地域		供用後関連車両の走行ルートにあり、特に交通の増加が想 定される交差点として設定する。
航空機 騒音	8	事業区域内西側	平面	-	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)	_	霞目飛行場に最も近い住宅地を想定する地点として設定する。事業に起因するものではないが、地域特有の環境要素であるため、現況を把握する。

注) ⑤の断面交通量は、⑩の調査結果と兼ねる

3)調査方法

(1)騒音

一般環境騒音、道路交通騒音及び航空機騒音に係る調査方法は、表 7.2-3 に示すとおりである。

航空機騒音については、平成 25 年度より、環境基準の評価の指標が、加重等価平均感覚 騒音レベル「WECPNL」から、時間帯補正等価騒音レベル「 L_{den} 」へと変更になる。現在は、 新環境基準施行前であり、「WECPNL」を用いるが、平成 25 年度以降の新環境基準に対応 できるよう、「 L_{den} 」も算出した。そのため、測定方法も、新環境基準に対応して行った。(航 空機騒音に係る環境基準についての一部改正 平成 19 年 12 月 17 日環境省告示第 114 号)

表 7.2-3 騒音に係る現地調査方法

書	間査項目	調査方法	調査方法の概要					
H/		阿且 刀伍	マイクロホンの設置位置は、特定の騒音					
	一般環境騒音	「騒音に係る環境基準について」(平成10年、環境庁告示第64号)に定める測定方法。	発生源による影響を受けない場所を選定した。また、マイクロホンの設置高は地上 1.2m とし、全天候型防風スクリーンを装着した。 騒音計の周波数重み特性は A 特性、時間重み特性は F (Fast)、騒音レベルは、10分間隔の 24 時間連続測定とし、積分型騒音計の演算回路により、等価騒音レベル(LAeq)及び時間率騒音レベル(LAeq)及び時間率騒音レベル(EA50、LA5、LA95)について求めた。観測時間(1時間)及び基準時間帯の平均値は、等価騒音レベルのエネルギー平均、時間率騒音レベルの算術平均により求めた。					
騒音	道路交通騒音	「騒音に係る環境基準について」(平成10年、環境庁告示第64号)に定める測定方法。	マイクロホンの設置位置は、道路敷地境界上とした。また、マイクロホンの設置高は地上 1.2m とし、全天候型防風スクリーンを装着した。 騒音計の周波数重み特性は A 特性、時間重み特性は F (Fast)、騒音レベルは、10分間隔の 24時間連続測定とし、積分型騒音計の演算回路により、等価騒音レベル(LA50、LA5、LA95)について求めた。観測時間(1時間)及び基準時間帯の平均値は、等価騒音レベルのエネルギー平均、時間率騒音レベルの算術平均により求めた。					
	航空機騒音	「航空機騒音に係る環境基準について」(昭和 48 年 12 月 27 日環境庁告示第 154 号)及び「航空機騒音に係る環境基準についての一部改正」(平成 19 年 12 月 17 日環境省告示第 114 号) に定める測定方法。	マイクロホンの高さは地上 1.2m とし、 騒音計の周波数重み特性は A 特性、時間 重み特性は S (Slow)、騒音レベルの瞬時 値のサンプリング間隔は 0.1sec として、 航空機及びヘリコプタ飛来時の騒音レベ ルの測定を 1 週間連続で測定を行った。 航空機の飛行状況等(出現時刻・方向等) は、有人による目視観測を行い(ただし、 目視観測は 8~17 時)、また、実録音機 能を用い航空機以外の音等を判別した。					

(2)交通量

交通量に係る調査方法は、表 7.2-4 に示すとおりである。

表 7.2-4 交通量に係る現地調査方法

調査	項目	調査方法
交通量	断面交通量	ハンドカウンターを用いて、時間帯別・車種別・方向別の自動車台数を計測した。 また、ストップウォッチを用いて、目視により車両が通過する時間を計測し、走行速度を算出した。
	交差点交通量	ハンドカウンターを用いて、時間帯別・車種別・方向別の自動車台 数を計測した。

4)調査期日

調査期日は、表 7.2-5 に示すとおりであり、一般環境騒音、道路交通騒音ともに、休日及び平日の各 24 時間連続測定とした。また、航空機騒音については、1 週間 (7 日間) のうち 航空機が離発着する時間帯に合わせて測定を行った。

表 7.2-5 調査期日

į	周査項目		調査期日									
	一般環境騒音	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00									
	一	平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00									
騒 音	道路交通騒音	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00									
	但陷久地独自	平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00									
	航空機騒音	平成 23	3年10月23日(日)~10月29日(土)									
	断面交通量	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00									
交通量	関固久題里	平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00									
父旭里	大羊占六泽县	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00									
	交差点交通量		平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00									

5)調査結果

騒音及び交通量の調査結果を以下に示す。

一般的には、航空機騒音が「騒音に係る環境基準」の評価において測定値に影響を与える場合は、航空機の騒音は測定・評価の対象から除外するが、当該調査地域においては日常的・継続的に航空機(ヘリコプター)の飛行があるため、除外しない騒音の状態も把握した。昼間・夜間の時間帯別の道路交通騒音レベルをみると、"除外無"と"除外有"でほぼ同等の測定結果となった。

(1)一般環境騒音

〇地点①「市立蒲町小学校」

等価騒音レベル(L_{Aeq})については、休日は昼間が 53dB(A)、夜間が 45dB(A)、平日は昼間が 56dB(A)、夜間が 47dB(A)となっており、平日の昼間・夜間は環境基準を超過している。

騒音レベルの 90%レンジ上端値(L_{A5})については、休日が $42.5\sim60.0$ dB(A)、平日は $44.5\sim65.1$ dB(A)であった。

(2)道路交通騒音

〇地点②「市立蒲町保育所」

等価騒音レベル(L_{Aeq})については、休日は昼間が 61dB(A)、夜間が 53dB(A)、平日は昼間が 63dB(A)、夜間が 55dB(A)となっており、いずれも環境基準を満足している。

〇地点③「県道 235 号荒井荒町線」

等価騒音レベル(L_{Aeq})については、休日は昼間が 68dB(A)、夜間が 61dB(A)、平日は昼間が 69dB(A)、夜間が 62dB(A)となっており、いずれも環境基準を満足している。

〇地点④「県道 137 号荒浜原町線」

等価騒音レベル(L_{Aeq})については、休日は昼間が 56dB(A)、夜間が 47dB(A)、平日は昼間が 59dB(A)、夜間が 49dB(A)となっており、いずれも環境基準を満足している。

〇地点⑤「リハビリパーク仙台東及びくつろぎ保養館仙台東」

等価騒音レベル(L_{Aeq})については、休日は昼間が 56dB(A)、夜間が 47dB(A)、平日は昼間が 60dB(A)、夜間が 50dB(A)となっており、いずれも環境基準を満足している。

〇地点9「市道蒲の町南梅ノ木線」

等価騒音レベル(L_{Aeq})については、休日は昼間が 60dB(A)、夜間が 50dB(A)、平日は昼間が 63dB(A)、夜間が 52dB(A)となっており、いずれも環境基準を満足している。

表 7.2-6(1) 一般環境騒音調査結果(平日)

測定日: 平成 23 年 10 月 26 日 6:00 ~ 10 月 27 日 6:00 単位: dB(A)

Εн.	1 /3/ 40 T	10 /1 20 F	4 0.00	~ 10月2	1 H 0.0	0 +	<u>чи.</u> : ав
時	観測			地点			
間	時間	$L_{\! ext{A}}$			L_{ℓ}	Aeq	
帯	Ē	航空機隊	除外無	航空機隊	余外無	航空機隊	除外有
	6:00	52.4		51.4		51.4	
	7:00	53.9		54.3		54.3	
	8:00	60.4		56.7		56.6	
	9:00	60.6		57.9		54.5	
	10:00	65.1		59.3		55.7	
	11:00	63.1		59.2		58.3	
	12:00	59.5		55.6		55.7	
昼間	13:00	61.3	57	57.2	56	56.6	55
間	14:00	60.0	37	56.8	50	57.2	55
	15:00	59.9		58.6		58.9	
	16:00	58.0		55.5		55.5	
	17:00	55.9		54.0		54.0	
	18:00	55.1		53.7		53.7	
	19:00	51.8		52.6		52.6	
	20:00	49.8		50.2		50.2	
	21:00	48.2		49.6		49.6	
	22:00	45.9		44.4		44.4	
	23:00	45.8		45.6		45.6	
	0:00	46.9		47.4		47.4	
夜間	1:00	46.8	47	45.4	47	45.4	47
間	2:00	44.7	41	49.5	41	49.5	41
	3:00	44.5		41.0		41.0	
	4:00	45.3		43.6		43.6	
	5:00	53.2		50.8		50.8	
環均	竟基準			昼間	55	夜間	45

- 注 1) 調査結果は、1 時間値及び昼間・夜間の時間帯の平均値を表す。
- 注 2) 航空機除外有については、 $8:00\sim15:00$ で航空機 (ヘリコプター) の飛行音を除外した
- 注3) 環境基準の類型が指定されていないため、B類型を準用した。

表 7.2-6(2) 一般環境騒音調査結果(休日)

測定日: 平成 23 年 10 月 23 日 6:00 \sim 10 月 24 日 6:00 単位: dB(A)

時	観測	地点①									
間	時間	$L_{ m A}$	5		L_{ℓ}	Aeq					
帯	H-11 [H]	航空機隊	除外無	航空機隊		航空機隊	於外有				
	6:00	48.7		46.2		46.2					
	7:00	50.0		49.7		49.7					
	8:00	50.8		50.1		50.1					
	9:00	53.3		52.9		52.9					
	10:00	52.1		51.0		51.0					
	11:00	60.0		55.2		54.0					
	12:00	57.2		53.7		50.9					
昼間	13:00	51.6	53	50.7	53	50.7	52				
間	14:00	53.7	99	52.0	99	52.4	52				
	15:00	52.7		52.2		52.3					
	16:00	55.0		55.9		55.9					
	17:00	55.3		57.6		57.6					
	18:00	50.7		50.8		50.8					
	19:00	50.7		50.2		50.2					
	20:00	50.5		52.1		52.1					
	21:00	48.0		49.0		49.0					
	22:00	49.8		50.6		50.6					
	23:00	46.5		45.1		45.1					
	0:00	43.6		43.9		43.9					
夜	1:00	43.8	45	40.7	45	40.7	45				
間	2:00	42.5	40	44.0	40	44.0	45				
	3:00	43.8		40.8		40.8					
	4:00	44.6		42.5		42.5					
	5:00	46.3		46.3		46.3					
環地	竟基準	_		昼間	55	夜間	45				

- 注 1) 調査結果は、1 時間値及び昼間・夜間の時間帯の平均値を表す。
- 注 2) 航空機除外有については、 $11:00\sim12:00$ 及び $14:00\sim15:00$ で航空機 (ヘリコプター) の飛行音を除外した
- 注3) 環境基準の類型が指定されていないため、B類型を準用した。

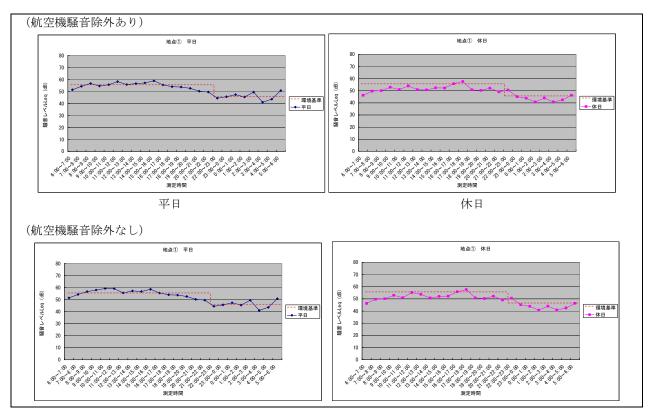


図 7.2-2(1) 等価騒音レベル時間変動図(①:市立蒲町小学校)

表 7.2-6(3) 道路交通騒音調査結果(LAea 平日)

測 定 日: 平成 23 年 10 月 26 日 6:00 ~ 10 月 27 日 6:0	測	疋	H	:	平成	23	牛	10	月	26	H	6:00	\sim	10	月	27	Н	6:0
---	---	---	---	---	----	----	---	----	---	----	---	------	--------	----	---	----	---	-----

単位: dB(A)

時	/en 201		地点			10 / 1 2	地点				地点	<u>54</u>			地点	1 5			地点	59	
間	観測時間	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機
帯	時间	除外	無	除外	有	除外	無	除外	有	除外	無	除外	有	除外無		除外有		除外	無	除外	.有
	6:00	61.4		61.4		67.0		67.0		55.1		55.1		56.1		56.1		62.2		62.2	
	7:00	64.6		64.6		69.1		69.1		58.7		58.7		61.7		61.7		65.8		65.8	
	8:00	65.6		65.6		69.6		69.6		59.2		59.4		61.3		61.2		62.3		62.2	
	9:00	63.1		62.6		69.2		69.3		60.0		60.9		58.9		58.9		62.4		60.7	
	10:00	63.9		63.7		69.7		69.1		62.1		61.7		61.1		60.5		63.3		62.1	
	11:00	63.7		63.5		69.2		69.1		61.7		61.1		62.4		62.5		64.8		64.3	
	12:00	62.2		61.8		68.3		68.3		58.8		58.8		60.6		60.4		61.5		60.6	
昼間	13:00	62.4	63	62.1	63	68.9	69	69.0	69	60.4	59	60.8	59	60.5	60	60.5	60	62.0	63	60.6	62
間	14:00	63.3	69	64.9	69	68.9	69	68.9	69	60.8	59	60.0	59	60.1	60	59.1	60	61.5	69	61.3	02
	15:00	64.0		64.5		68.8		68.8		60.1		60.2		60.3		60.2		61.6		61.2	
	16:00	63.7		63.7		69.4		69.4		60.2		60.2		60.4		60.4		62.2		62.2	
	17:00	63.9		63.9		68.8		68.8		59.9		59.9		61.5		61.5		63.7		63.7	
	18:00	63.6		63.6		69.0		69.0		59.3		59.3		61.5		61.5		63.2		63.2	
	19:00	61.8		61.8		68.8		68.8		57.4		57.4		59.7		59.7		61.5		61.5	
	20:00	61.4		61.4		68.4		68.4		56.7		56.7		56.8		56.8		58.5		58.5	
	21:00	59.1		59.1		66.4		66.4		53.2		53.2		54.9		54.9		57.4		57.4	
	22:00	56.8		56.8		65.2		65.2		51.6		51.6		52.1		52.1		51.8		51.8	
	23:00	59.6		59.6		64.0		64.0		50.3		50.3		51.2		51.2		55.2		55.2	
	0:00	52.8		52.8		61.6		61.6		49.0		49.0		48.3		48.3		51.4		51.4	
夜	1:00	50.5	55	50.5	55	58.7	62	58.7	62	45.7	49	45.7	49	46.8	50	46.8	50	45.2	52	45.2	52
間	2:00	52.0	99	52.0	99	58.9	62	58.9	62	47.1	49	47.1	49	49.2	90	49.2	90	51.0	52	51.0	92
	3:00	48.5		48.5		56.5		56.5		44.3		44.3		47.1		47.1		44.9		44.9	
	4:00	53.2		53.2		59.3		59.3		46.1		46.1		47.7		47.7		48.2		48.2	
	5:00	56.2		56.2		61.9		61.9		49.2		49.2		53.8		53.8		56.7		56.7	
環境	竟基準	昼間	65	夜間	60	昼間	70	夜間	65	昼間	70	夜間	65	昼間	65	夜間	60	昼間	65	夜間	60

- 注 1) 調査結果は、1 時間値及び昼間・夜間の時間帯の平均値を表す。
- 注 2) 航空機除外有については、 $8:00\sim15:00$ で航空機 (ヘリコプター) の飛行音を除外した
- 注3) 環境基準の類型が指定されていない地点⑤、⑨についてはB類型を準用した。

単位: dB(A)

測 定 日: 平成 23 年 10 月 23 日 6:00 \sim 10 月 24 日 6:00

時	口 . 十//X	20 1	地点			10 / 1		53			地点	54			地点	55			地点	. ub(A) ₹9	
間	観測	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機	航空	機
帯	時間	除外	無	除外	有	除外	無	除外	有	除外	.無	除外	有	除外	無	除外	有	除外	無	除外	有
	6:00	56.1		56.1		63.6		63.6		52.0		52.0		52.8		52.8		58.1		58.1	
	7:00	58.7		58.7		66.9		66.9		53.3		53.3		54.3		54.3]	57.4		57.4	
	8:00	60.2		60.2		68.2		68.2		54.7		54.7		56.8		56.8		58.2		58.2	
	9:00	59.9		59.9		68.4		68.4		56.5		56.5		56.2		56.2		60.0		60.0	
	10:00	60.6		60.6		68.5		68.5		56.4		56.4		57.0		57.0		59.4		59.4	
	11:00	62.8		62.6		69.5		69.5		57.2		57.1		57.2		57.3		59.8		59.1	
	12:00	61.2		60.7		68.6		68.5		57.5		57.4		56.9		57.2		60.7		60.4	
昼間	13:00	59.7	61	59.7	61	68.2	68	68.2	68	57.6	56	57.6	56	56.9	56	56.9	56	60.6	60	60.6	60
間	14:00	60.5	01	60.5	01	68.3	00	68.3	00	58.0	50	58.1	50	56.9	50	57.2	50	60.5	00	60.2	00
	15:00	60.9		60.9		68.3		68.3		58.2		58.2		58.7		58.8		59.8		59.6	
	16:00	62.1		62.1		68.8		68.8		58.2		58.2		57.2		57.2		62.8		62.8	
	17:00	62.0		62.0		68.7		68.7		58.7		58.7		56.4		56.4		60.5		60.5	
	18:00	63.0		63.0		67.8		67.8		57.2		57.2		54.8		54.8		61.8		61.8	
	19:00	59.2		59.2		67.4		67.4		54.6		54.6		53.8		53.8		58.0		58.0	
	20:00	60.4		60.4		66.9		66.9		53.1		53.1		53.1		53.1		55.9		55.9	
	21:00	57.2		57.2		65.5		65.5		49.5		49.5		46.9		46.9		56.2		56.2	
	22:00	54.2		54.2		63.9		63.9		48.3		48.3		48.4		48.4		53.1		53.1	
	23:00	53.8		53.8		61.9		61.9		47.2		47.2		46.2		46.2		49.8		49.8	
	0:00	52.0		52.0		60.6		60.6		47.3		47.3		45.5		45.5		47.5		47.5	
夜間	1:00	50.5	53	50.5	53	58.9	61	58.9	61	47.8	47	47.8	47	40.0	47	40.0	47	47.7	50	47.7	50
間	2:00	49.8	99	49.8	55	57.2	01	57.2	01	45.6	41	45.6	41	45.1	41	45.1	47	45.1	50	45.1	50
	3:00	51.1		51.1		58.7		58.7		48.2		48.2		45.9		45.9		47.7		47.7	
	4:00	52.7		52.7		57.9		57.9		44.8		44.8		44.4		44.4		49.9		49.9	
	5:00	55.1		55.1		61.6		61.6		47.8		47.8		51.3		51.3		54.2		54.2	
環境	竞基準	昼間	65	夜間	60	昼間	70	夜間	65	昼間	70	夜間	65	昼間	65	夜間	60	昼間	65	夜間	60

- 注 1) 調査結果は、1 時間値及び昼間・夜間の時間帯の平均値を表す。
- 注 2) 航空機除外有については、11:00~12:00 及び 14:00~15:00 で航空機 (ヘリコプター) の飛行音を除外した
- 注3) 環境基準の類型が指定されていない地点⑤、⑨についてはB類型を準用した。

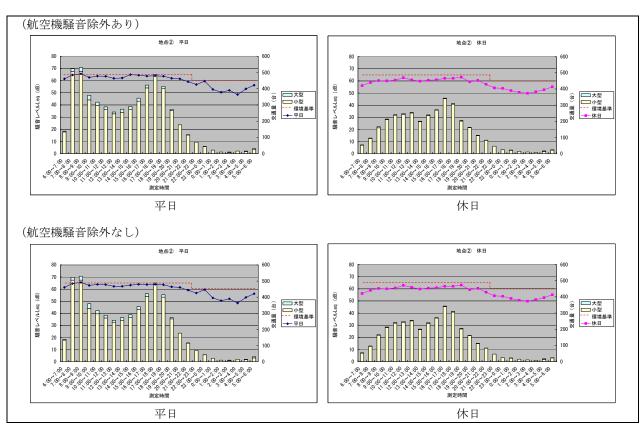


図 7.2-2(2) 等価騒音レベル時間変動図(②:市立蒲町保育所)

図 7.2-2(3) 等価騒音レベル時間変動図(③: 県道 235 号荒井荒町線)

図 7.2-2(4) 等価騒音レベル時間変動図(④: 県道 137 号荒浜原町線)

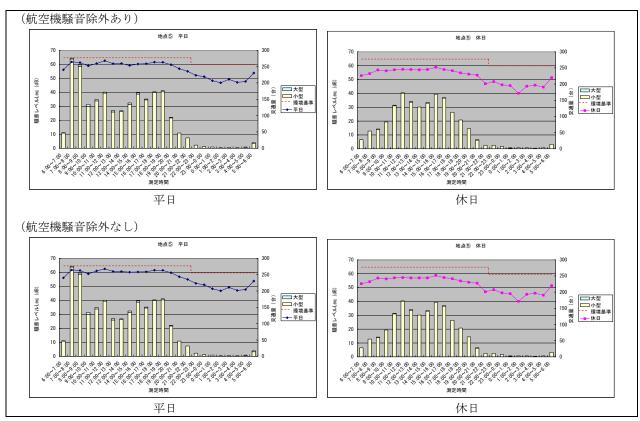


図 7.2-2(5) 等価騒音レベル時間変動図(⑤:リハビリパーク仙台東及びくつろぎ保養館仙台東)

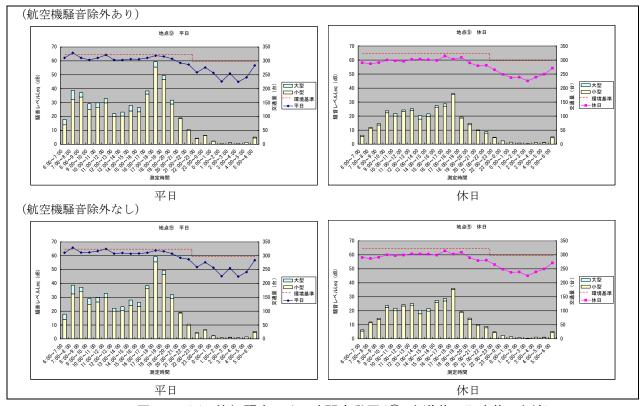


図 7.2-2(6) 等価騒音レベル時間変動図(⑨: 市道蒲の町南梅ノ木線)

(3)航空機騒音

航空機騒音の調査結果は表 7.2-7 に示すとおりである。

調査を実施した7日間における航空機は、1日あたり $6\sim61$ 機であり、航空機騒音は環境基準を満足している。

表 7.2-7(1) 航空機騒音調査結果(週間測定記録)

	測定日	H23.10.23	10.24	10.25	10.26	10.27	10.28	10.29
項目		(1 日目)	(2 日目)	(3 日目)	(4 日目)	(5 日目)	(6 日目)	(7 日目)
WECPN	L^{*_1}	46.3	54.4	50.4	56.4	55.2	48.5	51.1
	日	12	25	17	31	61	9	6
	N1					1		
機数	N2	12	25	17	31	60	9	6
	N3							
	N4							
	日	37.0	44.3	40.4	44.2	45.0	36.9	37.4
$L_{ m den}^{st_2}$	$L_{ m den,d}$	37.0	44.3	40.4	44.2	44.3	36.9	37.4
⊥aen -	$L_{ m den,e}$							
	$L_{ m den,n}$					36.8		

※1:「WECPNL」の時間帯

日:0時~24時 N1:0時~7時 N2:7時~19時 N3:19時~22時 N4:22時~24時

※2 : 「Lden」の時間帯

日:0 時~24 時 $L_{
m den,d}$:7 時~19 時 $L_{
m den,e}$:19 時~22 時 $L_{
m den,n}$:0 時~7 時 / 22 時~24 時

表 7.2-7(2) 航空機騒音調査結果

項目	測定日数	測定値	環境基準 (I 類型)	環境基準 (Ⅱ類型)	環境基準 達成状況
WECPNL	7	53	70	75	0
$L_{ m den}$	7	42	57	62	0

(4)交通量

交通量の現地調査結果は、「7.1 大気質 7.1.1 調査 5)調査結果」に示したとおりである。

7.2.2 予 測

1) 工事による影響(資材等の運搬)

(1)予測内容

工事用車両の走行に伴う道路交通騒音レベルとした。

騒音レベルは、「騒音に係る環境基準について」に定める等価騒音レベル(LAeq)とした。

(2)予測地域及び予測地点

予測地域は、工事用車両の走行に伴い騒音レベルの変化が想定される地域とし、表 7.2-8 に示す事業区域近傍の3路線とした。

予測地点は、事業区域周辺において、住居地域、学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.2-8 及び図 7.2-4 に示す地点(道路交通騒音現地調査地点と同じ地点)とした。

			Д (УС).	.,	
地点番号	予測地域(対象道路)	予測地点	車線数	環境 基準 類型	保全対象
2	市道七郷伊在改良8号線	市立蒲町保育所	2	В	公共施設、住居
3	県道 235 号荒井荒町線	県道 235 号荒井荒町線	2	В	住居、医療施設
(4)	県道 137 号荒浜原町線	県道 137 号荒浜原町線	4	В	住居、医療施設

表 7.2-8 予測地域及び予測地点(工事による影響(資材等の運搬))

(3)予測時期

予測時期は、図 7.2-3 に示すとおり、工事用車両の走行に伴う騒音レベルが最大となる時期として、平成 25 年 4 月とした。

予測対象時期

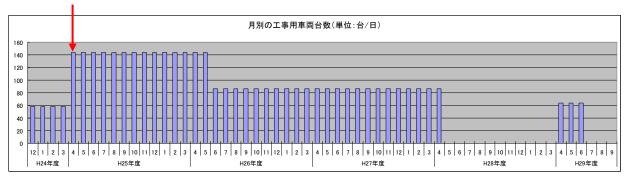
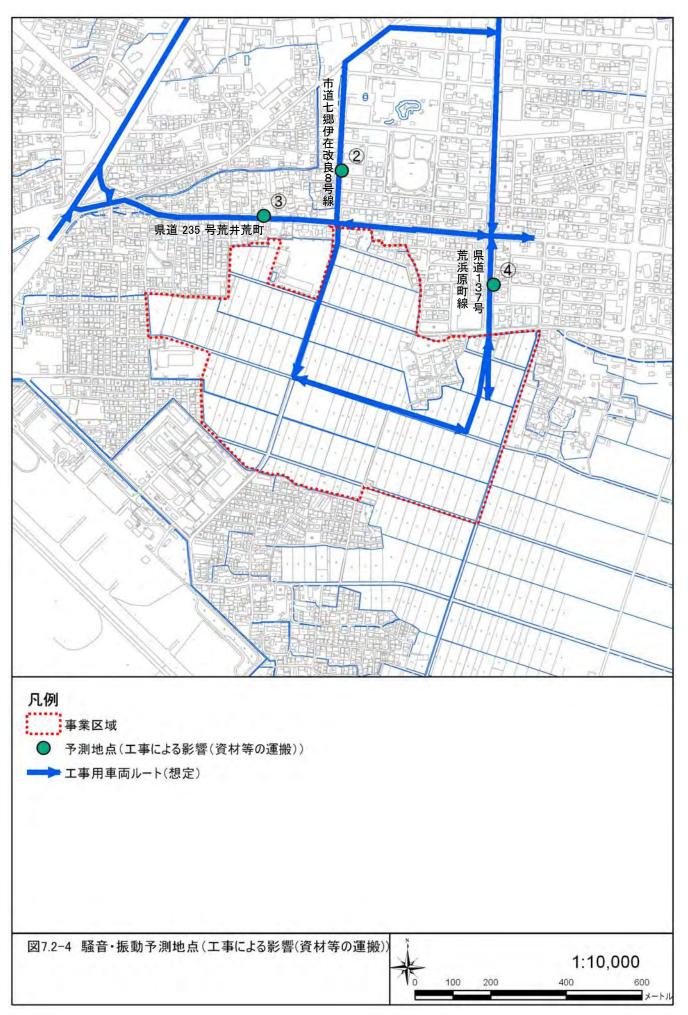



図 7.2-3 月別の工事用車両の経時変化

注)地点番号は、道路交通騒音の調査地点番号と同じとした。

(4)予測方法

①予測手順

予測手順は、図 7.2-5 に示すとおりである。

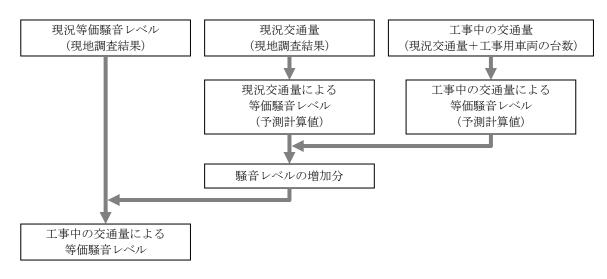


図 7.2-5 予測手順(工事による影響(資材等の運搬))

②予測式

予測式は、以下に示す「道路環境影響評価の技術手法(2007 改訂版)」(平成 19 年 9 月 (財) 道路環境研究所)による予測式に準拠し、等価騒音レベル(L_{Aeg})を算出した。

予測は時間交通量を用いて1時間毎に行い、昼間、夜間の時間の区分毎に整理する方法と した。

 $L_{\text{Aeq}} = L_{\text{Aeq}}^* + \Delta L$

22%, $\Delta L = 10 \cdot 1 \text{ o g }_{10} \left((10^{L}\text{Aeq}, R/10 + 10^{L}\text{Aeq}, HC/10) / 10^{L}\text{Aeq}, R/10 \right)$

L_{Aeq}* : 現況の等価騒音レベル(dB)

LAeq,R : 現況交通量から、(社)日本音響学会の ASJ RTN-Model 2008

を用いて求められる等価騒音レベル(dB)

LAeq,HC : 工事中の交通量から、(社)日本音響学会の ASJ RTN-Model

2008 を用いて求められる等価騒音レベル(dB)

なお、(社)日本音響学会のASJ RTN-Model 2008の基本式を以下に示す。

表 7.2-9 騒音の予測式(工事による影響(資材等の運搬))

区 分	予 測 式
	単発暴露騒音レベルの算出 $L_{AE,j} = 10\log_{10}\!\left(\frac{1}{T}\sum_{i}10^{L_{pA,i}/10}\!\cdot\!\Delta t_{i}\right)$ 音源から予測地点に伝搬するA特性騒音レベル
予測基本式	$L_{pA,i} = L_{WA,i} - 8 - 20 \log_{10} r_i + \Delta L_{d,i} + \Delta L_{g,i} + \Delta L_{a,i}$ 自動車走行騒音の音響パワーレベル(車種別、非定常走行($10 \text{km/h} \le V \le 60 \text{km/h}$)) 大型車類: $L_{WA} = 88.8 + 10 \log_{10} V$ 小型車類: $L_{WA} = 82.3 + 10 \log_{10} V$
	等価騒音レベルの算出 $L_{Aeq,j} = 10\log_{10}\left(10^{L_{AE,j}/10}\frac{N_j}{3600}\right) = L_{AE,j} + 10\log_{10}N_j - 35.6$
	予測地点における道路全体からの等価騒音レベル $L_{Aeq}=10\log_{10}\Biggl(\sum_{j=1}^n10^{L_{Aeq,j}/10}\Biggr)$
記号説明	$L_{AE,j}$: 単発暴露騒音レベル [dB] $L_{pA,j}$: 音源 (i) から予測地点に伝搬する騒音のA特性騒音レベル [dB] T_0 : 基準時間 [1s] Δt_i : $\Delta t L_i / V$ [s] $\Delta t L_i$: 離散的に設定した点音源の間隔 [m] V : 走行速度 [m/s] $L_{WA,i}$: 音源 (i) における自動車走行騒音のA特性音響パワーレベル [dB] T_i : 音源 (i) から予測地点までの直達距離 [m] $\Delta L_{d,i}$: 回折に伴う減衰に関する補正量 [dB] 音源から予測地点までの間に、遮音壁などの回折点は存在しないことから、0 とした。 $\Delta L_{g,i}$: 地表面効果による減衰に関する補正量 [dB] 地表面の種類は概ね舗装面(アスファルト)であることから、0 とした。 $\Delta L_{a,i}$: 空気の音響吸収による減衰に関する補正量 [dB] 音源から予測地点までの距離が近いことから、0 とした。 $L_{Aeq,j}$: 予測地点における車線別・車種別の予測対象時間帯の等価騒音レベル [dB] N_j : 1 時間あたりの交通量 [台] L_{Aeq} : 予測地点における予測対象時間帯の等価騒音レベル [dB]

(5) 予測条件

①交通量

予測対象時点における工事用車両の台数、工事中の基礎交通量、工事中の交通量は、「7.1 大気質 7.1.2 予測 1) 工事による影響(資材等の運搬)」と同じとした。

②走行速度

走行速度は、「7.1 大気質 7.1.2 予測 1)工事による影響(資材等の運搬)」と同じとした。

③道路条件

道路条件は、「7.1 大気質 7.1.2 予測 1) 工事による影響(資材等の運搬)」と同じとした。なお、音源位置は、道路上下車線の中央部に設定し、予測位置は、現地調査を行った側の道路境界とし、その高さは地上 1.2m とした。

④予測時間帯

工事時間帯が 9 時~18 時であることから、予測の時間帯は「騒音に係る環境基準について」における昼間の時間帯(6 時~22 時)とした。

(6)予測結果

予測結果(等価騒音レベル)は表 7.2-10 に示すとおりである。

工事中の交通量による騒音レベルは、60~69dB(A)であり、現況と同程度であると予測される。また、環境基準と比較すると、いずれの地点も環境基準値を下回ると予測される。

表 7.2-10 予測結果

(単位:dB)

				騒音レベル予測結果				
地点	予測地域(対象道路)	予測地点	時間	現況	工事中の	増加分	環境	
番号	番号 予測地域(対象道路)	1′侧地点	区分	交通量	交通量	(3)	基準	
				(1)	(2)	(2)-(1)		
2	市道七郷伊在改良8号線	市立蒲町保育所	昼間	63	64	1	65	
3	県道 235 号荒井荒町線	県道 235 号荒井荒町線	昼間	69	69	0	70	
4	県道 137 号荒浜原町線	県道 137 号荒浜原町線	昼間	59	60	1	70	

注)時間区分は、昼間:6時~22時

2) 工事による影響(重機の稼動)

(1)予測内容

重機の稼動に伴う建設作業騒音レベルとした。

騒音レベルは、「特定建設作業に伴つて発生する騒音の規制に関する基準」に定める 90% レンジの上端値 (\emph{L}_{A5}) とした。また、複合的な影響を考慮して、等価騒音レベル(\emph{L}_{Aeq})も 把握した。

(2)予測地域及び予測地点

予測地域は、重機の稼動に伴い騒音の変化が想定される地域とし、図 7.2-6 に示す事業区域より 200m の範囲とした。

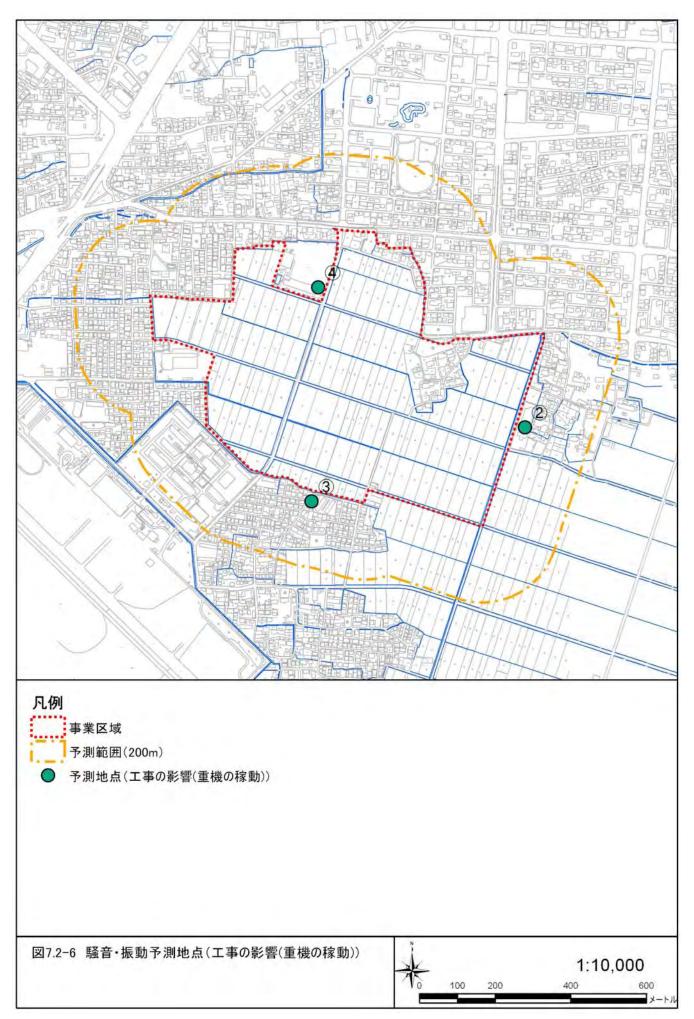

予測地点は、事業区域敷地境界のほか、住居地域、学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.2-11 及び図 7.2-6 に示す地点とした。

表 7.2-11 予測地点(工事による影響(重機の稼動))

記号	予測地点	保全対象
1	事業区域敷地境界	
2	リハビリパーク付近	福祉施設
3	地区南側住居付近	住居
4	蒲町小学校付近	学校

(3)予測時期

予測時期は、重機の稼動に伴う騒音レベルが最大となる時期として、工種別に予測対象ユニットが予測地点に最も接近する時期とした。

(4)予測方法

①予測手順

予測手順は、図 7.2-7 に示すとおりである。

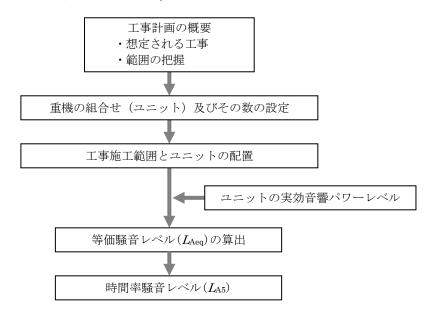


図 7.2-7 予測手順(工事による影響(重機の稼動))

②予測式

予測式は、日本音響学会の提案する「ASJ CN-Model 2007」を用いた。

表 7.2-12 予測式(工事による影響(重機の稼動))

公 / i.e i e j // j // i e j /							
区 分	予 測 式						
実効騒音レベル	$L_{Aeff,i} = L_{WAeff,i} - 8 - 20 \log_{10} r_i + \Delta L_{dif,i} + \Delta L_{grnd,i}$ $L_{A5,i} = L_{Aeff,i} + \Delta L_i$						
記号説明	$L_{Aeff,i}$: 予測地点におけるユニット (i) の実効騒音レベル [dB] $L_{WAeff,i}$: ユニット (i) のA特性実効音響パワーレベル [dB] r_i : ユニット (i) の中心から予測地点までの距離 [m] $\Delta L_{dif,trms}$: 回折に伴う減衰に関する補正量 [dB] (透過音を考慮) $\Delta L_{grnd,i}$: 地表面の影響に関する補正量 [dB] なお、 $\Delta L_{grnd,i}$ =0 とした。 $L_{A5,i}$: 予測地点におけるユニット (i) の騒音レベルの 90%レンジの上端値 [dB] L_i : ユニットごとに与えられている補正値 [dB]						

出典:「ASJ CN-Model 2007」(日本音響学会、平成 20 年 4 月)

(5)予測条件

①工種別ユニット

本事業で想定される工種及びユニットは、表 7.2-13 に示すとおりである。なお、工事の施工にあたっては、重機が集中しないよう、ユニット同士は近接しないこととし、工種ごとに1ユニットが稼働していることと想定した。

表 7.2-13 工種別ユニット

工種	ユニット	一般的な重機	最大ユニット数
仮設防災工事・	掘削	ブルドーザ (21t)、クラムシェル (0.8m³)、バックホウ	1
表土掘削		(0.8m³)、ダンプトラック(10t)	
	法面整形	バックホウ (0.8m³)、空気圧縮機 (5.0m³/min)、ビックハ	1
		ンマ	
整地工事	盛土	ブルドーザ (21t)、タイヤローラ (8t)、振動ローラ (3t)	2
	路床安定処理	トラッククレーン (4.9t 吊)、モーターグレーダー (3.1m)、	1
		スタビライザー(2.0m)、ブルドーザ(21t)、バックホウ	
		$(0.8m^3)$ 、タイヤローラ $(8t)$ 、ロードローラ $(10t)$	
下水道工事	管渠	ブルドーザ (21t)、クラムシェル (0.8m³)、バックホウ	2
		(0.8m³)、ダンプトラック(10t)	
道路工事	アスファルト	モーターグレーダー(3.1m)、ブルドーザ(21t)、タイヤ	1
	舗装	ローラ (8t)、ロードローラ (10t)、散水車 (55001)、振動	
	(上層・下層路	ローラ (3t)、タンパ (60kg)	
	盤)	<u> </u>	
	· ·		1
	舗装	タンパ (60kg)、アスファルトフィニッシャ (2.4m)、ディ	
	(表層・基層)	ストリビュータ(4000l)、ダンプトラック(10t)	
上水道・ガス工	管渠	ブルドーザ(21t)、クラムシェル(0.8m³)、バックホウ	1
事		(0.8m³)、ダンプトラック(10t)	
公園緑地工事	整形	バックホウ (0.8m³)	1

②ユニットごとの騒音源データ

1ユニットの騒音源データは、表 7.2-14 に示すとおりである。

表 7.2-14 ユニットの騒音源データ

工種	ユニット	A 特性実効音響パワーレベル	評価量	補正値	備考
上准	ユーット	$L_{ m WAeff}({ m dB})$	記号	$\angle L$ (dB)	
仮設防災工事・表	掘削	103	$L_{\! m A5}$	5	土砂掘削
土掘削	法面整形	105	$L_{\! m A5}$	5	掘削部
整地工事	盛土	108	$L_{\! m A5}$	5	路体、路床
	路床安定処理	108	$L_{\! m A5}$	5	
下水道工事	管渠	103	$L_{\! m A5}$	5	土砂掘削
道路工事	アスファルト舗装 (上層・下層路盤)	102	$L_{\! m A5}$	6	
	アスファルト舗装 (表層・基層)	106	$L_{\! m A5}$	5	
上水道・ガス工事	管渠	103	$L_{\! m A5}$	5	土砂掘削
公園緑地工事	整形	100	$L_{\! m A5}$	5	盛土部

出典:「ASJ CN-Model 2007」(日本音響学会、平成 20 年 4 月)

③音源(ユニット)位置

音源(ユニット)の位置は、図 7.2-8 に示すとおり、重機の作業半径、必要最小限のスペースを考慮し、事業区域境界より 5m 離れた位置に設定した。また、音源高さは、重機のエンジン音等の発生位置を考慮して、地上 1.0m とした。

4回折減衰

重機が稼動する工事区域端には、5.0m の遮音壁(仮囲い)を設置するものとした。 回折に伴う減衰に関する補正量($\triangle L_d$)は、騒音源、回折点及び予測点の幾何学的配置から決まる行路差(δ)を用いて、次式に基づき算出した。

$$\triangle L_{\rm d} = \begin{cases} -10\log_{10}\delta - 18.4 & \delta \geq 1 \text{ (予測点から音源が見えない場合)} \\ -5 - 15.2 \sinh^{-1} \text{ ($\delta^{\,0.42}$)} & 0 \leq \delta < 1 \text{ (予測点から音源が見えない場合)} \\ -5 + 15.2 \sinh^{-1} \text{ ($\delta^{\,0.42}$)} & 0 < \delta \leq 0.073 \text{ (予測点から音源が見える場合)} \\ 0 & 0.073 < \delta \text{ (予測点から音源が見える場合)} \end{cases}$$

また、仮囲いの透過音を考慮した回折による補正量として、上記回折に伴う減衰に関する補正量($\triangle L_d$)及び遮音材の音響透過損失(R)を用いて、次式に基づき算出した。なお、仮囲いの音響透過損失(R)は、「一般の遮音壁や防音パネルを仮設物として設置した場合」の 20dB とした。

$$\triangle L_{\text{dif, trns}} = 10\log_{10} (10^{\triangle Ld/10} + 10^{-R/10})$$

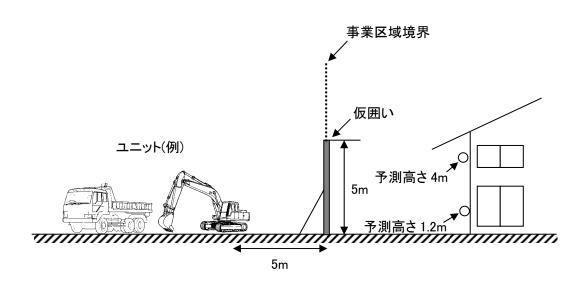


図 7.2-8 音源(ユニット)及び予測位置

(6)予測結果

①等価騒音レベル

予測結果(等価騒音レベル)は表 7.2-15 に示すとおりである。

等価騒音レベルは、敷地境界の高さ 1.2 m で $59\sim67 \text{dB}$ 、高さ 4.0 m で $60\sim68 \text{dB}$ となっており、現況の騒音レベル 56 dB (現地調査地点①(測定高さ 1.2 m)の平日昼間の値)を上回ると予測される。

また、騒音レベルの 90%レンジ上端値は、敷地境界の高さ 1.2m で $64\sim72$ dB、高さ 4.0m で $65\sim73$ dB となっており、現況の騒音レベル 56dB を上回ると予測される。

衣 7.2-15(1) ア測和米(Z _{Aeq})(ア測向さ1.2m)								
		騒音						
		1	予測	予測	予測			
工種	ユニット	敷地	地点	地点	地点	現況値		
		境界	2	3	4			
		(5m)	(15m)	(10m)	(19m)			
仮設防災工事	掘削	62	53	56	50			
	法面整形	64	55	58	52			
整地工事	盛土	67	58	61	55			
	路床安定処理	67	58	61	55			
下水道工事	管渠	62	53	56	50			
道路工事	アスファルト舗装	C1	F0		40	56		
	(上層・下層路盤)	61	52	55	49			
	アスファルト舗装	C.E	56	59	53			
	(表層・基層)	65	96	อย	ออ			
上水道・ガス工事	管渠	62	53	56	50			
公園緑地工事	整形	59	50	53	47			

表 7.2-15(1) 予測結果(L_{Aeg})(予測高さ:1.2m)

現況値は、現地調査地点① (測定高さ 1.2m) の平日昼間の値を示す。

表 7.2-15(2) 予	測結果(᠘ೖೢ)	(予測高さ:4.0m)
---------------	----------	-------------

	騒音	音レベル	予測結果	(dB)		
		1	予測	予測	予測	
工種	ユニット	敷地	地点	地点	地点	現況値
		境界	2	3	4	
		(5m)	(15m)	(10m)	(19m)	
仮設防災工事	掘削	63	54	57	52	
	法面整形	65	56	59	54	
整地工事	盛土	68	59	62	57	
	路床安定処理	68	59	62	57	
下水道工事	管渠	63	54	57	52	
道路工事	アスファルト舗装 (上層・下層路盤)	62	53	56	51	56
	アスファルト舗装 (表層・基層)	66	57	60	55	
上水道・ガス工事	管渠	63	54	57	52	
公園緑地工事	整形	60	51	54	49	

注) 予測地点の() 内の数値は、ユニットからの距離を表す。

現況値は、現地調査地点① (測定高さ 1.2m) の平日昼間の値を示す。

注)予測地点の()内の数値は、ユニットからの距離を表す。

②90%レンジの上端値

予測結果 (90%レンジの上端値) は表 7.2-16 に示すとおりである。

騒音レベルの 90%レンジの上端値は、敷地境界の高さ 1.2m で $64\sim72$ dB、高さ 4.0m で $65\sim73$ dB であり、規制基準値を下回ると予測される。

表 7.2-16(1) 予測結果(L_{A5})(予測高さ:1.2m)

		騒音	音レベル	予測結果	(dB)	規制基準(dB)		
工種	ユニット	① 敷地 境界 (5m)	予測 地点 ② (15m)	予測 地点 ③ (10m)	予測 地点 ④ (19m)	騒音規制法 特定建設作業 に係る基準	仙台市公害防止条例 指定建設作業騒音 に係る基準	
仮設防災工事	掘削	67	58	61	55			
	法面整形	69	60	63	57			
整地工事	盛土	72	63	66	60			
	路床安定処理	72	63	66	60		80 (75)	
下水道工事	管渠	67	58	61	55			
道路工事	アスファルト舗装 (上層・下層路盤)	67	58	61	55	85	※括弧内は 蒲町小学校から	
	アスファルト舗装 (表層・基層)	70	61	64	58		50m の範囲の基準	
上水道・ガス工事	管渠	67	58	61	55			
公園緑地工事	整形	64	55	58	52			

注)予測地点の()内の数値は、ユニットからの距離を表す。

表 7.2-16(2) 予測結果(L_{A5})(予測高さ:4.0m)

Z III IOLI I MITTAN (PA) (I MITTAN)										
		騒音	騒音レベル予測結果(dB)			規制基準(dB)				
工種	ユニット	① 敷地 境界 (5m)	予測 地点 ② (15m)	予測 地点 ③ (10m)	予測 地点 ④ (19m)	騒音規制法 特定建設作業 に係る基準	仙台市公害防止条例 指定建設作業騒音 に係る基準			
仮設防災工事	掘削	68	59	62	57					
	法面整形	70	61	64	59					
整地工事	盛土	73	64	67	62					
	路床安定処理	73	64	67	62		80 (75)			
下水道工事	管渠	68	59	62	57					
道路工事	アスファルト舗装 (上層・下層路盤)	68	59	62	57	85	※括弧内は 蒲町小学校から			
	アスファルト舗装 (表層・基層)	71	62	65	60		50m の範囲の基準			
上水道・ガス工事	管渠	68	59	62	57					
公園緑地工事	整形	65	56	59	54					

注) 予測地点の()内の数値は、ユニットからの距離を表す。

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

資材等の運搬及び重機の稼動に伴う複合的な影響は、「1)工事による影響(資材等の運搬)」及び「2)工事による影響(重機の稼動)」の予測結果の合成により行った。

合成に係る予測地点(以下、合成予測地点)は、重機の稼動に伴う予測地点のうち、工事 用車両が走行する地点とし、表 7.2-17 及び図 7.2-9 に示すとおりである。なお、資材等の運 搬の予測位置は、合成予測地点と異なるが、合成予測地点における資材等の運搬の予測結果 は同程度であると想定した。

表 7.2-17 合成予測地点と合成に適用する予測結果

合成予測地点番号	予測地点	合成に適用する予測結果			
	1. 倒玩"	資材等の運搬の予測結果	重機の稼動の予測結果		
1	蒲町小学校付近	②市立蒲町保育所※	④蒲町小学校付近		

注)※の予測位置は、合成予測地点と異なるが、合成予測地点における資材等の運搬の予測結果は同程度であると想定した。

予測結果の合成については、「1)工事による影響(資材等の運搬)」及び「2)工事による影響(重機の稼動)」の等価騒音レベル(L_{Aeq})を合成することとし、その計算式は以下のとおりとした。

$$L = 10 \log_{10} \left[\begin{array}{cc} \frac{L1}{10} & \frac{L2}{10} \\ 10 & +10 \end{array} \right]$$

ここで、L : 合成騒音レベル(dB)

L1: 資材等の運搬による道路交通騒音レベル(dB)

L2: 重機の稼動による建設作業騒音レベル(dB)

合成予測結果(等価騒音レベル)は表 7.2-18 に示すとおりである。

道路交通騒音と建設作業騒音とを合成すると 69dB と予測され、建設作業騒音が支配的となっている。

表 7.2-18 予測結果(等価騒音レベル)

(単位:dB(A))

			(1 1-2-	. ub (11))		
合成予測	時間	騒音レベル予測結果				
地点番号	時間区分	道路交通騒音 VL1	建設作業騒音 VL2	合成値		
1	昼間	64	67	69		

注)時間区分は、昼間:6時~22時

建設作業騒音は、敷地境界で最も大きいと予測される 盛土、路床安定処理の予測結果とした。

盤工、路外女足処理の「側厢木とした。

4)供用による影響(資材・製品・人等の運搬・輸送)

(1)予測内容

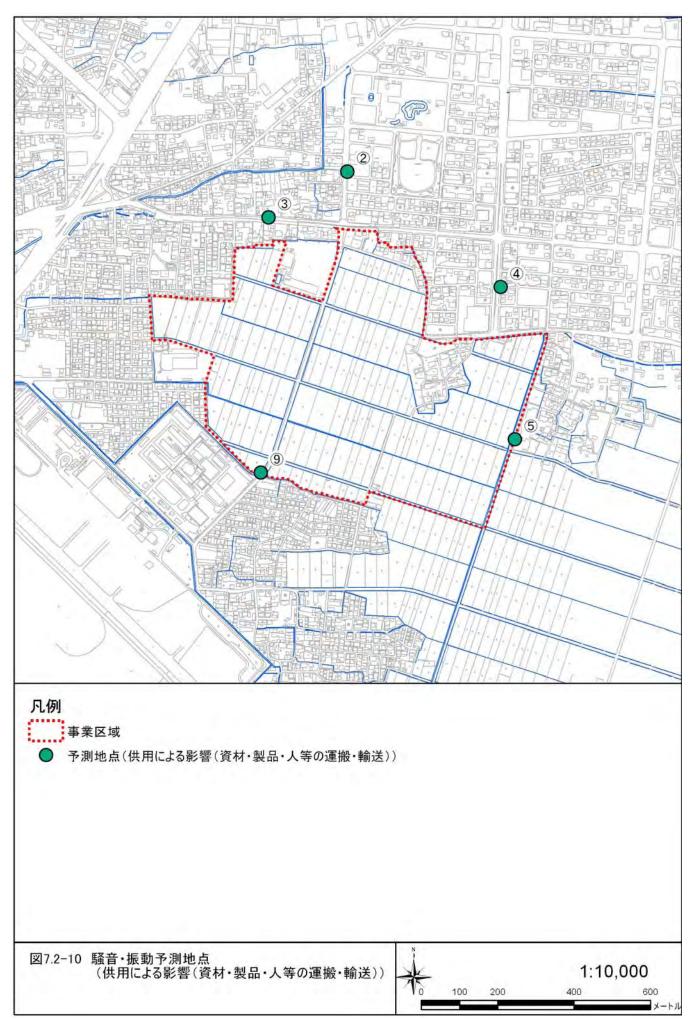
供用後の関連車両の走行に伴う道路交通騒音レベルとした。

(2)予測地域及び予測地点

予測地域は、関連車両の走行に伴い騒音レベルの変化が想定される地域とし、表 7.2-19 に 示す事業区域近傍の 5 路線とした。

予測地点は、事業区域周辺において、住居地域、学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.2-19 及び図 7.2-10 に示す地点(道路交通騒音現地調査地点と同じ地点)とした。

表 7.2-19 予測地域及び予測地点(供用による影響(資材・製品・人等の運搬・輸送))


地点番号	予測地域(対象道路)	予測地点	車線数	環境 基準 類型	保全対象
2	市道七郷伊在改良8号線	市立蒲町保育所	2	В	公共施設、住居
3	県道 235 号荒井荒町線	県道 235 号荒井荒町線	2	В	住居、医療施設
4	県道 137 号荒浜原町線	県道 137 号荒浜原町線	4	В	住居、医療施設
5	市道宮浦線	リハビリパーク仙台東及び くつろぎ保養館仙台東	2	_	福祉施設
9	市道蒲の町南梅ノ木線	市道蒲の町南梅ノ木線	2	_	住居

注) 地点番号は、道路交通騒音の調査地点番号と同じとした。

(3)予測時期

予測時期は、供用後の事業活動が概ね定常状態に達する時期として、工事完了後1年(平成29年度)とした。

⑤、⑨は環境基準の類型が指定されていない。

(4)予測方法

①予測手順

予測手順は、図 7.2-11 に示すとおりである。

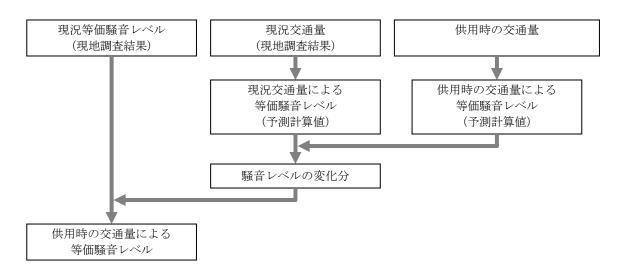


図 7.2-11 予測手順(供用による影響(資材・製品・人等の運搬・輸送))

②予測式

予測式は、「1) 工事による影響(資材等の運搬)」と同じとした。

(5) 予測条件

①交通量

予測対象時点における供用時の日交通量、供用時の時間別交通量は、「7.1 大気質 7.1.2 予測 5)供用による影響(資材・製品・人等の運搬・輸送)」と同じとした。

②走行速度

走行速度は、「7.1 大気質 7.1.2 予測 5) 供用による影響(資材・製品・人等の運搬・ 輸送)」と同じとした。

③道路条件

道路条件は、「7.1 大気質 7.1.2 予測 5)供用による影響(資材・製品・人等の運搬・輸送)」と同じとした。なお、音源位置は、道路上下車線の中央部に設定し、予測位置は、現地調査を行った側の道路境界とし、その高さは地上 1.2m とした。

(6)予測結果

予測結果(等価騒音レベル)は表 7.2-20 に示すとおりである。

供用時の交通量による騒音レベルは、昼間が $53\sim66$ dB(A)、夜間が $43\sim58$ dB(A)であり、現況と同程度または現況より小さくなると予測される。また、環境基準と比較すると、いずれの地点も環境基準値を下回ると予測される。

表 7.2-20 予測結果(等価騒音レベル)

(単位:dB)

				騒音レベル予測結果			
地点	予測地域(対象道路)	 予測地点	時間	現況	将来	増加分	環境
番号	1例地域(对象趋距)	1 换地流	区分	交通量	交通量	(3)	基準
				(1)	(2)	(2)-(1)	
(2)	市道七郷伊在改良8号線	 市立蒲町保育所	昼間	63	56	-7	65
	市造品郊际住民民工	17 立備門 休月//	夜間	55	47	-8	60
(3)	県道 235 号荒井荒町線	県道 235 号荒井荒町線	昼間	69	66	-3	70
3)	采垣 200 万加开加·河豚	· 州道 200 万加开加时脉	夜間	62	58	-4	65
(4)	県道 137 号荒浜原町線	 県道 137 号荒浜原町線	昼間	59	60	1	70
4)	が足 131 ケル供が門 M	<u> </u>	夜間	49	50	1	65
(5)	市道宮浦線	リハビリパーク仙台東及び	昼間	60	53	-7	65
(3)	印度音册脉	くつろぎ保養館仙台東	夜間	50	43	-7	60
(9)	市道蒲の町南梅ノ木線	市道蒲の町南梅ノ木線	昼間	63	63	0	65
9)	川垣佣ツク岬」用情ノ小隊	117月(用マンド) 円/博ノ/下豚	夜間	52	53	1	60

注) 時間区分は、昼間:6時~22時 夜間:22時~6時

7.2.3 環境の保全及び創造のための措置

1) 工事による影響(資材等の運搬)

工事用車両の走行に伴う騒音の影響を予測した結果、環境基準値を下回ると予測された。 また、本事業の実施にあたっては、工事用車両の走行に伴う騒音への影響に対して、さら に、以下の環境保全措置を講ずることとする。

表 7.2-21 工事による影響(資材等の運搬)に対する環境保全措置

保全措置の種類	低減	低減	低減	低減
	一時期に工事用車両	工事用車両の点検整	工事用車両の適正運	過積載を禁止する。
	が集中しないよう、工	備を励行する。	転 (過度のアイドリン	
実施内容	事工程の平準化を図		グや空ぶかしの禁止	
天旭八谷	るとともに、効率的な		等) を運転手へ徹底す	
	車両の運行管理を行		る。	
	う。			
実施期間	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中
お用なが亦か	騒音の発生の低減が	騒音の発生の低減が	騒音の発生の低減が	騒音の発生の低減が
効果及び変化	見込まれる。	見込まれる。	見込まれる。	見込まれる。
可以行行力。是公銀吃	NO2、SPM、振動の影	NO2、SPM、振動の影	NO2、SPM、振動の影	NO2、SPM、振動の影
副次的な影響等	響が緩和される。	響が緩和される。	響が緩和される。	響が緩和される。

2) 工事による影響(重機の稼動)

重機の稼動に伴う騒音の影響を予測した結果、規制基準値を下回ると予測された。なお、 重機が稼動する工事区域端には、5.0mの遮音壁(仮囲い)を設置する。

また、本事業の実施にあたっては、重機の稼動に伴う騒音への影響に対して、さらに、以下の環境保全措置を講ずることとする。

保全措置の種類 低減 低減 低減 低減 低減 効率的な運用に 一時期に重機が 重機の点検整備 重機の適正運転 低騒音型の重機 集中しないよう、 より使用台数・時 を励行する。 (過度のアイド 等の採用に努め 実施内容 工事工程の平準 間の削減を図る。 リングや空ぶか る。 しの禁止等)を運 化を図る。 転手へ徹底する。 工事実施期間中 実施期間 工事実施期間中 工事実施期間中 工事実施期間中 工事実施期間中 騒音の発生の低 騒音の発生の低 騒音の発生の低 騒音の発生の低 騒音の発生の低 効果及び変化 減が見込まれる。 減が見込まれる。 減が見込まれる。 減が見込まれる。 減が見込まれる。 NO2、SPM、振 NO₂、SPM、振 NO₂、SPM、振 NO2、SPM、振 NO₂、SPM、振 副次的な影響等 動の影響が緩和 動の影響が緩和 動の影響が緩和 動の影響が緩和 動の影響が緩和 される。 される。 される。 される。 される。

表 7.2-22 工事による影響(重機の稼動)に対する環境保全措置

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

資材等の運搬及び重機の稼動に伴う騒音の複合的な影響を予測した結果、蒲町小学校付近で 69dB となり、建設作業騒音が支配的となると予測された。

本事業の実施にあたっては、工事に伴う騒音への影響に対して、上記、1)、2)に示した環境保全措置を講ずるとともに、工事時期の調整を図り、特に配慮が必要な蒲町小学校付近の工事は、学校の夏季休暇等に実施する。

4)供用による影響(資材・製品・人等の運搬・輸送)

供用後の関連車両の走行に伴う騒音の影響を予測した結果、環境基準値及び仙台市環境基本計画の目標値を下回ると予測された。

また、本事業の実施にあたっては、関連車両の走行に伴う騒音への影響に対して、さらに、以下の環境保全措置を講ずることとする。

表 7.2-23 供用による影響(資材・製品・人等の運搬・輸送)対する環境保全措置

保全措置の種類	低減
	事業区域内に進出する事業所に対して、以下の環境保全措置を要請することとする。
実施内容	・通勤車両の相乗りや送迎バスの運行、公共交通機関の利用等により、車両台数の抑制を図る。 ・車両の適正運転(過度のアイドリングや空ぶかしの禁止等)を要請する。
実施期間	供用後(保留地販売時等)
効果及び変化	騒音、振動の発生の低減が見込まれる。
副次的な影響等	NO ₂ 、SPM の影響が緩和される。

7.2.4 評 価

1) 工事による影響(資材等の運搬)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、工事用車両の走行に伴う騒音の影響が、工事手法、保全対策等により、 実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、工事工程の平準化、効率的な車両の運行管理、工事用車両の点検整備、適正運転の徹底、過積載の禁止等、騒音の抑制が図られることから、工事用車両の走行に伴う騒音の影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

騒音の予測結果(等価騒音レベル)について、以下の基準等と整合が図られているかを判断する。

・騒音に係る環境基準について (平成 10年9月30日 環境庁告示第64号)

②評価結果

騒音の予測結果(等価騒音レベル)は環境基準値を下回っていることから、工事用車両の 走行に伴う騒音の影響については、基準や目標との整合が図られているものと評価する。

2)工事による影響(重機の稼動)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、重機の稼動に伴う騒音の影響が、工事手法、保全対策等により、実行 可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、工事工程の平準化、効率的な重機の運用、重機の点検整備、適正運転の徹底、低騒音型の重機の採用等、騒音の抑制が図られることから、重機の稼動に伴う騒音の影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

騒音の予測結果(90%レンジ上端値)について、以下の基準等と整合が図られているかを 判断する。

- ・特定建設作業に伴って発生する騒音の規制に関する基準(昭和 43 年 11 月 27 日 厚生 省・建設省告示第1号)
- ・仙台市公害防止条例(平成8年3月19日 仙台市条例第5号)に基づく、指定建設作業に伴う騒音の規制基準

②評価結果

騒音の予測結果 (90%レンジ上端値) は規制基準値を下回っていることから、重機の稼動 に伴う騒音の影響については、基準や目標との整合が図られているものと評価する。

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、資材等の運搬及び重機の稼動に伴う騒音の複合的な影響が、工事手法、 保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、資材等の運搬に関しては、工事工程の平準化、効率的な車両の運行管理、工事用車両の点検整備、適正運転の徹底、過積載の禁止等、また、重機の稼動に関しては、工事工程の平準化、効率的な重機の運用、重機の点検整備、適正運転の徹底、低騒音型の重機等の採用、工事時期の調整等、騒音の抑制が図られることから、工事用車両の走行及び重機の稼動に伴う騒音の複合的な影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

以下の事項を目標として、整合が図られているかを判断する。

・「特に配慮が必要な蒲町小学校付近の工事騒音の発生を抑えること」

②評価結果

環境保全措置として、特に配慮が必要な蒲町小学校付近の工事は、学校の夏季休暇に実施する等、工事時期の調整を図ることにより、騒音の抑制が図られることから、資材等の運搬及び重機の稼動に伴う騒音の複合的な影響については、基準や目標との整合が図られているものと評価する。

4)供用による影響(資材・製品・人等の運搬・輸送)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、関連車両の走行に伴う騒音の影響が、保全対策等により、実行可能な 範囲で回避・低減が図られているか否かを判断する。

②評価結果

本事業の実施にあたっては、事業区域内に進出する事業所に対して、通勤車両の相乗りや 送迎バスの運行、公共交通機関の利用、車両の適正運転等を要請することにより、騒音の抑 制が図られることから、関連車両の走行に伴う騒音の影響は、実行可能な範囲で回避・低減 が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

騒音の予測結果(等価騒音レベル)について、以下の基準等と整合が図られているかを判断する。

・騒音に係る環境基準について(平成10年9月30日 環境庁告示第64号)

②評価結果

騒音の予測結果(等価騒音レベル)は環境基準値を下回っていることから、関連車両の走行に伴う騒音の影響については、基準や目標との整合が図られているものと評価する。

7.3.1 調 査

1)調査項目

調査項目は表 7.3-1 に示すとおり、振動及び交通量とした。

表 7.3-1 調査項目

調査項目					
	一般環境振動				
振 動	道路交通振動				
	道路交通振動、地盤卓越振動数				
交诵量	断面交通量				
文	交差点交通量				

2)調査地域及び調査地点

調査地域は、事業の実施に伴い、振動に係る環境影響を受けるおそれがあると認められる 地域とし、事業区域界より 200m の範囲とした。

振動の調査地点は、騒音調査地点と同様とし、住居地域や学校等、特に配慮が必要な施設及び土地利用等を考慮し、表 7.3-2 及び図 7.2-1 (「7.2 騒音」の項参照) に示す 6 地点 (一般環境振動 1 地点、道路交通振動 5 地点) とした。

また、交通量の調査地点は8地点(断面交通量5地点、交差点交通量3地点)とした。

表 7.3-2 調査地点

調査	調査地点	調査地点	道路	車線		の状況 :地域)	要請限 度区域	選定理由等
項目	番号		構造	数	上り車線側	下り車線側	区分	
一般 環境 振動	1	市立蒲町小学校	平面	2	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)	_	地区に隣接する保全施設(小学校)を対象とする地点として設定する。
	2	市立蒲町保育所	平面	2	第一種住 居地域	第二種住 居地域	第一種	工事用車両、供用後関連車両の走行ルートに存在する 保全施設(保育所)を対象とする地点として設定する。
道路交通	3	県道 235 号荒井荒町線	平面	2	第一種住 居地域	第一種住 居地域	第一種	工事用車両、供用後関連車両の走行ルートにある保全 施設(住宅・医療施設)を対象とする地点として設定する。
振動	4	県道 137 号荒浜原町線	平面	4	第二種住 居地域	第二種住 居地域	第一種	工事用車両、供用後関連車両の走行ルートにある保全施設(住宅・医療施設)を対象とする地点として設定する。
断面 交通 量	5	リハビリパーク仙台東及 びくつろぎ保養館仙台 東	平面	2	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)	第一種	供用後関連車両の走行ルートにある保全施設(福祉施設)を対象とする地点として設定する。
里	9	市道蒲の町南梅ノ木線	平面	2	無指定 (市街化調 整区域)	無指定 (市街化調 整区域)	第一種	供用後関連車両の走行ルートにある保全施設(住宅)を 対象とする地点として設定する。
	6	県道235号荒井荒町線・ 市道蒲の町南梅ノ木線	平面	2	第一種住 居地域	第二種住 居地域		工事用車両、供用後関連車両の走行ルートにあり、特に 交通の増加が想定される交差点として設定する。
交差 点交	7	県道 235 号荒井荒町線・ 県道 137 号荒浜原町線	平面	2 [~] 4	第二種住 居地域	第二種住 居地域	_	工事用車両、供用後関連車両の走行ルートにあり、特に 交通の増加が想定される交差点として設定する。
通量	10	県道 137 号荒浜原町線	平面	2	無指定 (市街化調 整区域)	第二種住 居地域	_	供用後関連車両の走行ルートにあり、特に交通の増加が 想定される交差点として設定する。

注) ⑤の断面交通量は、⑩の調査結果と兼ねる

3)調査方法

(1)振動

一般環境振動、道路交通振動及び地盤卓越振動数に係る調査方法は、表 7.3-3 に示すとおりである。

表 7.3-3 振動に係る現地調査方法

計	周査項目	調査方法	調査方法の概要
	一般環境振動	「振動規制法施行規則」(昭 和 51 年、総理府令第 58 号) に定める測定方法。	ピックアップは、振動計の近傍で平坦な堅い地面に設置し、特定の振動発生源による影響を受けない場所とした。振動感覚補正回路は鉛直振動特性、振動レベルは、10分間隔の24時間連続測定とし、振動計の演算回路により、時間率振動レベル(L10)について求めた。観測時間(1時間)及び基準時間帯の平均値は、時間率振動レベルの算術平均により求めた。
振動	道路交通振動	「振動規制法施行規則」(昭 和 51 年、総理府令第 58 号) に定める測定方法。	ピックアップは、振動計の近傍で平坦な堅い地面に設置し、道路敷地境界上とした。振動感覚補正回路は鉛直振動特性、振動レベルは、10分間隔の24時間連続測定とし、振動計の演算回路により、時間率振動レベル(L10)について求めた。観測時間(1時間)及び基準時間帯の平均値は、時間率振動レベルの算術平均により求めた。
	地盤卓越振動数	「道路環境影響評価の技術 手法(2007 改訂版)」(平成 19年9月、(財)道路環境研究 所)に示されている方法。	大型車走行時(10 台分)の振動加速度レベルを対象に、1/3 オクターブバンド実時間分析器を用いた周波数分析を行い、最大値を示す周波数バンドの平均値を当該箇所の地盤卓越振動数とした。

(2)交通量

交通量に係る調査方法は、表 7.3-4 に示すとおりである。

表 7.3-4 交通量に係る現地調査方法

調査項目		調査方法
交通量	断面交通量	ハンドカウンターを用いて、時間帯別・車種別・方向別の自動車台数を計測した。 また、ストップウォッチを用いて、目視により車両が通過する時間を計測し、走行速度を算出した。
	交差点交通量	ハンドカウンターを用いて、時間帯別・車種別・方向別の自動車台 数を計測した。

4)調査期日

調査期日は、表 7.3-5 に示すとおりであり、一般環境振動、道路交通振動ともに、休日及 び平日の各 24 時間連続測定とした。

表 7.3-5 調査期日

	調査項目	調査期日						
振動	一般環境振動	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00					
	一叔琛児派到	平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00					
1灰到	道路交通振動	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00					
	地盤卓越振動数	平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00					
	断面交通量	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00					
交通量	例則父思里	平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00					
父迪里	交差点交通量	休日	平成 23 年 10 月 23 日 (日) 6:00~10 月 24 日 (月) 6:00					
		平日	平成 23 年 10 月 26 日 (水) 6:00~10 月 27 日 (木) 6:00					

5)調査結果

振動の調査結果は表 7.3-6 及び図 7.3-1 に示すとおりである。また、道路交通振動調査地 点における地盤卓越振動数の調査結果は表 7.3-7 に示すとおりである。

(1)一般環境振動

〇地点①「市立蒲町小学校」

振動レベルの 80%レンジ上端値(L_{10})の昼間・夜間の時間帯の最大値は、休日は昼間が 27.6dB (16 時)、夜間が 18.7dB (19 時)、平日は昼間が 28.8dB (14 時)、夜間が 24.5dB (7 時) であった。

(2)道路交通振動

〇地点②「市立蒲町保育所」

振動レベルの 80%レンジ上端値(L_{10})の昼間・夜間の時間帯の最大値は、休日は昼間が 36.7dB (11 時)、夜間が 32.6dB (19 時)、平日は昼間が 38.9dB (8 時)、夜間が 38.6dB (7 時) となっており、いずれも要請限度を満足している。

〇地点③「県道 235 号荒井荒町線」

振動レベルの 80%レンジ上端値(L_{10})の昼間・夜間の時間帯の最大値は、休日は昼間が 34.2dB (12 時)、夜間が 32.2dB (19 時)、平日は昼間が 42.6dB (14 時)、夜間が 35.3dB (7 時) となっており、いずれも要請限度を満足している。

〇地点④「県道 137 号荒浜原町線」

振動レベルの 80%レンジ上端値(L_{10})の昼間・夜間の時間帯の最大値は、休日は昼間が 30.8dB (16 時)、夜間が 29.4dB (19 時)、平日は昼間が 35.9dB (11 時)、夜間が 31.7dB (7 時) となっており、いずれも要請限度を満足している。

〇地点⑤「リハビリパーク仙台東及びくつろぎ保養館仙台東」

振動レベルの 80%レンジ上端値(L_{10})の昼間・夜間の時間帯の最大値は、休日は昼間が 36.1dB (15 時)、夜間が 27.5dB (19 時)、平日は昼間が 39.2dB (8 時)、夜間が 39.6dB (7 時) となっており、いずれも要請限度を満足している。

〇地点9「市道蒲の町南梅ノ木線」

振動レベルの 80%レンジ上端値(L_{10})の昼間・夜間の時間帯の最大値は、休日は昼間が 37.2dB (16 時)、夜間が 30.6dB (19 時)、平日は昼間が 40.5dB (18 時)、夜間が 41.6dB (7 時) となっており、いずれも要請限度を満足している。

(3)地盤卓越振動数

地盤卓越振動数 (最大値を示す中心周波数の平均値) は、10.5~23.1Hz であった。

(4)交通量

交通量の現地調査結果は、「7.1 大気質 7.1.1 調査 5) 調査結果」に示したとおりである。

表 7.3-6(1) 振動レベル調査結果(振動レベルの 80%レンジ上端値)

単位: dB

時間	観測時間		地点	(D)			地点	52			地点		<u>1⊻ u</u> D
帯	既侧吋间	平	日	休	日	平	日	休	日	平	日	休	:日
夜間	6:00~7:00	21.7	15.7	18.4	14.3	31.8	27.2	28.8	24.6	31.7		27.0	246
間	7:00~8:00	24.5	10.7	16.1	14.5	38.6	21.2	30.3	24.0	35.3		31.0	24.6
	8:00~9:00	27.5		21.9		38.9		34.0		39.3		32.4	
	9:00~10:00	27.6		24.9		37.6		33.7		40.2		32.7	
	10:00~11:00	24.0		24.0		37.3		34.7		38.5		33.3	
	11:00~12:00	25.8		22.5		37.2		36.7		41.9		34.0	
	12:00~13:00	22.7		27.2		35.6		34.9	34.8	34.9		34.2	
昼間	13:00~14:00	28.4	26.7	18.7	23.2	36.1	37.0	33.8		41.2	39.0	33.9	33.4
17.3	$14:00\sim15:00$	28.8	-	24.3		37.0		34.8		42.6	-	33.5	
	15:00~16:00	28.3		22.2		36.5		35.0		41.7		33.7	
	16:00~17:00	28.6		27.6		37.3		36.2		40.2		34.1	
	17:00~18:00	25.0		24.4		37.0		35.2		34.9		33.4	
	18:00~19:00	26.7		18.1		37.0		33.9		33.8		32.7	
	19:00~20:00	18.8		18.7		34.9		32.6		33.0	-	32.2	
	20:00~21:00	20.5		15.9		33.5		30.1		32.2		31.6	
	21:00~22:00	13.4		14.6		31.8		28.9		31.5		30.2	
	22:00~23:00	14.9		15.2		27.4		25.4		29.3		28.8	
-d-	23:00~0:00	11.4		11.7		26.8		20.7		27.6		24.5	
夜間	0:00~1:00	12.9	15.7	12.2	14.3	23.5	27.2	20.2	24.6	24.2	25.8	20.7	24.6
100	1:00~2:00	12.2		13.6		18.7		20.9		18.2		20.1	
	2:00~3:00	14.7		11.6		21.3		17.3		17.1		15.7	
	3:00~4:00	12.9		14.3		17.9		21.4		14.7		16.7	
	4:00~5:00	11.3		11.5		21.0		21.5		17.7		15.6	
	5:00~6:00	15.0		12.5		26.7		22.4		23.5		25.4	

注1)調査結果は、1時間値及び昼間・夜間の時間帯の平均値を表す。

表 7.3-6(2) 振動レベル調査結果(振動レベルの 80%レンジ上端値)

単位:dB

時間	5月 3月 (日土) 月月		地点	<u>54</u>			地点	点⑤			地点	<u>†</u>	<u>ди. ub</u>
帯	観測時間	平	日	休	目	平	H	休	日	平	目	休	: 日
夜	6:00~7:00	27.5	22.9	25.0	21.4	26.3	20.3	22.0		35.3	24.6	24.1	
間	7:00~8:00	31.7	22.9	26.2	21.4	39.6	20.5	24.2		41.6	24.0	27.3	
	8:00~9:00	32.8		28.4		39.2		26.4		38.3		31.1	
	9:00~10:00	34.5		29.5		35.9		29.5		37.8		35.2	
	10:00~11:00	35.7		29.4		36.1		33.9		37.7		34.7	
	11:00~12:00	35.9		30.6		36.9		34.8		37.0		33.8	
	12:00~13:00	32.0		30.1		33.3	36.2	34.6		33.5		34.3	
昼間	13:00~14:00	34.9	33.8	30.7	29.9	35.4		33.7	32.9	35.5	37.5	34.3	34.6
IHJ	14:00~15:00	34.5		30.2		33.9		34.6		36.2		34.7	
	15:00~16:00	33.6		30.5		36.5		36.1		37.0		35.7	
	16:00~17:00	33.3	<u>.</u>	30.8		36.9		35.8		38.2		37.2	
	17:00~18:00	32.4		30.5		37.6		33.6		40.2		36.6	
	18:00~19:00	31.9		28.7		36.5		28.6		40.5		32.7	
	19:00~20:00	31.2		29.4		31.9		27.5		37.3		30.6	
	20:00~21:00	27.5		25.8		24.3		21.5		30.7		24.1	
	21:00~22:00	26.8		23.5		19.2		14.3		26.3		24.0	
	22:00~23:00	22.5		21.3		17.0		14.9		20.8		22.3	
	23:00~0:00	20.0		17.3		14.0		13.0		21.5		16.2	
夜間	0:00~1:00	20.6	22.9	18.0	21.4	14.7	20.3	10.7	16.4	15.7	24.6	12.8	20.3
11.3	1:00~2:00	18.2		20.1		14.0		13.0		23.8		15.4	
	2:00~3:00	17.1		16.7		13.3		11.6		14.6		14.3	
	3:00~4:00	15.2		17.9		14.0		13.1		13.2		15.1	
	4:00~5:00	17.5		16.8		14.6		11.3		14.2	1	14.4	
	5:00~6:00	21.7		20.2		21.5		16.6		25.2		23.0	

注 1) 調査結果は、1 時間値及び昼間・夜間の時間帯の平均値を表す。

注 2) 着色は、昼間・夜間の時間帯の最大値を表す。

注3) 各調査地点の要請限度に係る区域の区分は、全地点とも第一種区域である。

注 2) 着色は、昼間・夜間の時間帯の最大値を表す。

注3) 各調査地点の要請限度に係る区域の区分は、全地点とも第一種区域である。

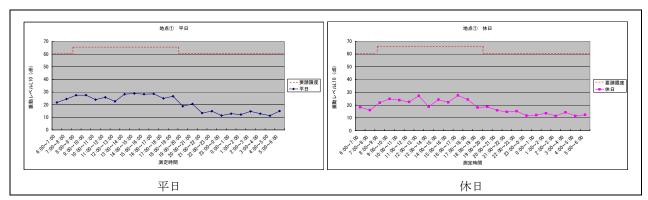


図 7.3-1(1) 80%レンジ上端値振動レベル時間変動図(①:市立蒲町小学校)

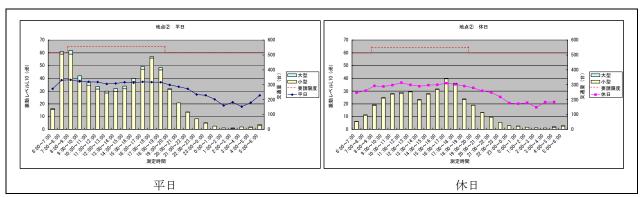


図 7.3-1(2) 80%レンジ上端値振動レベル時間変動図(②:市立蒲町保育所)

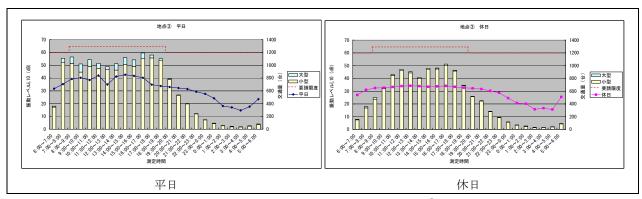


図 7.3-1(3) 80%レンジ上端値振動レベル時間変動図(③: 県道 235 号荒井荒町線)

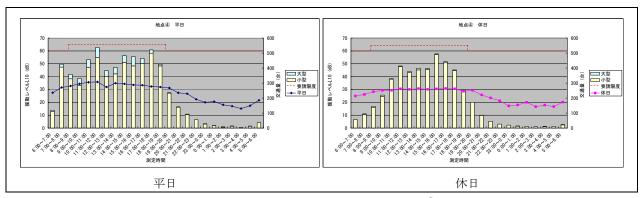


図 7.3-1(4) 80%レンジ上端値振動レベル時間変動図(④: 県道 137 号荒浜原町線)

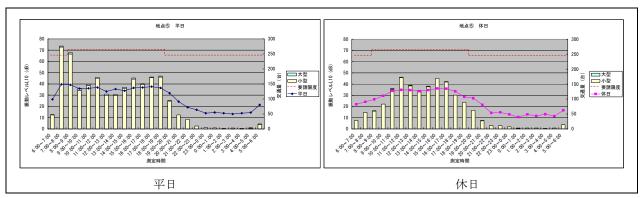


図 7.3-1(5) 80%レンジ上端値振動レベル時間変動図

(⑤:リハビリパーク仙台東及びくつろぎ保養館仙台東)

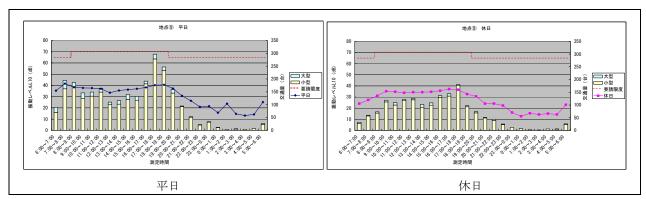


図 7.3-1(6) 80%レンジ上端値振動レベル時間変動図(⑨: 市道蒲の町南梅ノ木線)

表 7.3-7 地盤卓越振動数調査結果

		地盤卓越振動数(Hz)			
番号	調査地点名	最大値が最も多い 中心周波数	最大値を示す 中心周波数の平均値		
2	市立蒲町保育所(市道七郷伊在改良8号線)	16	14.6		
3	県道 235 号荒井荒町線	16	17.6		
4	県道 137 号荒浜原町線	16	16.8		
(5)	リハビリパーク仙台東及びくつろぎ保養館仙台東(市道宮浦線)	16	23.1		
9	(地区内道路)市道蒲の町南梅ノ木線	10	10.5		

[※]計量法第71条の条件に合格した「振動レベル計」を使用して大型車の単独走行10台の振動加速度レベルを、測定器に備わっている演算機能を利用して周波数分析を行った。

7.3.2 予 測

1) 工事による影響(資材等の運搬)

(1)予測内容

工事用車両の走行に伴う道路交通振動レベルとした。 振動レベルは、「振動規制法施行規則」に定める 80%レンジの上端値(L_{10})とした。

(2)予測地域及び予測地点

予測地域及び予測地点は、工事用車両の走行に伴い振動レベルの変化が想定される地域・ 地点とし、「7.2 騒音 7.2.2 予測 1)工事による影響(資材等の運搬)」と同じとした。

(3)予測時期

予測時期は、工事用車両の走行に伴う振動レベルが最大となる時期として、「7.2 騒音7.2.2 予測 1) 工事による影響(資材等の運搬)」と同じとした。

(4)予測方法

①予測手順

予測手順は、図 7.3-2 に示すとおりである。

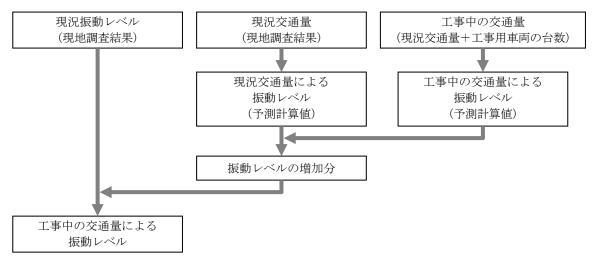


図 7.3-2 予測手順(工事による影響(資材等の運搬))

②予測式

予測式は、「道路環境影響評価の技術手法 2007 改訂版」((財)道路環境研究所、平成 19 年 9 月) に基づく振動の伝搬理論式を用いて行った。

表 7.3-8 振動の予測式(工事による影響(資材等の運搬))

区 分	予 測 式
予測基本式	$L_{10}=L_{10^*}+ extstyle L$
丁例至平八	$\triangle L = a \log_{10}(\log_{10} Q') - a \log_{10}(\log_{10} Q)$
	L_{10} : 振動レベルの 80% レンジの上端値の予測値 $[\mathrm{dB}]$
	$L_{ m l0*}$: 現況の振動レベルの 80% レンジの上端値 $[{ m dB}]$
	$ riangle L:$ 工事用車両による振動レベルの増分 $[\mathrm{dB}]$
	Q':工事用車両の上乗せ時の 500 秒間の 1 車線当りの等価交通量 [台/500 秒/車線]
	$Q' = \frac{500}{3,600} \times \frac{1}{M} \times (Q_1 + Q_1' + K(Q_2 + Q_2'))$
記号説明	Q1 : 現況の小型車類時間交通量 [台/時]
	Q2 : 現況の大型車類時間交通量 [台/時]
	Qı' : 小型車の工事用車両時間交通量 [台/時]
	\mathbf{Q}_{2} ・: 大型車の工事用車両時間交通量 $[$ 台/時 $]$
	K : 大型車の小型車への換算係数 (K=13)
	M : 上下車線合計の車線数
	Q :現況の 500 秒間の 1 車線当りの等価交通量 [台/500 秒/車線]
	a : 定数(ここでは平坦道路に適用される a =47 とした)

出典:「道路環境影響評価の技術手法 2007 改訂版」((財)道路環境研究所、平成 19 年 9 月)

(5)予測条件

①交通量

予測対象時点における工事用車両の台数、工事中の基礎交通量、工事中の交通量は、「7.1 大気質 7.1.2 予測 1) 工事による影響(資材等の運搬)」と同じとした。

②走行速度

走行速度は、「7.1 大気質 7.1.2 予測 1) 工事による影響(資材等の運搬)」と同じとした。

③道路条件

道路条件は、「7.1 大気質 7.1.2 予測 1) 工事による影響(資材等の運搬)」と同じとした。なお、予測位置は、現地調査を行った側の道路境界とし、その高さは、地表面とした。

4)予測時間帯

工事時間帯が 9 時~18 時であることから、予測の時間帯は「振動規制法」に基づく振動の規制基準における昼間の時間帯 (8 時~19 時)とした。

(6)予測結果

予測結果 (80%レンジの上端値) は表 7.3-9 に示すとおりである。

工事中の交通量による振動レベルは、 $39dB\sim43dB$ であり、現況と同程度であると予測される。また、要請限度と比較すると、いずれの地点も要請限度値を下回ると予測される。

表 7.3-9 予測結果

(単位:dB)

				振動	l結果			
地点	予測地域 (対象道路)	予測地点	時間	現況	工事中の	増加分	要請	
番号	1 网络《八家庭园》	1 1845-1977	区分	交通量	交通量	(3)	限度	
				(1)	(2)	(2)-(1)		
2	市道七郷伊在改良8号線	市立蒲町保育所	昼間	39	39	0	65	
2	11/2 1/20 1/20 1/20 1/20 1/20 1/20 1/20	11. 立備門 12. 月77	$(8:00\sim9:00)$	39	39	O	0.0	
(3)	県道 235 号荒井荒町線	県道 235 号荒井荒町線	昼間	43	43	0	65	
0)	衆垣 233 万加开加町隊	来坦 200 万加开加*1/M	$(14:00\sim15:00)$	40	40	U	00	
4	 県道 137 号荒浜原町線	県道 137 号荒浜原町線	昼間	36	36	0	65	
4)			(11:00~12:00)	50	50	U	00	

注)時間区分は、昼間:8時~19時

2) 工事による影響(重機の稼動)

(1) 予測内容

重機の稼動に伴う建設作業振動レベルとした。

振動レベルは、「振動規制法施行規則による特定建設作業の規制に関する基準」に定める 80%レンジの上端値((L_{10}) とした。

(2)予測地域及び予測地点

予測地域及び予測地点は、重機の稼動に伴い振動の変化が想定される地域・地点とし、「7.2 騒音 7.2.2 予測 2) 工事による影響(重機の稼動)」と同じとした。

(3)予測時期

予測時期は、工事用車両の走行に伴う振動レベルが最大となる時期として、「7.2 騒音7.2.2 予測 2) 工事による影響(重機の稼動)」と同じとした。

(4)予測方法

①予測手順

予測手順は、図 7.3-3 に示すとおりである。

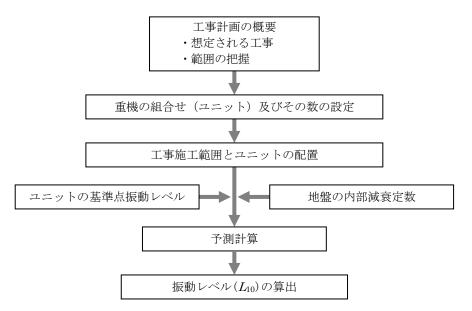


図 7.3-3 予測手順(工事による影響(重機の稼動))

②予測式

予測式は、振動の伝搬理論式を用いた。

表 7.3-10 予測式(工事による影響(重機の稼動))

区 分	予 測 式
振動レベル	$L_r = L_{r_0} - 15\log_{10}\frac{r}{r_0} - 8.68\alpha(L_r - L_{r_0})$
	L_{r} : 予測地点における振動レベル $[\mathrm{dB}]$
	L_{r0} : 基準点における振動レベル $[\mathrm{dB}]$
記号説明	r : 重機又はユニットの稼動位置から予測点までの距離 [m]
	r_0 : 重機又はユニットの稼動位置から基準点までの距離 $[m]$
	α : 內部減衰定数

出典:「道路環境影響評価の技術手法(2007 改訂版)」((財)道路環境研究所、平成19年9月)

(5) 予測条件

①工種別ユニット

工種及びユニットは、「7.2 騒音 7.2.2 予測 2) 工事による影響(重機の稼動)」と同じとした。なお、工事の施工にあたっては、重機が集中しないよう、ユニット同士は近接しないこととし、工種ごとに1ユニットが稼働していることと想定した。

②ユニットごとの振動源データ

1ユニットの振動源データは、表 7.3-11 に示すとおりである。

表 7.3-11 ユニットの基準点振動レベル

		地盤の種類	評価量	内部減衰	基準点	備考
工種	ユニット		記号	係数	振動レベル	
				α	(dB)	
仮設防災工事	掘削	未固結地盤	L_{10}	0.01	53	土砂掘削
	法面整形	固結地盤	L_{10}	0.001	53	掘削部
整地工事	盛土	未固結地盤	L_{10}	0.01	63	路体、路床
	路床安定処理	未固結地盤	L	0.01	66	
下水道工事	管渠	未固結地盤	L_{10}	0.01	53	土砂掘削
道路工事	アスファルト舗装 (上層・下層路盤)	未固結地盤	L_{10}	0.01	59	
	アスファルト舗装 (表層・基層)	未固結地盤	L_{10}	0.01	56	
上水道・ガス工事	管渠	未固結地盤	L_{10}	0.01	53	土砂掘削
公園緑地工事	整形	未固結地盤	L_{10}	0.01	53	掘削部

注)路床安定処理は、定常振動のスタビライザ移動時の最大値

出典:「道路環境影響評価の技術手法(2007改訂版)」((財)道路環境研究所、平成19年9月)

③振動源(ユニット)位置

振動源(ユニット)の位置は、図 7.3-4 に示すとおり、重機の作業半径、必要最小限のスペースを考慮し、事業区域境界より 5m 離れた位置に設定した。

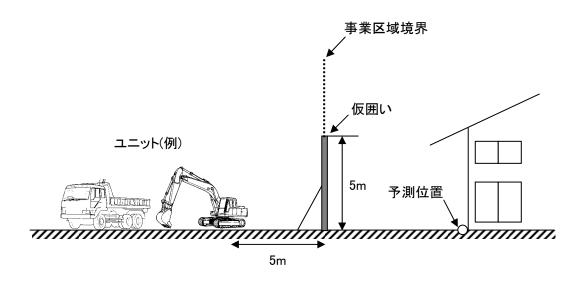


図 7.3-4 振動源(ユニット)及び予測位置

(6)予測結果

予測結果 (80%レンジ上端値) は表 7.3-12 に示すとおりである。

振動レベルの 80%レンジ上端値は、敷地境界において $53\sim66\mathrm{dB}$ であり、規制基準値を下回ると予測される。

		振動	動レベル	予測結果	(dB)	規制基準(dB)		
工種	ユニット	① 敷地	予測 地点	予測 地点	予測 地点	振動規制法 特定建設作業	仙台市公害防止条例 指定建設作業振動	
		境界	2	3	4	に係る基準	に係る基準	
		(5m)	(15m)	(10m)	(19m)			
仮設防災工事	掘削	53	45	48	43			
	法面整形	53	45	48	43			
整地工事	盛土	63	55	58	53			
	路床安定処理	66	58	61	56		75 (70)	
下水道工事	管渠	53	45	48	43			
道路工事	アスファルト舗装 (上層・下層路盤)	59	51	54	49	75	※括弧内は 蒲町小学校から	
	アスファルト舗装 (表層・基層)	56	49	51	47		50m の範囲の基準	
上水道・ガス工事	管渠	53	45	48	43			
八国纽原工事	市ケゴイ	=0		4.0	40			

表 7.3-12 予測結果(L10)

[|] 公園緑地工事 | 整形 | 53 | 45 | 48 | 43 | 注)予測地点の()内の数値は、ユニットからの距離を表す。

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

資材等の運搬及び重機の稼動に伴う複合的な影響は、「1)工事による影響(資材等の運搬)」及び「2)工事による影響(重機の稼動)」の予測結果の合成により行った。

合成に係る予測地点(以下、合成予測地点)は、重機の稼動に伴う予測地点のうち、工事 用車両が走行する地点とし、表 7.3-13 及び図 7.3-5 に示すとおりである。なお、資材等の運 搬の予測位置は、合成予測地点と異なるが、合成予測地点における資材等の運搬の予測結果 は同程度であると想定した。

表 7.3-13 合成予測地点と合成に適用する予測結果

合成予測地点番号	予測地点	合成に適用する予測結果				
口以「例地亦領々	1.倒厄杰	資材等の運搬の予測結果	重機の稼動の予測結果			
1)	蒲町小学校付近	②市立蒲町保育所※	④蒲町小学校付近			

注)※の予測位置は、合成予測地点と異なるが、合成予測地点における資材等の運搬の予測結果は同程度であると想定した。

予測結果の合成については、「1) 工事による影響(資材等の運搬)」及び「2) 工事による影響(重機の稼動)」の 80%レンジ上端値(L_{10})を合成することとし、その計算式は以下のとおりとした。

$$VL=10 \log_{10} \left[\begin{array}{cc} \frac{VL1}{10} & \frac{VL2}{10} \\ 10 & +10 \end{array} \right]$$

ここで、VL : 合成振動レベル(dB)

VL1: 資材等の運搬による道路交通振動レベル(dB)

VL2 : 重機の稼動による建設作業振動レベル(dB)

合成予測結果 (80%レンジ上端値) は表 7.3-14 に示すとおりである。

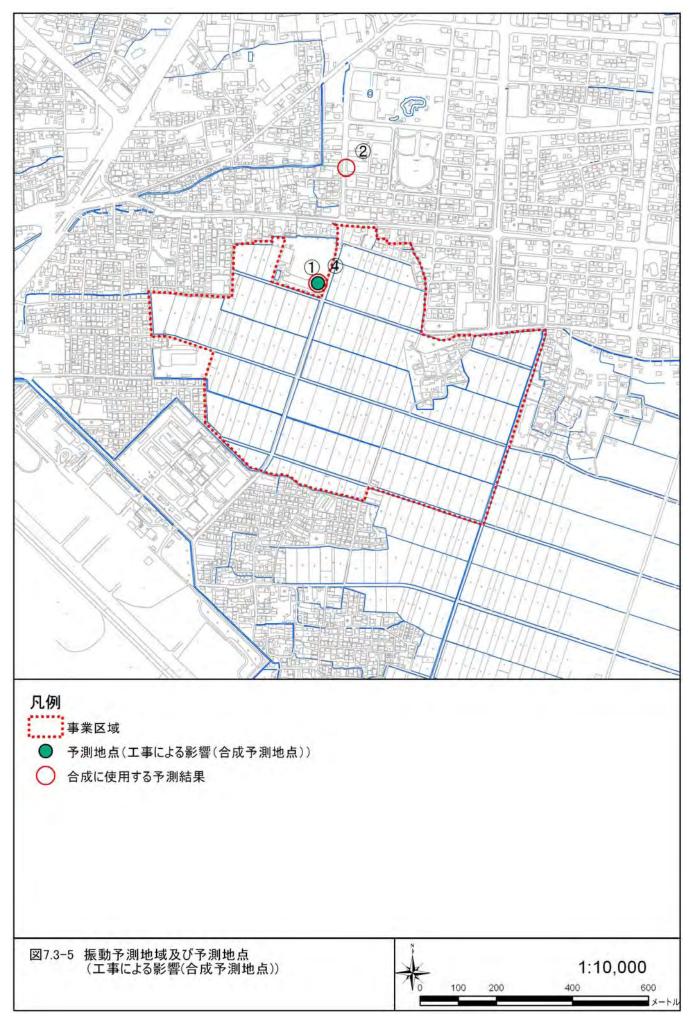

道路交通振動と建設作業振動とを合成すると 66dB と予測され、建設作業振動が支配的となっている。

表 7.3-14 予測結果(80%レンジ上端値)

(単位:dB)

			(—	11/2 · CLD/	
人出之 测	時間	振動し	レベル予測結果		
合成予測 地点番号	区分	道路交通振動	建設作業振動	合成値	
2回が田 ク	四刀	VL1	VL2	口以但	
2	昼間	39	66	66	

注)時間区分は、昼間:8時~19時 建設作業振動は、敷地境界で最も大きいと予測される 路床安定処理の予測結果とした。

4)供用による影響(資材・製品・人等の運搬・輸送)

(1) 予測内容

供用後の関連車両の走行に伴う道路交通振動レベルとした。

(2)予測地域及び予測地点

予測地域及び予測地点は、関連車両の走行に伴い振動レベルの変化が想定される地域・地点とし、「7.2 騒音 7.2.2 予測 4)供用による影響(資材・製品・人等の運搬・輸送)」と同じとした。

(3)予測時期

予測時期は、供用後の事業活動が概ね定常状態に達する時期として、工事完了後1年(平成29年度)とした。

(4)予測方法

①予測手順

予測手順は、図 7.3-6 に示すとおりである。

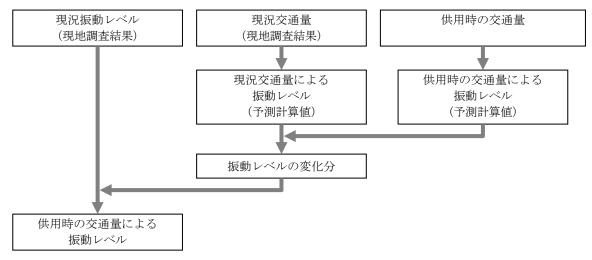


図 7.3-6 予測手順(供用による影響(資材・製品・人等の運搬・輸送))

②予測式

予測式は、「1) 工事による影響(資材等の運搬)」と同じとした。

(5) 予測条件

①交通量

予測対象時点における供用時の日交通量、供用時の時間別交通量は、「7.1 大気質 7.1.2 予測 5)供用による影響(資材・製品・人等の運搬・輸送)」と同じとした。

②走行速度

走行速度は、「7.1 大気質 7.1.2 予測 5) 供用による影響(資材・製品・人等の運搬・ 輸送)」と同じとした。

③道路条件

道路条件は、「7.1 大気質 7.1.2 予測 5)供用による影響(資材・製品・人等の運搬・輸送)」と同じとした。なお、予測位置は、現地調査を行った側の道路境界とし、その高さは地表面とした。

(6)予測結果

予測結果 (80%レンジ上端値) は表 7.3-15 に示すとおりである。

供用時の交通量による振動レベルは、昼間が 30 未満~41dB、夜間が 30 未満~39dB であり、現況と同程度または現況より小さくなると予測される。また、要請限度と比較すると。いずれの地点も要請限度値以下と予測される。

表 7.3-15 予測結果(80%レンジ上端値)

(単位:dB)

地				振動	助レベル予測	·····································	要
点番号	予測地域(対象道路)	予測地点	時間 区分	現況 交通量 (1)	将来 交通量 (2)	増加分(3) (2)-(1)	請限度
2	市道七郷伊在改良8号線	市立蒲町保育所	昼間 (8:00~9:00)	33	30 未満	-3 以上	65
2		山亚州町外月川	夜間 (7:00~8:00)	32	30 未満	-2 以上	60
3	県道 235 号荒井荒町線	県道 235 号荒井	昼間 (14:00~15:00)	43	39	-4	65
		荒町線	夜間 (7:00~8:00)	35	32	-3	60
4	県道 137 号荒浜原町線	県道 137 号荒浜	昼間 (11:00~12:00)	36	35	-1	65
4	ボル 101 万加 <u>快</u> /ホール	原町線	夜間 (7:00~8:00)	32	32	0	60
(5)	市道宮浦線	リハビリパーク 仙台東及びくつ	昼間 (8:00~9:00)	39	30 未満	-9 以上	65
	印尼古佛林	ろぎ保養館仙台 東	夜間 (7:00~8:00)	40	30 未満	-10以上	60
9	市道蒲の町南梅ノ木線	市道蒲の町南梅	昼間 (18:00~19:00)	41	41	0	65
	巾垣浦の町角碑ノ木線	ノ木線	夜間 (7:00~8:00)	42	39	-3	60

注) 時間区分は、昼間:8時~19時 夜間:19時~8時

7.3.3 環境の保全及び創造のための措置

1) 工事による影響(資材等の運搬)

工事用車両の走行に伴う振動の影響を予測した結果、要請限度値を下回ると予測された。 また、本事業の実施にあたっては、工事用車両の走行に伴う振動への影響に対して、さら に、以下の環境保全措置を講ずることとする。

表 7.3-16 工事による影響(切土・盛土・発破・掘削等)に対する環境保全措置

保全措置の種類	低減	低減	低減	低減
	一時期に工事用車両	工事用車両の点検整	工事用車両の適正運	過積載を禁止する。
	が集中しないよう、工	備を励行する。	転 (過度のアイドリン	
実施内容	事工程の平準化を図		グや空ぶかしの禁止	
天旭八谷	るとともに、効率的な		等) を運転手へ徹底す	
	車両の運行管理を行		る。	
	う。			
実施期間	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中
効果及び変化	振動の発生の低減が	振動の発生の低減が	振動の発生の低減が	振動の発生の低減が
効木及い変化	見込まれる。	見込まれる。	見込まれる。	見込まれる。
副次的な影響等	NO2、SPM、騒音の影	NO2、SPM、騒音の影	NO2、SPM、騒音の影	NO2、SPM、騒音の影
副仏別な影響寺	響が緩和される。	響が緩和される。	響が緩和される。	響が緩和される。

2)工事による影響(重機の稼動)

重機の稼動に伴う振動の影響を予測した結果、規制基準値を下回ると予測された。

また、本事業の実施にあたっては、重機の稼動に伴う振動への影響に対して、さらに、以下の環境保全措置を講ずることとする。

五 16 16 二十二5 0 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
保全措置の種類	低減	低減	低減	低減	低減		
	一時期に重機が	効率的な運用に	重機の点検整備	重機の適正運転	低振動型の重機		
	集中しないよう、	より使用台数・時	を励行する。	(過度のアイド	等の採用に努め		
実施内容	工事工程の平準	間の削減を図る。		リングや空ぶか	る。		
	化を図る。			しの禁止等)を運			
				転手へ徹底する。			
実施期間	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中	工事実施期間中		
効果及び変化	振動の発生の低	振動の発生の低	振動の発生の低	振動の発生の低	振動の発生の低		
効未及い変化	減が見込まれる。	減が見込まれる。	減が見込まれる。	減が見込まれる。	減が見込まれる。		
	NO_2 、 SPM 、騒						
副次的な影響等	音の影響が緩和	音の影響が緩和	音の影響が緩和	音の影響が緩和	音の影響が緩和		
	される。	される。	される。	される。	される。		

表 7.3-16 工事による影響(重機の稼動)に対する環境保全措置

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

資材等の運搬及び重機の稼動に伴う振動の複合的な影響を予測した結果、蒲町小学校付近で 66dB となり、建設作業振動が支配的となると予測された。

本事業の実施にあたっては、工事に伴う振動への影響に対して、上記、1)、2)に示した環境保全措置を講ずるとともに、工事時期の調整を図り、特に配慮が必要な蒲町小学校付近の工事は、学校の夏季休暇等に実施する。

4)供用による影響(資材・製品・人等の運搬・輸送)

供用後の関連車両の走行に伴う振動の影響を予測した結果、要請限度値以下と予測された。 また、本事業の実施にあたっては、関連車両の走行に伴う振動への影響に対して、さらに、 以下の環境保全措置を講ずることとする。

表 7.3-17 供用による影響(資材・製品・人等の運搬・輸送)対する環境保全措置

保全措置の種類	低減
	事業区域内に進出する事業所に対して、以下の環境保全措置を要請することとする。
実施内容	・通勤車両の相乗りや送迎バスの運行、公共交通機関の利用等により、車両台数の抑制を図る。 ・車両の適正運転(過度のアイドリングや空ぶかしの禁止等)を要請する。
実施期間	供用後(保留地販売時等)
効果及び変化	振動の発生の低減が見込まれる。
副次的な影響等	NO2、SPM、騒音の影響が緩和される。

7.3.4 評 価

1) 工事による影響(資材等の運搬)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、工事用車両の走行に伴う振動の影響が、工事手法、保全対策等により、 実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、工事工程の平準化、効率的な車両の運行管理、工事用車両の点検整備、適正運転の徹底、過積載の禁止等、振動の抑制が図られることから、工事用車両の走行に伴う振動の影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

振動の予測結果(80%レンジ上端値)について、以下の基準等と整合が図られているかを 判断する。

・振動規制法施行規則(昭和 51 年 11 月 10 日 総理府令第 58 号)による道路交通振動の 限度

②評価結果

振動の予測結果 (80%レンジ上端値) は要請限度値を下回っていることから、工事用車両の走行に伴う振動の影響については、基準や目標との整合が図られているものと評価する。

2) 工事による影響(重機の稼動)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、重機の稼動に伴う振動の影響が、工事手法、保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、工事工程の平準化、効率的な重機の運用、重機の点検整備、適正運転の徹底、低振動型の重機の採用等、振動の抑制が図られることから、重機の稼動に伴う振動の影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

振動の予測結果(80%レンジ上端値)について、以下の基準等と整合が図られているかを 判断する。

- ・振動規制法施行規則(昭和 51 年 11 月 10 日 総理府令第 58 号)による特定建設作業の 規制に関する基準
- ・仙台市公害防止条例(平成8年3月19日 仙台市条例第5号)に基づく、指定建設作業に伴う振動の規制基準

②評価結果

振動の予測結果 (80%レンジ上端値) は規制基準値を下回っていることから、重機の稼動 に伴う振動の影響については、基準や目標との整合が図られているものと評価する。

3) 工事による影響(資材等の運搬及び重機の稼動の複合的な影響)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、資材等の運搬及び重機の稼動に伴う振動の複合的な影響が、工事手法、 保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、資材等の運搬に関しては、工事工程の平準化、効率的な車両の運行管理、工事用車両の点検整備、適正運転の徹底、過積載の禁止等、また、重機の稼動に関しては、工事工程の平準化、効率的な重機の運用、重機の点検整備、適正運転の徹底、低振動型の重機等の採用、工事時期の調整等、振動の抑制が図られることから、工事用車両の走行及び重機の稼動に伴う振動の複合的な影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

以下の事項を目標として、整合が図られているかを判断する。

・「特に配慮が必要な蒲町小学校付近の工事振動の発生を抑えること」

②評価結果

環境保全措置として、特に配慮が必要な蒲町小学校付近の工事は、学校の夏季休暇に実施する等、工事時期の調整を図ることにより、振動の抑制が図られることから、資材等の運搬及び重機の稼動に伴う振動の複合的な影響については、基準や目標との整合が図られているものと評価する。

4)供用による影響(資材・製品・人等の運搬・輸送)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、関連車両の走行に伴う振動の影響が、保全対策等により、実行可能な 範囲で回避・低減が図られているか否かを判断する。

②評価結果

本事業の実施にあたっては、事業区域内に進出する事業所に対して、通勤車両の相乗りや送迎バスの運行、公共交通機関の利用、車両の適正運転等を要請することにより、振動の抑制が図られることから、関連車両の走行に伴う振動の影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

振動の予測結果(80%レンジ上端値)について、以下の基準等と整合が図られているかを 判断する。

・振動規制法施行規則(昭和 51 年 11 月 10 日 総理府令第 58 号)による道路交通振動の 限度

②評価結果

振動の予測結果 (80%レンジ上端値) は要請限度値を下回っていることから、関連車両の 走行に伴う振動の影響については、基準や目標との整合が図られているものと評価する。

7.4.1 調 査

1)調査項目

調査項目は、浮遊物質量(SS)及び流量とした。

2)調査地域及び調査地点

調査地域は、事業の実施に伴い、水質(水の濁り)に係る環境影響を受けるおそれがある と認められる地域とし、事業区域からの雨水排水放流先となる事業区域東側境界の農業排水 路とした。

調査地点は、図 7.4-1 に示すとおり、農業排水路の 3 地点(事業区域上流(地点①)、事業区域内(地点②)、事業区域下流(地点③)) とした。

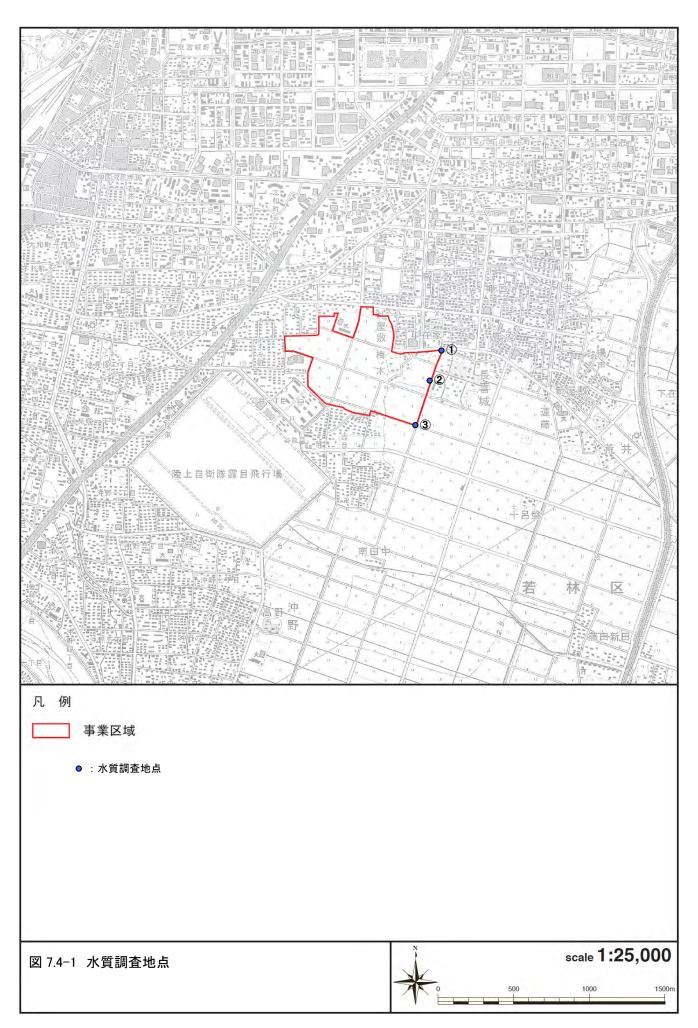
3)調査方法

現地調査方法は、表 7.4-1 に示すとおりである。

 項目
 調査方法

 浮遊物質量(SS)
 「水質汚濁に係る環境基準について(昭和46年 環境庁告示第59号)」に定める方法に準拠した測定

 流量
 「建設省河川砂防技術基準(案)調査編」に示される方法


表 7.4-1 現地調査の方法

4)調査期日

現地調査の調査期日は、表 7.4-2 に示すとおりである。年間を通じた水の濁りの状況を把握出来る時期とし、平常時については5回、降雨時については2回、調査を実施した。

調査項目	区 分	調査期日	
		平成 23 年 9 月 12 日	
		平成 23 年 10 月 26 日	
巡	平常時	平成 23 年 12 月 12 日	
浮遊物質量(SS) 流 量		平成 24 年 3 月 2 日	
里		平成 24 年 5 月 2 日	
	降雨時	平成 23 年 9 月 20 日	
	B年的时	平成 24 年 5 月 3 日	

表 7.4-2 調査期日

5)調査結果

水質の調査結果は表 7.4-3 に示すとおりである。

浮遊物質量(SS)は、地点①において平常時 $4\sim8$ mg/L、降雨時 $6\sim88$ mg/L、地点②において平常時 $1\sim21$ mg/L、降雨時 $11\sim100$ mg/L、地点③において平常時 1未満 ~12 mg/L、降雨時 $10\sim100$ mg/L であった。

なお、地点①について、冬季の渇水期は水が流れておらず、採水できなかった。地点③について、3月2日の調査時に水路上の橋を修理する工事が実施されており、影響のない上流側に移動して採水した。

表 7.4-3(1) 水質調査結果(平常時)

調査期日	浮遊物質量(SS) (mg/L)		流 量 (m³/min)			降水量 (mm/hr)	備考	
	地点①	地点②	地点③	地点①	地点②	地点③	(11111/1117)	
平成 23 年 9 月 12 日	4	19	5	0.05	0.71	1.72	_	
平成 23 年 10 月 26 日	_	7	2	_	0.17	0.48	_	地点①水なし
平成 23 年 12 月 12 日	_	1	1未満	_	0.07	0.11	_	地点①水なし
平成 24 年 3 月 2 日		4	7	_	0.05	0.09	_	地点①水なし 地点③工事中
平成 24 年 5 月 2 日	8	21	12	0.20	5.62	5.93	_	

表 7.4-3(2) 水質調査結果(降雨時)

	調査期日		浮遊物質量(SS) (mg/L)		流 量 (m³/min)			降水量	備考	
	W/1 E /// F		地点①	地点②	地点③	地点①	地点②	地点③	(mm/hr)	VIII J
	平成 23 年 9 月 20 日	(1回目)	7	30	42	14.47	31.15	37.10	3.5	
		(2回目)	6	12	10	15.15	38.57	44.77	5.0	
		(3回目)	8	11	12	15.15	36.10	42.85	5.5	
	平成 24 年 5 月 3 日	(1回目)	43	45	88	1.26	26.18	42.45	1.0	
		(2回目)	88	100	100	1.39	29.17	45.98	6.0	
		(3回目)	69	35	48	1.81	32.77	53.14	15.5	

7.4.2 予 測

1) 工事による影響(切土・盛土・発破・掘削等及び工事に伴う排水)

(1) 予測内容

切土・盛土・掘削等及び工事に伴う排水による水の濁り(浮遊物質量)とした。

(2)予測地域及び予測地点

予測地域は、切土・盛土・掘削等及び工事に伴う排水により水質の変化が想定される地域と し、事業区域からの工事中の雨水排水放流先の水路とした。

工事中の仮設調整池から、農業用排水路への排水箇所は事業区域の南端1箇所であり、予 測地点は、図7.4-1に示した調査地点のうち、仮設調整池から水路に排水する地点③とした。

(3)予測時期

予測時期は、切土・盛土・掘削等及び工事に伴う排水により水の濁りが最大となる時期として、工事期間中の降雨時とした。

(4) 予測方法

①予測手順

予測手順は、図 7.4-2 に示すとおりである。

工事中に発生する濁水については、仮設水路を設けて仮設調整池に導き、土粒子を十分に 沈殿させた後、上澄み水を事業実施区域外に放流する計画である。

そこで、工事中の降雨により発生する濁水の影響予測は、濁水防止対策(仮設調整池の設置)の効果を踏まえて定量的に行った。なお、予測にあたっては、降雨条件が、①3.0mm/h(「面整備事業環境影響評価技術マニュアル(建設省、平成11年11月)」に基づき、人間活動が見られる日常的な降雨の条件)及び②15.5mm/h(降雨時調査の最大時間降雨量)の2つのケースについて行った。

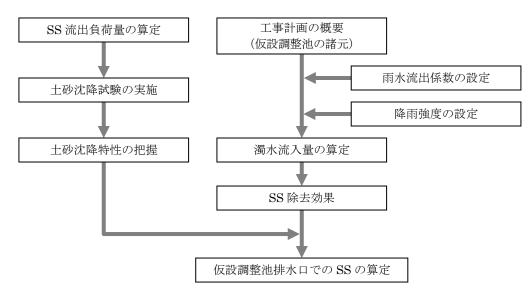


図 7.4-2 予測手順(工事による影響(切土・盛土・発破・掘削等及び工事に伴う排水))

②予測式

ア. 濁水流入量の算定

工事中の降雨による仮設調整池への濁水流入量の算定は、以下に示す合理式を用いた。

Q = f 1 ·
$$\frac{I \cdot A1}{1,000}$$
 +f2 · $\frac{I \cdot A2}{1,000}$

ここで、Q: 濁水流入量「m³/h]

I : 平均降雨強度 (mm/h)

f 1:造成区域の雨水流出係数 (=0.5)

f 2:非造成区域の雨水流出係数(=0.3)

A1:流域内の造成面積 (m²)

A2:流域内の非造成面積 (m²)

出典:面整備事業環境影響評価技術マニュアル (建設省、平成 11 年 11 月)

イ. 沈殿除去の算定

仮設調整池における沈殿除去に関しては、図 7.4-3 に示すへーゼンの理想沈殿池に関する理論(押し出しモデル)により予測した。

<押し出しモデル>

仮設調整池の長さをL(m)、仮設調整池内の平均流速をu(m/h)とすると、仮設調整池の滞留時間T(h)はT=L/uとなる。

仮設調整池内の沈殿帯の上面より流入して流出端でちょうど底に達する土粒子の沈降速度を v_0 (m/h)とすると(これは沈降速度が v_0 より大きい土粒子は仮設調整池内ですべて沈殿することを示している)

$$v_0 = h/T = h/(L/u)$$
 ———

また、仮設調整池における濁水流量 $Q(m^3/h)$ は仮設調整池幅をB(m)、仮設調整池深さをh(m)とすると

$$Q = u \cdot B \cdot h$$
 ————2

ここで、仮設調整池の床面積をA(m²)とすると、①②より

$$v_0 = Q/L \cdot B = Q/A \ge t \delta_0$$

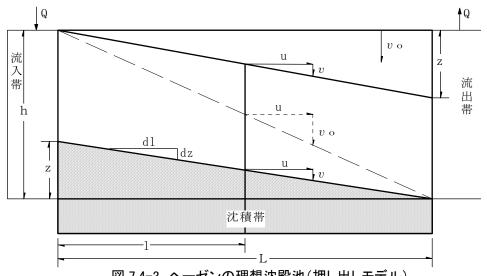


図 7.4-3 ヘーゼンの理想沈殿池(押し出しモデル)

(5) 予測条件

①降雨条件

降雨条件は、①3.0mm/h (「面整備事業環境影響評価技術マニュアル (建設省、平成 11 年 11 月)」に基づき、人間活動が見られる日常的な降雨の条件)及び②15.5mm/h(降雨 時調査の最大時間降雨量)の2ケースとした。

②流出係数

雨水の流出係数は、事業区域全体を造成することから、全域を裸地面と想定し、濁水処 理施設を計画する際に一般的に用いられている裸地の流出係数 0.5 とした。

※出典:「面整備事業環境影響評価技術マニュアル」(平成11年、建設省都市局都市整備課監修)

③濁水流入量

「①降雨条件」で示した 2 ケースについて、仮設調整池における濁水流入量は表 7.4-4 に示すとおりである。

予測ケース	1	2
降雨条件(mm/h)	3.0	15.5
雨水流出係数	0.5	0.5
造成面積(m²)	465,000	465,000
濁水流入量(m³/h)	698	3,604
濁水流入量(m³/min)	11.6	60.1

表 7.4-4 仮設調整池における濁水流入量

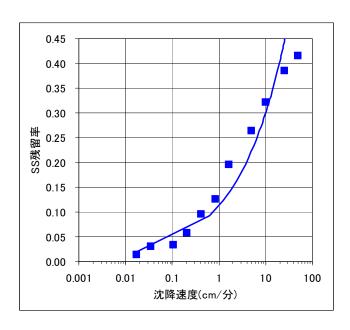
4濁水初期濃度

造成地(裸地)から発生する濁水濃度は、「土質工学における化学の基礎と応用」(1985 年、土質工学会) に示される造成工事に伴って発生する濁水濃度 200~2,000mg/L を参考 として、安全側を考慮し、2,000mg/Lと設定した。

⑤土壌特性

盛土材は外部からの搬入となるが、現在のところ、土取場は特定されていないため、土 壌の沈降特性は不明である。

そこで、表 7.4-5 に示すとおり、想定される土取り場に比較的近い場所の土壌の沈降試験結果(「仙台市新墓園建設事業(第2期)環境影響評価書」(平成23年2月))を事例として、参考に用いた。


表 7.4-5 土壌の沈降特性

経過時間(分)	SS(mg/L)	SS残留率	沈降速度(cm/分)
0	1,900	_	-
1	790	0.416	50
2	730	0.384	25
5	610	0.321	10
10	500	0.263	5
30	370	0.195	1.67
60	240	0.126	0.83
120	180	0.095	0.42
240	110	0.058	0.21
480	64	0.034	0.10
1,440	57	0.030	0.03
2,880	27	0.014	0.02

注 SS 残留率は SS の初期濃度 2,000mg/L に対して、経過時間後の SS 濃度の割合である。

出典:「仙台市新墓園建設事業 (第2期) 環境影響評価書」(平成23年2月、仙台市)

土壌の沈降特性より、SS の初期濃度 1,900 mg/L に対して、経過時間後の SS 濃度の割合である SS 残留率と沈降速度の関係は図 7.4-4 に示すとおりである。

SS 残留率=0.112×沈降速度 0.427

図 7.4-4 SS 残留率一沈降速度曲線

⑥仮設調整池の諸元

仮設調整池の諸元は図7.4-5に示すとおりである。

仮設調整池容量

標 高 (m)	高 さ (m)	面 積 (㎡)	平均面積 (㎡)	容 量 (m³)	累計容量 (㎡)	備	考
1.30		8,830				池	底
2.00	0.70	9, 480	9, 155	6, 409	6, 409		
3.00	1.00	10, 410	9, 945	9, 945	16, 354		
3.40	0.40	10, 790	10,600	4, 240	20, 594	H.W.L≧2	0, 400m³
4.00	0.60	11, 350	11,070	6, 642	27, 236	ダム	、高

• 仮設調整池水位諸元

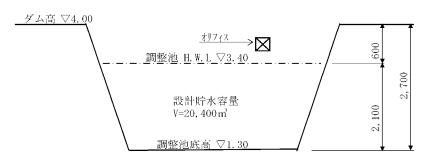


図 7.4-5 仮設調整池の諸元

⑦仮設調整池の SS 残留率

仮設調整池の表面積負荷(沈降し、除去可能となる土粒子のうち、粒径が最も小さい土 粒子の沈降速度)及びSS残留率の算出結果は表7.4-6に示すとおりである。

仮設調整池の表面積負荷(=流入量(m^3 /min)/有効表面積(m^2)×100(cm/m))を沈降速度 として、図 7.4-4 に示した SS 残留率一沈降速度曲線の近似式から、仮設調整池の SS 残留 率を算出した。

予測ケース①
(雨量 3.0mm/h)②
(雨量 15.5mm/h)濁水流入量(m³/min)11.660.1仮設調整池の底面積(m²)8,8308,830表面積負荷(cm/min)0.130.68SS 残留率0.0470.095

表 7.4-6 仮設調整池の表面負荷とSS 残留率

⑧仮設調整池出口の SS

SS残留率から求められる仮設調整池出口におけるSSは、表 7.4-7に示すとおりである。

表 7.4-7 仮設調整池出口の SS

予測ケース	降雨条件(mm/h)	濁水初期濃度 (mg/L)	SS 残留率	放流水の SS(mg/L)
1	3.0	2,000	0.047	94
2	15.5	2,000	0.095	190

(6) 予測結果

仮設調整池出口の浮遊物質量(SS)濃度及び放流先排水路における合流後の浮遊物質量(SS) 濃度の予測結果は表 7.4-8 に示すとおりである。

放流先排水路における合流後の浮遊物質量(SS)濃度は、以下に示す完全混合式を用いて予測した。

$$C \!=\! \frac{C_0Q_0 \!\!+\! C_1Q_1}{Q_0 \!\!+\! Q_1}$$

ここで、C : 合流後の SS 濃度 (mg/L)

Co : 放流先排水路の SS 濃度 (mg/L)

C₁ : 放流水の SS 濃度(mg/L)

Qo : 放流先排水路の流量 (m³/min)

Q1 : 放流水の流量 (m³/min)

合流後の浮遊物質量(SS)濃度は、現況(合流前)の値と同程度、もしくは上回ると予測される。

なお、外部から事業区域に搬入する盛土材の土取場は、現段階では特定されていないため、 盛土材の物理的性質は不明である。したがって、予測結果についても、搬入する盛土材の物理 的性質により、変化する可能性があり、予測結果の不確実性が生じる。

そのため、工事の実施段階に、搬入土砂の沈降試験を実施し、検証する必要がある。

表 7.4-8 仮設調整池出口の浮遊物質量(SS)濃度と発生量の予測結果

予測ケース	降雨条件	放流先排水路		放流	合流後 SS 濃度 C	
	(mm/h)	流量 Q ₀ (m³/min)	SS 濃度 C ₀ (mg/L)	流出量 Q ₁ (m³/min)	SS 濃度 C ₁ (mg/L)	(mg/L)
		(111 / 111111)	(IIIg/LI)	(111 / 111111)	(IIIg/L/	
1	3.0	45.98	100	11.6	94	99
2	15.5	45.98	100	60.1	190	150

注 排水先排水路の流量及び SS 濃度は、現地調査結果における 15.5mm/h 降雨時の③地点の値を示す。

7.4.3 環境の保全及び創造のための措置

1)工事による影響(切土・盛土・発破・掘削等及び工事に伴う排水)

切土・盛土・掘削等及び工事に伴う排水による水の濁り(浮遊物質量)を予測した結果、合流 後の浮遊物質量の濃度が現況(合流前)の値と同程度、もしくは上回ると予測された。

したがって、本事業の実施にあたっては、可能な限り放流先の水の濁りを低減させるために、 以下の環境保全措置を講ずることとする。

表 7.4-9 工事による影響(切土・盛土・発破・掘削等及び工事に伴う排水)に対する環境保全措置

保全措置の種類	低減	低減	低減
実施内容	実際に盛士する土砂 の沈降試験を実施し、 その分析結果により、 必要に応じて仮設調 整池規模について再 検討し、工事計画に反 映させる。	造成後の裸地については、速やかな転圧、緑化を施すなどの工事計画を立てることにより、濁水発生を抑制する。	工事の進捗にあわせ、 仮設調整池に流下す る前に、適切な場所に 沈砂池を設置する。 なお、設置箇所は公園 位置を想定する。
実施期間	工事実施前	工事実施期間中	工事実施期間中
効果及び変化	濁水の発生量を低減 できる。	濁水の発生量を抑制 できる。	濁水の発生量を低減 できる。
副次的な影響等	なし。	なし。	なし。

7.4.4 評 価

- 1)工事による影響(切土・盛土・発破・掘削等及び工事に伴う排水)
- (1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、切土・盛土・掘削等及び工事に伴う排水による水の濁りの影響が、工事手法、保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

環境保全措置として、盛土材の沈降試験の実施、速やかな転圧・緑化の実施、仮設調整池への流下前に、沈砂池を設置等、水の濁りの抑制が図られることから、切土・盛土・掘削等及び工事に伴う排水による水の濁りの影響は、実行可能な範囲で回避・低減が図られているものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

雨水排水の放流先水路には環境基準が設定されていないことから、以下の事項を目標として、整合が図られているかを判断する。

・仙台市公害防止条例施行規則(平成8年3月29日 仙台市規則第25号)における排水 基準 浮遊物質量 (SS) 200mg/L 以下

②評価結果

予測結果は、「仙台市公害防止条例施行規則」における排水基準値を下回っていることから、 切土・盛土・掘削等及び工事に伴う排水による水の濁りの影響については、基準や目標との整 合が図られているものと評価する。

しかし、搬入する盛土材の物理的性質により、予測結果が変化する可能性があり、予測結果の不確実性が生じる。したがって、工事の実施段階に、搬入土砂の沈降試験を実施し、検証する必要がある。

7.5.1 地形•地質

1)調 査

(1)調査項目

調査項目は、表 7.5-1 に示すとおり、現況地形(地形分類、傾斜区分)とした。

表 7.5-1 調査項目

調査項目	
地形・地質	現況地形 ・地形分類 ・傾斜区分

(2)調査地域及び調査地点

調査地域は、地形・地質に係る環境影響を受けるおそれがあると認められる地域とし、事業区域界より 200m の範囲とした。

調査地点は、調査地域全域とした。

(3)調査方法

調査方法は、資料調査とし、「土地分類基本調査 地形・表層地質・土じょう 仙台」(経済企画庁,1967年)等の文献に基づき、現況地形の状況を調査した。

(4)調査期日

地形・地質に係る既存文献等の最新年度版とした。

(5)調査結果

①現況地形

事業区域及び周辺の地形分類は図 5.1-17 及び図 7.5-1 に示した。事業区域は仙台市東南部 にあって霞ノ目低地(IIIc)に区分されている。地形面の特性としては広瀬川・名取川の堆積作用によって生じた河成面(扇状地三角州)であり、西から東(海岸方向)に向かって極く緩やかに傾斜する平坦な面を形成する地形となっている。

事業区域での標高は西側で6m程度、南東側で3m程度となっており、南東に向かって緩やかに傾斜している。

出典:「土地分類基本調査 地形・表層地質・土じょう 仙台」(経済企画庁, 1967年)

図 7.5-1 仙台周辺の地形分類

2) 予 測

(1)存在による影響(現状地形)

①予測内容

土地の形状の変更に伴う事業区域周辺における現況地形の変化の程度とした。

②予測地域及び予測地点

予測地域は、現況地形の変化を十分に把握できる範囲として、調査地域と同様とした。 予測地点は、予測地域全域とした。

③予測時期

予測時期は、工事が完了した時点とした。

4予測方法

現況地形と事業計画との重ねあわせから、現況地形の改変の程度を定性的に予測した。

⑤予測条件

予測条件は、「2章 2.3事業計画の内容 2.3.2造成計画」に示したとおりである。

⑥予測結果

事業区域は、概ね平坦な地形で、標高は約3m~6mの範囲で南東に向かって緩やかに傾斜している。事業の実施により、既存宅地部分を除いた地域で盛土造成される計画である。

盛土量は約45 万 m^3 と想定され、これらは全て購入土とする方針である。宅地の高さについては現況地盤から平均約1.3mの盛土を行う。ただし、既設道路及び既存住宅地に摺り付ける箇所については、現況高さとする。

以上のことから、平坦な現況地形に対して、圧密を考慮し平坦な盛土を行うもので、現況 地形の変化の程度は小さいと予測される。

3)環境の保全及び創造のための措置

(1)存在による影響(現状地形)

土地の形状の変更に伴う事業区域周辺における現況地形の変化の程度を予測した結果、 元々平坦な現況地形に対して、圧密を考慮した平坦な盛土を行うものである。したがって、 現況地形の変化の程度は小さいと予測されたことから、環境保全措置は行わない。

4)評 価

- (1)存在による影響(現状地形)
 - ①回避・低減に係る評価

ア. 評価方法

予測結果を踏まえ、土地の形状の変更に伴う事業区域周辺における現況地形の変化の程度が、適切な施工方法、造成計画等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

イ. 評価結果

土地の形状の変更に伴う事業区域周辺における現況地形の変化の程度を予測した結果、現況地形の変化の程度は小さいと予測された。

適切な施工方法、造成計画等により、土地の形状の変更に伴う事業区域周辺における現況 地形の変化の程度は、実行可能な範囲で回避・低減が図られているものと評価する。

7. 5. 2 地盤沈下

1)調 査

(1)調査項目

調査項目は表 7.5-2 に示すとおり、地盤沈下の状況及び軟弱地盤の状況とした。

表 7.5-2 調査項目

調査項目		
	地盤沈下の状況	
地盤沈下	・地盤沈下の範囲、	累計の地盤沈下量
	軟弱地盤の状況	
	・土の工学的特性、	軟弱地盤の分布

(2)調査地域及び調査地点

調査地域は、対象事業により地盤沈下に対する影響が想定される地域として事業区域内及 び境界付近とした。

調査地点は、事業区域周辺の微地形等を踏まえながら、土層の断面構成が判断できる地点とし、図 7.5-2 に示すとおり、ボーリングの調査箇所数は、宅地開発の基準となる「仙台市開発指導要綱」を参考に、概ね 250m四方に 1 箇所程度(Bo-1~Bo-11 の 11 地点)とし、さらにこれらを補間して $S-1\sim S-13$ の 13 地点でサウンディング調査を実施し、地表面下 20m付近までの土層構成状況を明らかにした。

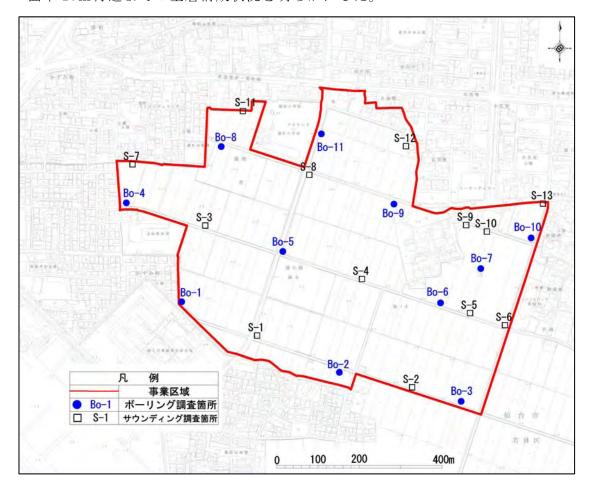
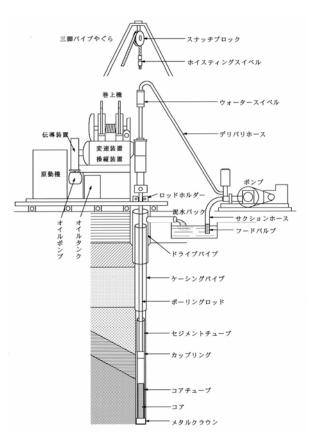


図 7.5-2 ボーリング調査位置

(3)調査方法

調査方法は、資料調査及び現地調査とした。

①資料調査


「仙台市の環境(平成22年度実績報告)」(仙台市環境局,平成23年)、「仙台市史 特別編1 自然」(仙台市,平成6年)等の文献に基づき、地盤沈下の状況、軟弱地盤の状況を調査した。

②現地調査

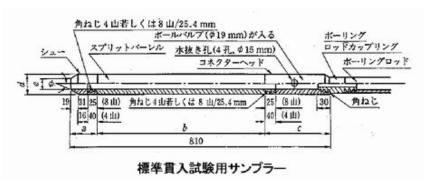
ア. 機械ボーリング

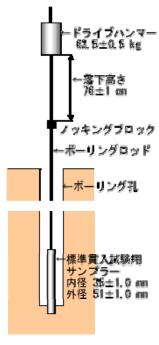
機械ボーリングは、ロータリー式試錐機により、調査地点の地盤状況(地質・硬軟・地下水状況等)を把握すること、標準貫入試験や孔内水平載荷試験等の原位置試験を行うための孔壁を保持すること等を目的とし、孔径 ϕ 66~86mmにて掘削した。また、孔内水位確認までは無水掘りとし、以深は孔壁崩壊防止のためのケーシングパイプの挿入と泥水使用を適宜選定してコア採取率向上に努めた。

採取したコアはコア箱に整理し、土質の状態を観察してボーリング柱状図にまとめた。 図7.5-3にボーリング装置の概略図を示す。

出典:「ボーリングポケットブック」(全国地質調査業協会連合会)

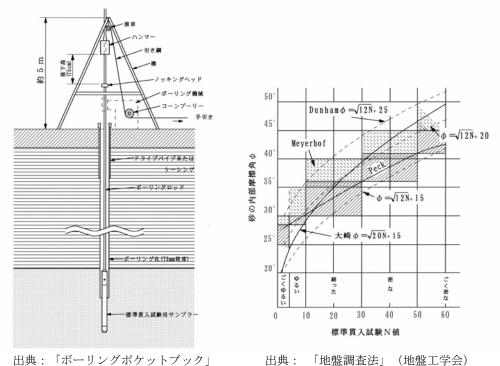
図7・5-3 ボーリング機械概略図


イ. 標準貫入試験


標準貫入試験は、地盤の硬軟あるいは締まり具合の相対値の指標である「N値」を求める ために実施した。また、試験の際に採取した試料より土質の確認を行った。

試験は、深度 1 m 毎を原則として実施した。その方法は、J I S A 1 2 1 9 に準拠し、質量63.5 kgのドライブハンマーを76 cmの高さから自由落下させ、標準貫入試験用サンプラーを30 cm打ち込むのに要する打撃回数を「N値」として測定した。ただし、地盤が固く打撃回数が50 logを数えた時点でも貫入量が30 cmに達しない場合は、その時点で試験を打ち切り、N値は打撃回数50 logに対する貫入量の大きさで示した。

なお、ドライブハンマーの落下方法は半自動落下装置による自由落下法である。 採取したコアは、ボーリングコアと共にコア箱に整理し、土質の状態を観察した。


図7.5-4に標準貫入試験用器具、図7.5-5に試験概要図、図7.5-6に砂の内部摩擦角とN値の関係図を示す。

出典:「ボーリングポケットブック」(全国地質調査業協会連合会)

図 7.5-4 標準貫入試験器具と概要図

出典:「ボーリングポケットブック」

(全国地質調査業協会連合会)

図 7.5-5 標準貫入試験概要図

図 7.5-6 砂の内部摩擦角 φ と N 値の関係

また、N値と砂質土の相対密度・内部摩擦角、N値と粘性土のコンシステンシー・一軸圧 縮強さ等の関係から、表7.5-4がよく用いられている。

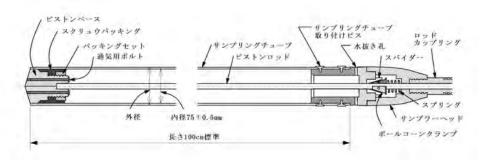
表 7.5-4 N値と相対密度及び相対稠度の関係 砂の相対密度、内部摩擦角とN値との関係

(Terzaghi and Peck, Meyerhof)

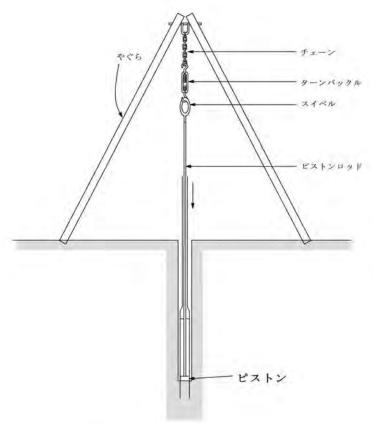
N 値	相 対 密 度	e max— e	内部摩擦角φ度		
17 10	(Relative Density)	e max— e min	ペックによる	マイヤホーフによる	
0∼ 4	非常に緩い(Very Loose)	0.0~0.2	28.5以下	30以下	
4~10	緩 い(Loose)	0.2~0.4	28.5~30	30~35	
10~30	中 位 の(Medium)	0.4~0.6	30~36	35~40	
30~50	密 な(Dense)	0.6~0.8	36~41	40~45	
50以上	非常に密な(Very Dense)	0.8~1.0	41以上	45以上	

粘土のコンシステンシー、一軸圧縮強さとN値との関係

(Terzaghi and Peck)


コンシステンシー	非常に軟らかい	軟らかい	中位の	硬い	非常に硬い	固結した
N	2以下	2~4	4~8	8 ∼ 15	15~30	30以上
$\begin{array}{ccc} q u & & \frac{kN/m^2}{\{kgf/cm^2\}} \end{array}$	25以下 {0.25以下}	25~50 {0.25~0.5}	50~100 {0.5~1.0}	100~200 {1.0~2.0}	200~400 {2. 0~4. 0}	400以上 {4.0以上}

出典:「地盤調査法」(地盤工学会)


ウ. シンウォールサンプリング

室内土質試験に供するための不攪乱試料採取は固定ピストン式シンウォールサンプラーで行った。サンプリングは試料採取深度まで孔径 ϕ 86mmで掘進し、サンプラーの押し込みは衝撃を与えないように注意深く連続的に行い、サンプラーの引き上げは衝撃を与えないよう注意しながら速やかに行った。採取された試料は直ちにパラフィンでシールし、衝撃や振動などを与えないように注意して速やかに運搬して土質試験に供した。

図7.5-7にシンウォールサンプリングの概略図を示す。

固定ピストン式シンウォールサンプラー

出典:「ボーリングポケットブック」(全国地質調査業協会連合会)

図 7.5-7 シンウォールサンプリング概略図

工. 室内土質試験

室内土質試験は表7.5-5の項目をJIS及びJGS規格に基づいて実施した。

表 7.5-5 室内土質試験

	試験項目	試験結果から	試験	規格
かる 日		得られる主な値	JIS	JGS
	土粒子の密度試験	・土粒子の密度 ρ s	A 1202	0111
物理試験	土の含水量試験	・含水比 Wn	A 1203	0121
	土の粒度試験	・粒径加積曲線 ・均等係数 Vc ・曲率係数 Uc ・細粒分含有率Fc	A 1204	0131
	土の液性限界試験 土の塑性限界試験	・液性限界 WL・塑性限界 Wp・塑性指数 Ip	A 1205	0141
	土の湿潤密度試験	・湿潤密度 ρt ・乾燥密度 ρd	A 1225	0191
力学	土の一軸圧縮試験	・一軸圧縮強さ qu ・変形係数 E ₅₀	A 1216	0511
試験	土の圧密試験	・圧縮指数 Cc ・圧密降伏応力 Pc	A 1217	0411

(4)調査期日

①資料調査

地盤沈下に係る既存文献等の最新年度版とした。

②現地調査

現地調査の調査期日は、表 7.5-6に示すとおりである。

表 7.5-6 調査期日

調査項目	調査期日
ボーリング調査	平成 24 年 4 月 12 日~4 月 26 日

(5)調査結果

①地盤沈下の状況

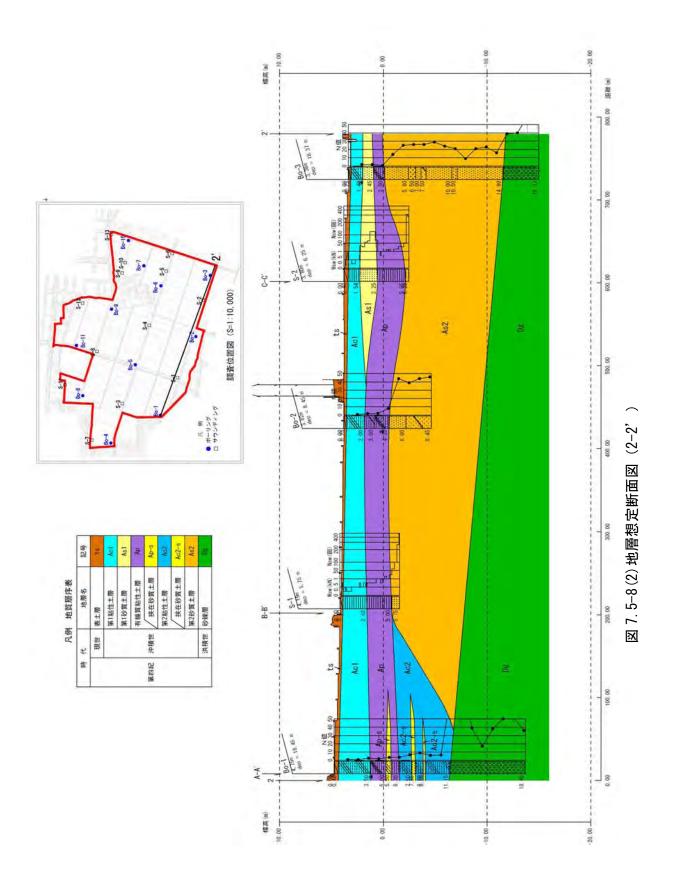
昭和49年から平成22年までの累積変動量は図5.1-21に示した。事業区域は主に6~10cmの地盤沈下があった地域に属する。なお、平成22年度の調査結果では、仙台市内では全体的に変動量が小さく、地盤沈下の目安となる年間沈下量2cmを越えた地点は見られていない。

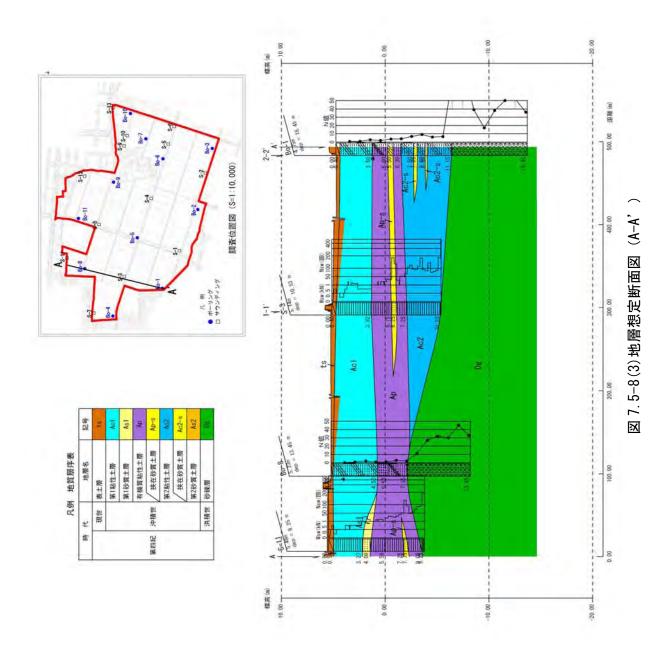
②軟弱地盤の状況

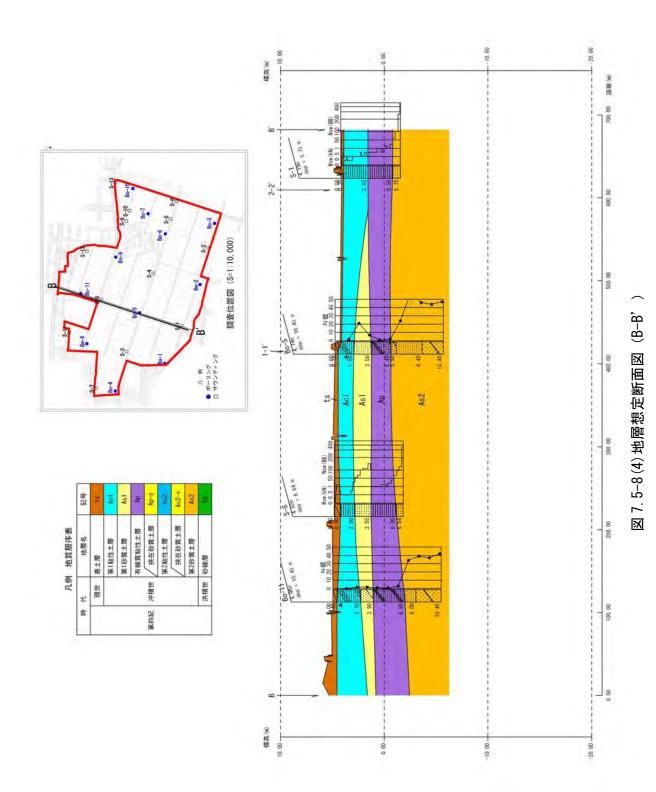
ア. 軟弱地盤の分布

事業区域周辺における軟弱地盤の分布は図 5.1-22 に示した。

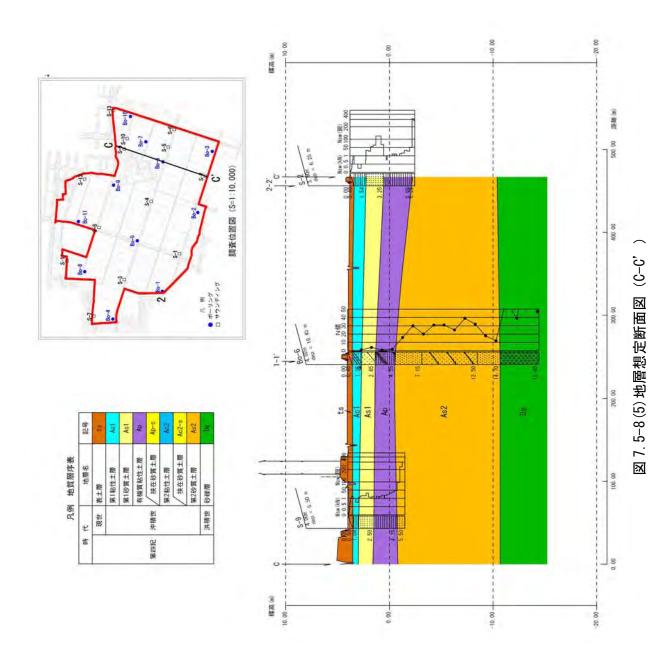

また、ボーリング調査の結果、表 7.5-7 に地質層序表、図 7.5-8 に地層想定断面図示す。 事業区域の土質構成は、表層部に最大厚 9m程度 (表土含む)の軟弱な粘性土及び砂質土、 有機質土が分布している。これらの軟弱地盤は、事業区域全域に分布して、特に事業区域 の西側エリアにおいて層厚が大きくなっている。(ボーリング調査結果の詳細は、資料編 P 資 6-1~52 参照)


また、これらの軟弱地盤の下位には、N値 $10\sim30$ の砂質土層が事業区域のほぼ全域に分布しており、その下位には、N値 30 以上の砂礫層が厚く分布している。


一般的に軟弱地盤とは、粘性土でN値4以下、砂質土でN値10~15以下とされており(「道路土工-軟弱地盤対策工指針」(昭和61年11月、日本道路協会))、ボーリング調査結果からは有機粘性土、第1粘性土、第2粘性土、第1砂質土がそれに該当する。


表 7.5-7 地質層序表

	以 / 心 / 心 反信 / 公									
時	代	地 層 名 (記 号)	N 値	層 厚 (m)	記事					
	現	表土層	_	0.25∼	耕作土主体。草根混じりの腐植質シルト~砂質シルト。					
	世	(ts)		0.40	調査地全体の地表に分布する。有機質シルト〜砂質シルト主体。					
		第1粘性土層	0~3	0.35∼	不均質な粘土質シルト主体。調査地全体の地表付近に分布する。					
		(Ac1)	(1.3)	4.30	粘土質シルト主体で、含水が高く軟らかい。					
					不均一な細砂主体。所々にシルト分や腐植物を含む。					
		第1砂質土層	2~8	0.85~	(N=21 埋木障害は除外)					
		(As1)	(4.7)	2.60	細砂主体で、Ac1層とAp層に挟まれて分布する。					
第					調査地西側の A-A'断面周辺では確認されない。					
713	沖	有機質粘性土層 (Ap)	0~4 (1.8)	1.05~ 3.10	不均質な粘土質シルト主体。全般に腐植物混入。含水高く軟らかい。調査地全体のAc1層・As1層の下位に分布する。Bo-1付近では細砂層(Ap-s)を挟在する。					
四	積	挟在砂質土層 (Ap-s)	4 (4)	0.50	均一な細砂。 少量の腐植物を混入。					
	世	第 2 粘性土層 (Ac2)	2~9 (5. 7)	2.05~ 4.30	砂質粘土〜砂質シルト主体。所々に砂分を多く混入。 調査地の南西部 (Bo-1, Bo-4, S-3) に分布する。 Bo-1付近では細砂層 (Ac2-s) を2枚挟在する。					
紀		挟在砂質土層 (Ac2-s)	_	0.20~ 0.35	不均一な細砂主体。 少量の細礫混入。					
		第 2 砂質土層 (As2)	9~50 (30. 4)	4. 10~ 11. 40	均一な細砂主体で、所により中砂〜粗砂。所々に腐植物、円礫、 貝殻混入。調査地の中央〜東側にかけてAp層の下位にDg層を覆 って広く分布する。					
	洪積世	砂礫層 (Dg)	4~50 (38. 5)	11.30 以上	φ2~30mmの円礫主体。最大径はφ50mm程度。マトリックスは粗砂主体で所々に粘土分混入。調査地全体の深度10~20mに広く分布する。西側で浅く、東ほど伏在深度が深くなる。					



VII-5-15

VII-5-16

イ. 土の工学的特性(土質試験結果)

ア)土粒子の密度

代表的な土質における土粒子の密度の一般的な値を表 7.5-8 に示す。(土質試験結果の詳細は、資料編 P 資 6-53~106 参照)

土 質 土 質 密 度(g/cm³) 密 度(g/cm³) 沖積砂質土 2.6~2.8 関東ローム $2.7 \sim 3.0$ 沖積粘性土 2.50~2.75 まさ土 2.6~2.8 洪積砂質土 2.6~2.8 しらす 1.8~2.4 洪積粘性土 2.50 \sim 2.75 黒ボク 2.3~2.6

1.4~2.3

表 7.5-8 土粒子の密度の一般値

出典:「土質試験の方法と解説」(地盤工学会)

泥炭(ピート)

一般に無機質な土粒子の密度は 2.60~2.75 程度の値を示すが、有機物や軽石を含有する 土はこれより小さい値を示すとされ、また鉄などの重鉱物が含まれている場合には大きい 値を示すとされている。

豊浦砂

2.64

各層の試験結果は以下に示すとおりである。

- Ac1 層 · · · · · · ρ s=2.563 \sim 2.567(g/cm³)
- Ap 層 · · · · · · ρ s=1.869 \sim 2.386(g/cm³)

試験値を表 7.5-8 と比較すると、Ac1 層は沖積粘性土の一般値を示しているといえる。 Ap 層は有機物・腐植物を多く含んでいるため、「泥炭 (ピート)」に相当する値を示している。

イ)含水比

自然含水比は土中水の質量を土の炉乾燥質量に対する百分率で表したものである。代表的な土質における含水比の一般的な値を表 7.5-9 に示す。

 土質名
 沖積層
 洪積層
 関東ローム
 有機質土

 ** **性土
 砂質土
 **性土
 **性土

 含水比w(%)
 30~150
 10~30
 20~40
 80~180
 80~1200

表 7.5-9 代表的な土質の含水比

出典:「土質試験の方法と解説」(地盤工学会)

各層の試験結果は以下に示すとおりである。

- Ac1 層 · · · · · · w n=76.9 \sim 90.5(%)
- · Ap 層······wn=132.4~249.8(%)

試験値を表 7.5-9 と比較すると、Ac1 層が「沖積粘性土」に、Ap 層が「有機質土(ピー

ト)」に相当しており、ほぼ一般的な値を示しているといえる。

ウ)湿潤密度

湿潤密度は重要な工学的物性値の一つで、土の単位体積当たりの質量を表したものである。一般に湿潤密度 ρ t は土粒子の粒径が細かくなるほど、かつ有機物の混入量が多くなるほど小さくなる傾向にある。

代表的な土質における湿潤密度の一般値を表 7.5-10 に示す。

 土質名
 沖積層
 洪積層
 洪積層
 財東ローム
 有機質土

 粘性土 砂質土
 粘性土
 以資土
 大性土
 (t゚ート)

 湿潤密度ρt(g/cm³)
 1.2~1.8
 1.6~2.0
 1.6~2.0
 1.2~1.5
 0.8~1.3

表 7.5-10 代表的な土質の湿潤密度

出典:「土質試験の方法と解説」(地盤工学会)

各層の試験結果は以下に示すとおりである。

- · Ac1 層····· ρ t=1.443 \sim 1.487(g/cm3)
- · Ap 層····· ρ t=1.150 \sim 1.285(g/cm3)

試験値を表 7.5-10 と比較すると、Ac1 層が「沖積粘性土」に、Ap 層が「有機質土(ピート)」に相当しており、ほぼ一般的な値を示しているといえる。

工)粒度特性

粒度特性は粒径によって土を分類し、粗粒土 (0.075~75mm) と細粒土 (0.075mm 以下) の定量的な判断や透水性の有無を表す指標である。土は粘土分・シルト分・砂分等がいろいろな割合で混じっており、その混じり具合を土の粒度と言い、粒径加積曲線で表される。一般的には粒径加積曲線で曲線が立っているほど一定の粒径が多い「悪い粒度分布」の土と言われ、曲線が右側に寄っているほど粒径のより大きい土であり、左上側に寄っているほど粒径のより小さい土である。

試験を実施した各層の粒径加積曲線を図 7.5-9 に示す。

図 7.5-9(1)には、粘性土に区分される Ac1 層と Ap 層の粒径加積曲線を示したが、いずれの試験結果も粒径の小さい細粒分(粘土・シルト)の含有率が 90%以上であるため、曲線は全般に左寄りに図示されている。それに対して、図 7.5-9(2)に示す砂質土区分 As1 層の粒径加積曲線は、グラフの中央付近でやや左右に幅広く分布しており、As1 層が比較的「良い粒度分布」の砂質土層であることを示している。また、図 7.5-9(3)に示す As2 層の粒径加積曲線は、グラフの中央付近でほぼ曲線が立っており、粒径の均一な「悪い粒度分布」の砂質土であることを示している。

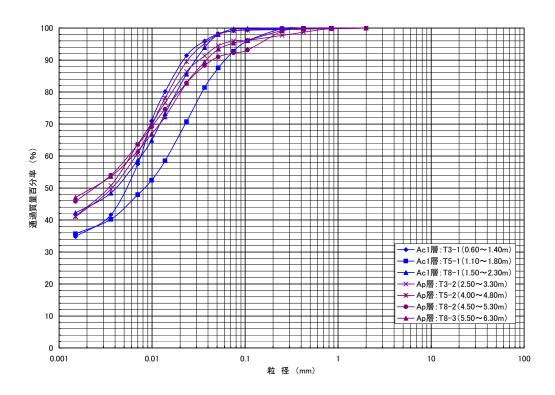


図 7.5-9(1) 粒径加積曲線 (Ac1 層·Ap 層)

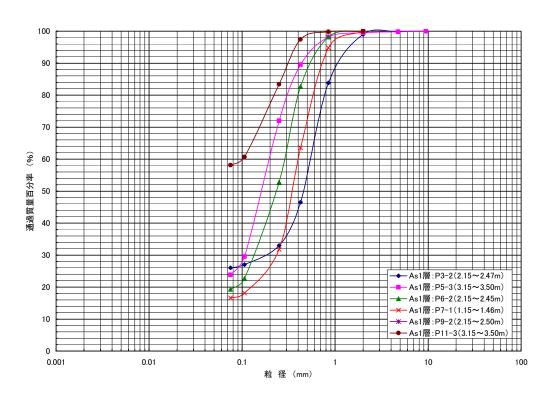


図 7.5-9(2) 粒径加積曲線 (As1 層)

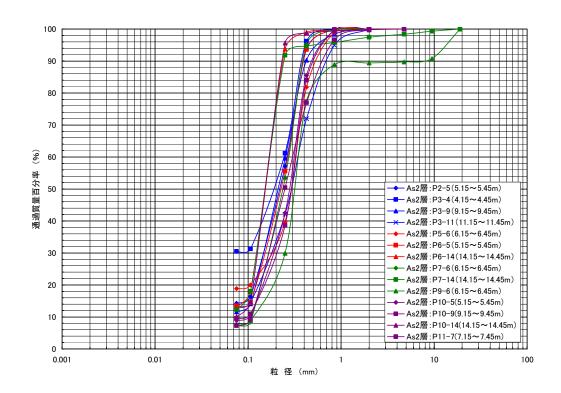


図 7.5-9(3) 粒径加積曲線 (As2 層)

オ)コンシステンシー特性

コンシステンシーは表 7.5-11 に示すように粘土やシルトなどの細粒土の状態変化を、含水量の変化に伴う流動状、塑性状、半固体状の変化を起こす変移点の含水比で表される。

 大
 含水比
 小

 LL ←
 PL →
 SL

 流動状態
 塑性状態
 半固体状態
 固体状態

表 7.5-11 コンシステンシー

粘性土は粘土粒子のみでなく、シルト粒子や砂粒子を含んでいる。粘土粒子が多くなるほどその土の液性限界WL は大きくなり、その土に粘り気を示さないシルト粒子や砂粒子が多く含むようになると液性限界WL は低くなる。そして粘土分が少なくなると液性限界WL と塑性限界WP の値が互いに近づき、粘性を示す含水比の幅が狭くなってくる。粘性土の塑性の大小は液性限界WL と塑性限界WP の含水比の幅で表すことが出来、その幅を塑性指数 IP という。

一般に液性限界WLの大きな土は圧縮性が大きく、乱れによる強度低下が著しいと言われている。また、塑性指数 Ip は土の分類や路盤材等の品質規格の判定項目及び液状化の判定を行う必要のある土層の条件(IPが 15 以下)の一つとして利用されている。

粘性土の自然含水状態における相対的な硬さや、安定度・圧縮性を表す指数として「コンシステンシー指数 I c」及び「液性指数 I L」が下式より求められる。

コンシステンシー Ic は細粒土の硬軟や安定の程度を表し、1 よりも大きいときは安定な状態にあることを示し0 に近いほど自然含水比が液性限界に近く不安定な状態にあることを示す。液性指数 I Lは相対含水比とも呼ばれ、与えられた含水比における土の相対的な硬軟を表す指数で、0 に近いほど土は安定であり、大きくなるほど圧縮性は大きく鋭敏なことを示す。

$$I c = \frac{W_L - W_n}{W_L - W_P} = \frac{W_L - W_n}{I_P} \qquad I L = \frac{W_n - W_P}{W_L - W_P} = \frac{W_n - W_P}{I_P}$$

ここで、IC:コンシステンシー指数 IL:液性指数

Wn:自然含水比(%)WL:液性限界(%)WP:塑性限界(%)IP:塑性指数(%)

以上の基準を基に各層のコンシステンシー特性を一覧表にまとめて表 7.5-12 に示す。

採取深度 W_n Wı. WР 地層 ΙP Ιc ΙL (m)(%) (%) (%) 0.60~ 76.9~ 81.7~ 41.8~ 39.9∼ -0.01∼ 0.75~ Ac1 2.30 90.5 105.3 46.6 58. 7 0.25 1.01 2.50~ 132.4~ 171.5∼ 68.5∼ 0.62~ 103~ 0.11~ Aр 6.30 249.8 294.6 130.6 0.38 0.89 168.0

表 7.5-12 コンシステンシー指数・液性指数一覧表

これらの結果をみると、Ac1 層・Ap 層ともに I_{C} = 0、 I_{L} = 1 であるため、これらの土層は全体的に掘削・こね返し等で乱せば泥ねい化を呈し、不安定化しやすい特性のある土である。

カ)分 類

粒度組成及びコンシステンシー特性の結果を基に、三角座標や塑性図(土質試験結果の詳細は、資料編P資6-53~106参照)から各層は表7.5-13に示すように分類される。

 地層記号
 分類
 名分類記号※1

 Ac1
 シルト(高液性限界)
 (MH)

 砂まじりシルト(高液性限界)
 (MH-S)

 有機質粘土(高液性限界)
 (OH)

 砂まじり高有機質土
 (Pt-s)

表 7.5-13 日本統一土質分類による分類

※1 日本統一土質分類による

キ)土質試験一覧表

事業区域内の土質試験の一覧表を表 7.5-14 に示す。

表 7.5-14 土質試験一覧表

地層記号		A	c1	A	р
	湿潤密度 ρt g/cm ³	1. 443	~1. 487	1.15~	1. 285
_	乾燥密度 ρd g/cm ³	0.755	~0. 837	0.32~0.546	
	土粒子の密度 ρs g/cm ³	2. 563	~2. 567	1.869~	~2. 386
	自然含水比 Wn %	76. 9	~90. 5	132. 4	~249. 8
般	間隙比 e	2. 062	~2. 395	3.37~	·4. 895
	飽和度 Sr %	94.6	~96.8	93.7~	~97. 4
	礫 分(2~75mm以上)%	ı	0	()
	砂 分(0.075~2mm) %	0.30	~0.8	0.9	~7.8
粒	シルト分(0.005~ 0.075mm)%	46. 6	i∼52	36.9	~46. 1
	粘土分(0.005m 未満) %	43. 47	~53. 1	53~	55. 4
度	最大粒径 mm	0.8	5 ~ 2	2	
	均等係数 Uc	-	_	_	
	細粒分含有率 Fc %	92.7	~99. 7	92. 2~99. 1	
	液性限界WL %	81.7~	-105. 3	171.5~294.6	
ンシステンシー特性	塑性限界WP %	41.8~46.6		68. 5∼130. 6	
テン	塑性指数 I L %	39. 9∼58. 7		103~168	
ント特	コンシステンシー指数 I c	-0.01~0.25		0.11~0.38	
性	液性指数 IL	0.75	~1.01	0.62	~0.89
 分 類	分類名	シルト (高液性限界)	砂まじりシルト (高液性限界)	有機質粘土 (高液性限界)	砂まじり 高有機質土
7,24	分類記号	(MH)	(MH-S)	(OH)	{Pt-S}
圧密	圧縮指数Cc	0.6~0.97		1. 22	~3. 93
圧密特性	圧密降伏応力Pc kN/m²	39~83. 2		64. 2~	~98.4
曲	一軸圧縮強さqu kN/m²	平均 25	5. 8~37. 5	平均 71.	2~104.3
軸圧縮強さ	変形係数E50 MN/m ²	平均 0.	449~1.13	平均 1.	33~2.10

2) 予測

(1)工事による影響(地盤沈下)

①予測内容

盛土工事に伴う地盤沈下として、地盤沈下の範囲及び沈下量の状況について予測した。

②予測地域及び予測地点

予測地域は事業区域とその隣接とし、軟弱地盤対策工法の選定後に影響範囲を踏まえ確定することとした。

③予測時期

予測時期は、工事の影響が最大となる時期とした。

④予測方法

予測方法は、圧密理論式を基本とした理論的解析によるものとした。

沈下量及び沈下時間は「道路土工・軟弱地盤対策工指針」(昭和 61 年 11 月 (社) 日本道路協会) に示された次式を用いて予測を行った。

ア. 沈下量

 $S = \frac{e_o - e_1}{1 + e_o} H$ · · · · · 予測式(1)

ここに、 S : 圧密沈下量(m)

H : 圧密される層の層厚(m) e₀: 載荷前の初期間隙比

 e_1 : 載荷後の間隙比 $(p_0 + \Delta p)$ に対する間隙比)

 p_0 : 盛土前の有効土被り圧 (kN/m^2) Δp : 盛土荷重による増加応力 (kN/m^2)

イ. 沈下時間

 $t = \frac{D^2}{C_V} \times T_V$ · · · · · 予測式(2))

ここに、 t:任意の圧密度U(%)に対応する時間(日)

Tv: 圧密度U(%)に対応する時間係数。(表 7.5-15 に示す)

Cv: 圧密層の代表圧密係数 (cm²/d)

D:最大排水距離(cm) 両面排水の場合、圧密層厚の 1/2

表 7.5-15 圧密度 Uと時間係数 Tvの関係

圧密度 U(%)	0	5	10	15	20	25	30
時間係数 Tv	0.000	0.002	0.008	0.018	0. 031	0.049	0.071
圧密度 U(%)	35	40	45	50	55	60	65
時間係数 Tv	0. 096	0. 126	0. 159	0. 197	0. 239	0. 286	0.340
圧密度 U(%)	70	75	80	85	90	95	
時間係数 Tv	0. 403	0. 477	0. 567	0. 684	0.848	1. 129	

⑤予測結果

ア. 計画盛土厚による沈下量

計画盛土厚による沈下量の検討は、図 7.5-10 に示す検討断面で実施した。

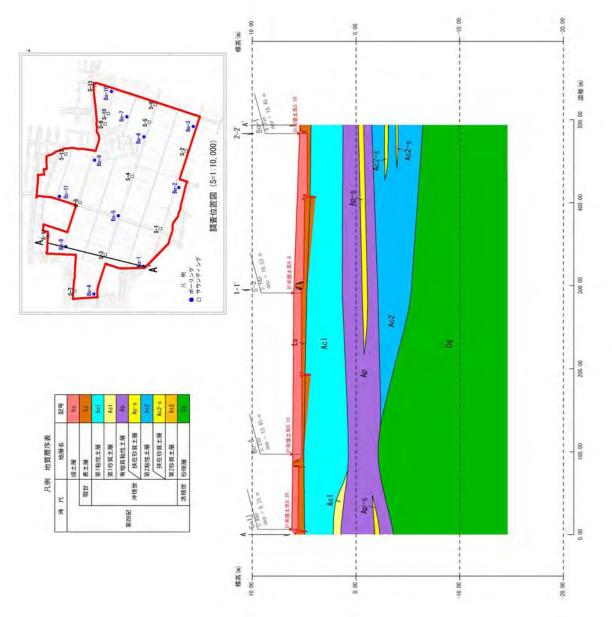
圧密理論式を基本とした理論的解析(予測式1)を用いて算出した、計画盛土高における 沈下予測結果は、表 7.5-16 に示すとおりである。

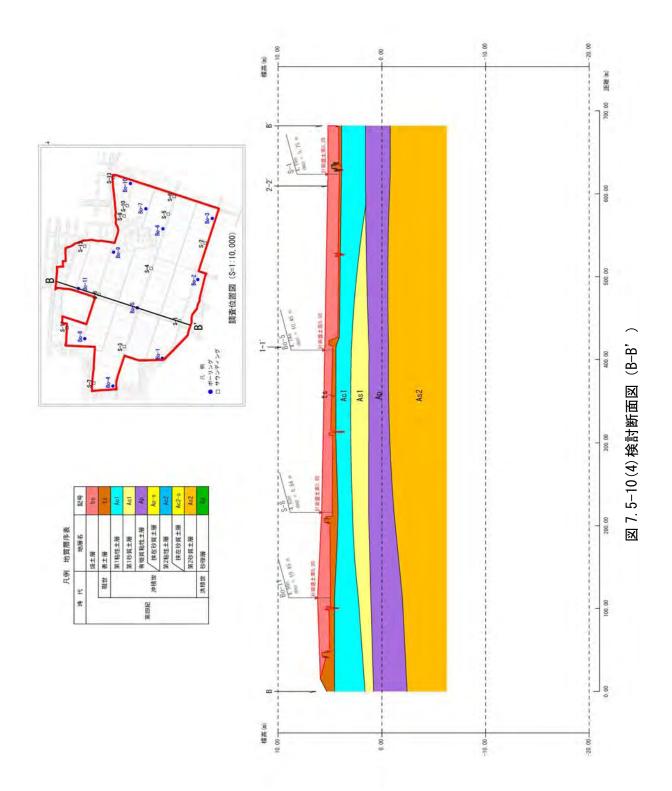
今回の検討断面について事業区域内の全ての地点で沈下が、8cm~31cm(うち圧密沈下量7~31cm)が発生するものと予測される。

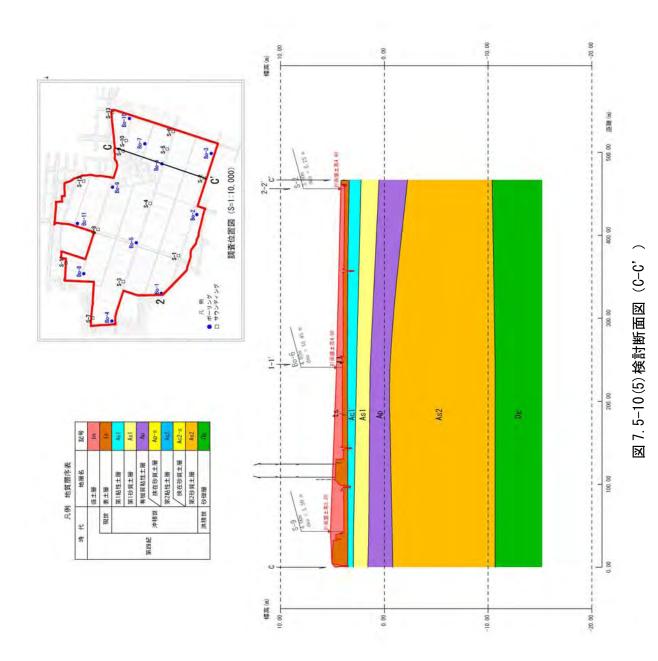
この沈下量により、計画盛土厚で施工した場合には、沈下終息後の盛土天端高が計画高より最大 31cm 低くなるため、その分を余盛し計画盛土高を完成形とした場合の沈下量の検討を行った。

表 7.5-16 計画盛土厚による沈下予測結果

			主条件(m)		検			
検討地点	基礎地盤 の地質 ※1	盛土 基面高 H1 ※2	計画盛土 天端高 H2	計画 盛土厚 D	即時 沈下量 S1	圧密 沈下量 S2	総沈下量 S	沈下後の 盛土天端 高 H (m)
B-1	粘性·有機	4. 75	5. 70	0. 95	0.01	0. 28	0. 29	5. 41
B-2	粘性·有機	3. 52	4.80	1. 28	0.01	0. 14	0. 15	4. 65
B-3	粘性·有機	3.08	4. 20	1. 12	0.01	0.07	0.08	4. 12
B-4	粘性·有機	5. 72	6.60	0.88	0.02	0. 20	0. 22	6.38
B-5	粘性·有機	4. 44	5. 50	1.06	0.02	0. 13	0. 15	5. 35
В-6	粘性·有機	3. 72	4. 60	0.88	0.01	0.08	0.09	4. 51
В-7	粘性·有機	3.60	4. 70	1. 10	0.02	0.07	0.09	4.61
B-8	粘性·有機	4. 93	6. 10	1. 17	0.00	0.31	0.31	5. 79
В-9	粘性·有機	4. 33	5. 40	1. 07	0.03	0.09	0. 12	5. 28
B-10	粘性土	3.65	5. 00	1. 35	0.02	0. 21	0. 23	4. 77
B-11	粘性·有機	4. 96	6. 20	1. 24	0.02	0.24	0. 26	5. 94


※1:粘性・有機はそれぞれ粘性土、有機質土を示す。


※2:盛土基面高は、東北地方太平洋沖地震による復興支援(圃場整備)の一環として表土を提供する事としている。 そのため、表土のすきとり分を考慮し、現況地盤から30 c m分を除外した。



VII-5-26

VII-5-29

イ. 最終沈下量が計画盛土高で終息する盛土厚(余盛り量)

計画盛土厚で発生する沈下量により、沈下終息後の盛土天端が計画ラインより最大 31cm 程度低くなる検討結果が得られたため、沈下量を考慮した施工盛土厚の予測を行った。

圧密理論式を基本とした理論的解析(予測式1)を用いて算出した沈下予測結果は、表 7.5-16に示すとおりである。

計画盛土厚 $(0.88\sim1.54\,\mathrm{m})$ に対する最終沈下量が $8\sim31\,\mathrm{c}$ m程度であり、沈下後の盛土 天端高は $4.12\sim5.94\,\mathrm{m}$ と予測していた。その結果表 $7.5\cdot17$ に示すとおり、盛土厚を $9\sim49$ c m増やすことで、沈下後の計画盛土高は約 $4.20\sim6.10\,\mathrm{m}$ で終息するものと予測される。

表 7.5-17 余盛り量を踏まえた沈下予測結果

		屈	&土条件(m)			沈下後の盛	圧密度90%
検討地点	基礎地盤 の地質 ※1	盛土 基面高 H1 ※2	盛土 天端高 H2	計画 盛土厚 D	最終 沈下量 S(m)	土天端高 H(m)	任福度90% 到達日数 (日) ※3
B-1	粘性·有機	4. 75	6. 11	1.36	0.41	5. 70	131
B-2	粘性·有機	3. 52	4. 97	1. 45	0.17	4.80	75
B-3	粘性·有機	3. 08	4. 30	1. 22	0.10	4. 20	11
B-4	粘性·有機	5. 72	6. 92	1. 20	0.32	6.60	259
B-5	粘性·有機	4. 44	5. 67	1. 23	0.17	5. 50	29
B-6	粘性·有機	3. 72	4. 69	0. 97	0.09	4.60	19
В-7	粘性·有機	3. 60	4. 81	1. 21	0.11	4.70	27
B-8	粘性·有機	4. 93	6. 59	1. 66	0.49	6. 10	376
B-9	粘性·有機	4. 33	5. 54	1. 21	0.14	5. 40	33
B-10	粘性土	3. 65	5. 31	1.66	0.31	5. 00	63
B-11	粘性·有機	4. 96	6.56	1.60	0.36	6. 20	103

※1:粘性・有機はそれぞれ粘性土、有機質土を示す。

※2:盛土基面高は、東北地方太平洋沖地震による復興支援(圃場整備)の一環として表土を提供する事としている。 そのため、表土のすきとり分を考慮し、現況地盤から30 c m分を除外した。

※3:盛土速度30cm/dayとした場合の、盛りたて完了後からの経過日数を示す。

(2)存在による影響(地盤沈下)

①予測内容

本事業では、基盤整備後、戸建住宅や業務・商業施設、公益施設等を誘致する計画としており、余盛り量を踏まえた基盤整備だけでは不充分と考え、供用開始後の建築物や構造物の加重等の沈下量を事前に促進させておくためのプレロード工法を前提とした施工盛土厚を予測した。

②予測地域及び予測地点

予測地域は、工事による影響(切土・盛土・掘削等)と同様とした。

③予測時期

予測時期は、工事による影響(切土・盛土・掘削等)と同様とした。

④予測方法

予測方法は、工事による影響(切土・盛土・掘削等)と同様とした。

⑤予測結果

供用開始後の建築物等の荷重を踏まえた沈下量は、表7.5-18に示すとおりである。なお、プレロード盛土の厚さは、表7.5-19に示す一般的な木造・鉄骨造住宅の荷重を参考に、盛土 1 m程度(19 k N/m²×厚さ1m=19 k N/m³)とした

表 7.5-18 プレロード盛土量を踏まえた沈下予測結果

			盛土条	件 (m)		最終	圧密度U90	沈下後の	圧密度
検討 地点	基礎地盤の 地質	盛土 基面高 H1	盛土 天端高① H2	盛土 天端高② H3	計画 盛土厚 D	放於 沈下量 S(m)	圧密度090 における 沈下量	盛土天端高	90%到達日数
	※ 1	※ 2					S1 (m)	H (m)	※ 3
B-1	粘性·有機	4. 75	6. 11	7. 11	2.36	0.55	0.50	6. 56	142
B-2	粘性·有機	3. 52	4. 97	5. 97	2. 45	0.30	0.27	5. 67	99
B-3	粘性·有機	3.08	4.30	5.30	2. 22	0.16	0.15	5. 14	22
B-4	粘性·有機	5. 72	6.92	7. 92	2. 20	0.61	0.55	7. 31	387
В-5	粘性·有機	4.44	5.67	6. 67	2. 23	0.31	0.28	6. 36	44
В-6	粘性·有機	3.72	4.69	5. 69	1.97	0. 23	0.20	5. 46	32
В-7	粘性·有機	3.60	4.81	5.81	2. 21	0. 19	0.17	5. 62	42
B-8	粘性·有機	4. 93	6. 59	7. 59	2.66	0.66	0.59	6. 93	463
В-9	粘性·有機	4. 33	5. 54	6. 54	2. 21	0. 25	0.22	6. 29	49
B-10	粘性土	3. 65	5. 31	6. 31	2.66	0.37	0.33	5. 94	69
B-11	粘性·有機	4. 96	6. 56	7. 56	2.60	0.53	0.48	7. 03	138

^{※1:}粘性・有機はそれぞれ粘性土、有機質土を示す。

^{※2:}盛土基面高は、東北地方太平洋沖地震による復興支援(圃場整備)の一環として表土を提供する事としている。 そのため、表土のすきとり分を考慮し、現況地盤から30 c m分を除外した。

^{※3:}盛土速度30cm/dayとした場合の、盛りたて完了後からの経過日数を示す。

表 7.5-19 建物の荷重

階数	荷重(k N/m²)
1階建て	$7 (5 \sim 9)$
2階建て	10 (8~12)
3階建て	14 (12~16)

出典:「小規模建築物基礎設計指針」(2008年、日本建築学会)

本事業はプレロード工法の採用により、圧密残留沈下量は事業区域東側については $1 c m \sim 4 c m$ 、西側の軟弱層が厚い区域は $5 c m \sim 7 c m と$ なる。

これは、表7.5-20に示す木造布基礎の圧密沈下における許容沈下量の参考値の10 c m以内であり、基盤整備後の建築物等の施工に伴う圧密沈下の影響は、木造布基礎の圧密沈下における許容沈下量の範囲内と予測される。

表 7.5-20 許容沈下量の参考値

沈下の種類	即時	沈下	圧密沈下		
基礎形式	布基礎 べた基礎		布基礎 べた基礎		
標準値	2.5 c m	2.5 c m 3∼ (4) c m		10∼ (15) c m	
最大値	4.0 c m	6∼ (8) c m	20 c m	20∼ (30) c m	

出典:「小規模建築物基礎設計指針」(2001年、日本建築学会)

(3)存在による影響(地盤沈下:液状化現象)

①予測内容

事業区域内では、大規模な地震が発生した場合、液状化を起こす可能性がある砂層の存在があることから、日本建築学会に基づき、液状化現象が生じる可能性を予測した。

②予測地域及び予測地点

予測地域は、事業区域全域とした。

③予測時期

予測時期は、工事が完了した時点とした。

④予測方法

存在による影響としては、供用後の土地の安全性という視点から、「建築基礎構造設計指針」 (2001 年、日本建築学会)に基づき、液状化現象の発生する可能性の判定を行った。 液状化現象が発生する可能性の判定対象とした土層条件は、以下に示す同指針の内容に従った。

液状化の判定を行う必要のある飽和土層は、一般に地表面から 20m程度以浅の沖積地層で、考慮すべき土地の種類は、細粒分含有率が 35%以下の土とする。

但し、埋立地盤など人工造成地盤では、細粒分含有率が35%以上の低塑性シルト、液性限界に近い含水比を持ったシルトなどが液状化した事例も報告されているので、粘土分(0.005mm以下の粒径を持つ土粒子)含有率が10%以下、または塑性指数が15%以下の埋立あるいは盛土地盤については液状化の判定を行う。

細粒分を含む礫や透水性の低い土層に囲まれた礫は液状化の可能性が否定できないので、 そのような場合にも液状化の判定を行う。

(「建築基礎構造設計指針」(2001年、日本建築学会) p.62 抜粋)

⑤予測条件

液状化現象が発生する可能性の判定条件は、建築基礎構造設計指針.2001, p.62」では、一般に地表面から 20m程度以浅の飽和した沖積層で以下の特徴を有する土については、液状化の検討を行うものとしている。

今回の調査では、地下水位以深、かつ G.L.-20 m 以浅の砂質土層 (As)(Dg)を対象に、室内 土質試験(粒度試験)を実施した。

液状化の判定条件を表 7.5-21、判定方法を表 7.5-22 に示す。

表 7.5-21 液状化現象が発生する可能性の判定条件

項目	条 件
検討の対象層	As1 層,As2 層,Dg 層
検討深度	標準貫入試験深度の中央または対象深度とする。
地層の単位体積重量	表 7.5-16 で設定した設計用単位体積重量を用いる。
細粒分含有率	土質試験結果を参考とする。
設計用水平加速度	αmax=200gal,300gal および350gal
地震のマグニチュード	M=7.3 (仮定値)
判定基準	FL>1:液状化の発生はない。 FL≦1:液状化の可能性がある。
使用電算ソフト	中央開発(株)「液状化判定プログラム CKC-Liq」

表 7.5-22 液状化の判定手法 (建築基礎構造設計指針)

液状化判定の対象 液状化の判定方法 液状化抵抗比Rの求め方 とすべき土層 一般に地表面から 20m程度以浅 各深さにおける液状化発生に対 液状化抵抗比は補正N値(Na)から、図-1に示す限界 の飽和した沖積層で以下の特徴を する安全率 FLを求める。 せん断ひずみ曲線5%より求める。 有する土については、液状化の検 対応する深度の補正N値は次式より求める。 討を行う。 $F_{\rm L} = \frac{\tau \, 1/\sigma \, 'z}{\tau \, d/\sigma \, 'z} = \frac{R}{L}$ $N_1 = C_N \cdot N$ ① 細粒土含有率35%以下の土 $C_N = \sqrt{98/\sigma'_z}$ ② 粘土分(0.005mm 以下)含有 $Na = N1 + \triangle Nf$ ここに、 率が 10%以下、または塑性指数 R:液状化抵抗比 15%以下の埋立あるいは盛土地盤 L:繰返しせん断応力比 ここに、 N_1 :換算N値 ③ 細粒土を含む礫や透水性の C_N: 拘束圧に関する換算係数 低い土層に囲まれた礫 $F_L>1:$ 液状化の発生はない σ'z :検討深さにおける有効土被り圧 (kPa) $F_{L} \leq 1$:液状化の可能性がある $\triangle N$ f : 細粒土含有率 FC に応じた補正N値増分で ※ 洪積層についても、低いN 図-2 による 値を示したり、続成作用を喪失し また、 F_L が 1 を切る土層が厚 N: トンビ法または自動落下法による実測<math>N値 ている場合には液状化の判定を行 くなるほど危険度が高くなるもの うのがよい。 と判断する。 ●著しい液状化 ■中位の液状化 ーライン せん断ひずみ振幅 繰返しせん断応力比Lの求め方 o非液状化 10% 5% | r=2% < 液状化 < 0.5 検討地点の地盤内の各深さに発生する等価な繰返しせん断応力比は 液状化抵抗比 (τι/σ',)または等価な繰返しせん断応力比 次式から求める。 0.4 $\frac{d}{z} = \gamma n \frac{\alpha \max}{g} \frac{\sigma z}{\sigma' z} \gamma d$ 0.3 >非液状化> ここに、 τd:水平面に生じる等価な一定繰返しせん断応力振幅(kPa) γn: 等価の繰返し回数に関する補正係数 0.1 $\gamma n = 0.1 \text{ (M-1)}$ M: 地震のマグニチュード α max : 地表面における設計用水平加速度(cm/s²) 00 [αmax の奨励値] 補正 N 値 (Na) 損傷限界検討用:150~200cm/s2 **動的せん断いすみの関係** 終局限界検討用: 350cm/s2 g : 重力加速度 (980cm/s²) σ'z:検討深さにおける有効土被り圧(kPa)

σz:検討深さにおける全土被り圧(kPa) γd: 地盤が剛体でないことによる低減係数 $\gamma d = 1 - 0.015 z$

z:地表面からの検討深さ (m)

 (ΔN_{p})

南正 N 值增分

30 細粒分含有率, FC (%)

⑥予測結果

As1, As2, Dg 層を対象とした液状化判定結果を表 7.5-23 に示す。(液状化の判定結果の詳細は、資料編 P 資 6-111~123 参照)

表 7.5-23(1) 液状化の判定結果(1)

設計用水平加速度 : α max=200gal(損傷限界状態)

地震のマグニチュード: M=7.3 (1995年1月兵庫県南部地震の規模) 地点番号 Во-3 Во-6 Bo-7 地層 地層 地層 地層 Fc Fc Fc Fc 計算深度 N値 N値 N値 FL. N値 FL FL FL記号 (%) 記号 (%) 記号 (%) 記号 (%) Ac1 16.6 2.5 1 Ac1 Ac1 As1 2 As1 2 26.0 0.8 4. 1 As1 4 19.3 1.8 As1 As1 8 1.5 3 3 Ар 1 As1 23.8 Ар 1 Ар As2 30.5 6.9 2 4 14 1 1 Aр Aр Aр 2 5 As2 25 15.4 Aр As2 16 13.5 6.4 28 14.9 18.9 6 As2 26 12.5 As2 24 12.4 As230 16. 1 As2 17 7.4 3. 5 10.9 50 15.6 20 6.9 As2 34 15.4 7 As2 26 As2 As2 46 13.0 11.9 16.0 31 14.0 As2 33 8 As2 29 As2 As2 11.6 7.2 16.3 31 12.8 As2 30 9.7 9 As2 24 As2 44 As2 7.7 10 As2 21 4.4 As2 47 16.7 As2 25 As2 22 3.3 As2 34 0.8 As2 39 16. 1 10.4 As2 9 12.9 1 1 10.8 As2 17.7 1 2 As2 21 3.4 As2 9.2 4.2 1.7 13 18 As231 As2 23 As2 1.3 1 4 As2 16 As2 12 13.2 0.9 As2 15 12.3 1. 1 15. 1 1 5 Dg 39 8.2 Dg 50 Dg 50 15.1 Dg 7.9 8.1 39 50 14. 2 16 40 Dg Dg 1 7 Dg 50 13.3 Dg 50 13.6 Dg 44 10.0 Dg 12.6 47 11.2 50 12.8 18 50 Dg Dg PL 値 2.50 0.00 0.23 0.00 液状化の危険度はかなり 液状化の危険度はかなり低 液状化の危険度は低い 危険度 液状化の危険度は低い 低い

表 7.5-23(2) 液状化の判定結果(2)

設計用水平加速度 : α max=300gal

地震のマグニチュード: M=7.3(1995 年 1 月兵庫県南部地震の規模)																
地点番号		Во	- 3			Во	-5			Во	9-6			Во	o-7	
計算深度	地層 記号	N値	Fc (%)	FL	地層 記号	N値	Fc (%)	FL	地層 記号	N値	Fc (%)	FL	地層 記号	N値	Fc (%)	FL
1	Ac1	2			Ac1	2			Ac1	1			As1	7	16.6	1.6
2	As1	2	26.0	0.6	As1	9		2.7	As1	4	19.3	0.7	As1	8		1.2
3	Ap	1			As1	8	23.8	1.0	Ap	1			Ap	3		
4	As2	14	30.5	4.6	Ap	1			Ap	2			Ap	1		
5	As2	25		10.3	Ap	2			As2	16	13.5	4.2	As2	28		9.9
6	As2	26		8.3	As2	24	18.9	8.3	As2	30		10.7	As2	17	7.4	2.3
7	As2	26		7.3	As2	50		10.4	As2	20		4.6	As2	34		10.3
8	As2	29		7.9	As2	46		10.7	As2	31		9.3	As2	33		8.7
9	As2	24	11.6	4.8	As2	44		10.9	As2	31		8.5	As2	30		6.4
1 0	As2	21		2.9	As2	47		11.1	As2	25		5.1	As2	22		2.2
1 1	As2	9	12.9	0.5					As2	39		10.7	As2	34		6.9
1 2	As2	21		2.3					As2	32		7.2	As2	50		11.8
1 3	As2	23		2.8					As2	18		1.1	As2	31		6.2
1 4	As2	16		0.8					As2	12	13.2	0.6	As2	15	12.3	0.8
1 5	Dg	39		5.5					Dg	50		10.1	Dg	50		10.1
1 6	Dg	40		5.4					Dg	39		5.2	Dg	50		9.5
1 7	Dg	50		8.8					Dg	50		9.1	Dg	44		6.7
1 8	Dg	50		8.4					Dg	47		7.4	Dg	50		8.5
PL値		3.	52		0.00			4.84			0.60					
危険度	液状	化の危	険度は	低い	液状化の危険度はかなり 低い			なり	液状化の危険度は低い			液状化の危険度は低い				

表 7.5-23(3) 液状化の判定結果(3)

設計用水平加速度 : α max=350gal(終局限界状態)

地震のマグニチュード: M=7.3 (1995年1月兵庫県南部地震の規模)

地震のマク	地震のマグニチュード: M=7.3 (1995 年 1 月兵庫県南部地震の規模)															
地点番号		Вс	o-3			Во	o-5		Bo-6			Bo-7				
計算深度	地層 記号	N値	Fc (%)	FL	地層 記号	N値	Fc (%)	FL	地層 記号	N値	Fc (%)	FL	地層 記号	N値	Fc (%)	FL
1	Ac1	2			Ac1	2			Ac1	1			As1	7	16.6	1.4
2	As1	2	26.0	0.5	As1	9		2.4	As1	4	19.3	0.6	As1	8		1.0
3	Ap	1			As1	8	23.8	0.9	Ap	1			Ap	3		
4	As2	14	30.5	3.9	Ap	1			Ap	2			Ap	1		
5	As2	25		8.8	Ap	2			As2	16	13.5	3.6	As2	28		8.5
6	As2	26		7.2	As2	24	18.9	7.1	As2	30		9.2	As2	17	7.4	2.0
7	As2	26		6.2	As2	50		8.9	As2	20		4.0	As2	34		8.8
8	As2	29		6.8	As2	46		9.1	As2	31		8.0	As2	33		7.5
9	As2	24	11.6	4.1	As2	44		9.3	As2	31		7.3	As2	30		5.5
1 0	As2	21		2.5	As2	47		9.5	As2	25		4.4	As2	22		1.9
1 1	As2	9	12.9	0.5					As2	39		9.2	As2	34		5.9
1 2	As2	21		1.9					As2	32		6.1	As2	50		10.1
1 3	As2	23		2.4					As2	18		0.9	As2	31		5.3
1 4	As2	16		0.7					As2	12	13.2	0.5	As2	15	12.3	0.7
1 5	Dg	39		4.7					Dg	50		8.7	Dg	50		8.6
1 6	Dg	40		4.6					Dg	39		4.5	Dg	50		8.1
1 7	Dg	50		7.6					Dg	50		7.8	Dg	44		5.7
1 8	Dg	50		7.2					Dg	47		6.4	Dg	50		7.3
PL値		8.	71		0.70			6.37				0.88				
危険度	液状	化の危	険度は	高い	液状化の危険度は低い			液状化の危険度は高い			液状化の危険度は低い					
残留沈下 量(Dcy)		3.52	2cm		0.51cm				2.50cm				0.50cm			

以上、損傷限界状態及び終局限界状態における液状化の判定を行った結果、損傷限界状態を想定した地震動に対して As1 層は一部を除き $F_L=1$ 以下となり、液状化発生の可能性がある地盤と予測される。終局限界状態を想定した地震動に対しても As1 層は一部を除き $F_L=1$ 以下のものが連続して確認されていて、液状化発生の可能性がある地盤と予測される。

また、建築基礎構造設計指針では表 7.5-24 に示すとおり、地表変位Dey (地表変位=残留沈下量) から液状化の程度を評価するとしており、判定結果では、終局限界状態での液状化の程度は「軽微」と予測される。

表 7.5-24 Dcy と液状化の程度の関係

D cy(cm)	液状化の程度
0	なし
-05	軽微
05-10	小
10-20	中
20-40	大
40-	甚大

出典:「建築基礎構造設計指針」(2001年、日本建築学会)

3) 環境の保全及び創造のための措置

(1)工事による影響(地盤沈下)

本事業はプレロード工法の採用により、圧密沈下の残留沈下量は $1 c m \sim 7 c m$ となると予測した。

また、本事業の実施にあたっては、周辺地域における住宅その他の建物等への地盤沈下の影響に対してさらに、以下の環境保全措置を講ずることとする。

・工事期間中、事業区域内の地盤高を測量し、動態観測を行う等、その変動を把握しながら 工事を進める。

(2)存在による影響(地盤沈下)

本事業はプレロード工法の採用により、圧密沈下の残留沈下量は、木造布基礎の圧密沈下に おける許容沈下量参考値の10 c m以内であり、基盤整備後の建築物等の施工に伴う圧密沈下の 影響は、木造布基礎の圧密沈下における許容沈下量の範囲内と予測した。

また、本事業の実施にあたっては、事業区域内に建設される住宅その他の建物等への地盤沈下の影響に対してさらに、以下の環境保全措置を講ずることとする。

- ・事業区域及び周辺地区の事前建物調査及び、沈下の即止と周辺への影響を回避するため動 態観測を行う。
- ・建築着工前にサウンディング試験(2 宅地に1 箇所程度)等により、建築基準地盤の強度 (粘性土は約30kN/m²)の確認を行う。

環境保全措置	事前建物調査	建築着工前の基礎地盤強度の			
	地盤高測量による動態観測	確認			
実施期間	工事中				
実施位置	事業区域内及び隣接周辺地区				
効果及び変化	効果を定量的に把握できないが、	実行可能な範囲で影響を低減で			
	きる。				
実行可能性	可能				
副次的な影響	なし				

表 7.5-25 環境の保全のための措置の検討結果整理

(3)存在による影響(地盤沈下:液状化現象)

マグニチュード 7.3 クラスの地震等が発生した場合、液状化が起こる可能性がある砂層 (As1) があり、想定される沈下量は最大で 3.5cm と予測した。本事業の実施にあたっては、液状化に対する環境保全対策として以下の措置を講ずることとする。

・液状化の可能性がある As1 層、As2 層は、土質試験の結果事業区域内に多く分布している事が確認されたため、工事着手前に補足ボーリング調査を実施し、分布を詳細に把握する。

・液状化対策工法としては土質性状を見極め、強固に締固めた砂杭を地中に造成して地盤 を改良する、サンドコンパクションパイル工法等による改良を採用する。

表 7.5-26 環境の保全のための措置の検討結果整理

環境保全措置	十分な法面の転圧	工事着手前の砂層 分布の把握	地盤改良による液 状化対策
実施期間	工事中		
実施位置	事業区域内外		
効果及び変化	効果を定量的に把握でき	ないが、実行可能な範	囲で影響を低減出来
	る。		
実施可能性	可能		
副次的な影響	なし		

4) 評価

(1)工事による影響(地盤沈下)

①回避低減に係る評価

ア. 評価方法

調査及び予測の結果並びに保全対策を踏まえ、周辺地域における住宅その他の建物等への地盤沈下の影響が、事業者の実行可能な範囲で回避され、または、低減されているものであるか否かを評価した。

イ. 評価結果

本事業はプレロード工法の採用により、圧密沈下の残留沈下量は $1 c m \sim 7 c m$ となると予測された。

また、本事業では工事着手前に事業区域内及び周辺地区の建物事前調査を実施し、工事期間中は、事業区域内及び周辺地区の地盤高を測量し、その動態観測を実施しながら工事を進めるなどの環境の保全のための措置を講ずることとしていることから、工事中の盛土に伴う地盤沈下の影響は、実行可能な範囲内で、最大限の回避・低減が図られていると評価する。

②基準や目標との整合性に係る評価

ア. 評価方法

予測結果が以下に示す基準又は目標との整合が図られているかを評価する。

・「周辺地域に対する地盤沈下の影響を未然に防止すること」

イ. 評価結果

本事業では、工事中に実施するプレロード工法により、圧密沈下をあらかじめ促進させていることから、周辺地域に対する地盤沈下の影響を未然に防止することと整合が図られていると評価する。

(2)存在による影響(地盤沈下)

①回避低減に係る評価

ア. 評価方法

調査及び予測の結果並びに保全対策を踏まえ、周辺地域における住宅その他の建物等への地盤沈下の影響が、事業者の実行可能な範囲で回避され、または、低減されているものであるか否かを評価した。

イ. 評価結果

本事業はプレロード工法の採用により、圧密沈下の残留沈下量は、木造布基礎の圧密沈下における許容沈下量の参考値の10 c m以内であり、基盤整備後の建築物等の施工に伴う圧密沈下の影響は、基盤整備後の建築物等の施工に伴う圧密沈下の影響は、木造布基礎の圧密沈下における許容沈下量の範囲内と予測した。

本事業では、建築着工前にサウンディング試験(2宅地に1箇所程度)等により、建築 基礎地盤の強度の確認(粘性土は約30kN/㎡)を行うなど、環境の保全のための措置を講 ずることとしていることから、改変後の地形や、工作物等の出現による盛土地盤の地盤沈 下の影響は、実行可能な範囲内で、最大源の回避・低減が図られていると評価する。

②基準や目標との整合性に係る評価

ア. 評価方法

予測結果が以下に示す基準又は目標との整合が図られているかを評価する。

・「事業区域内の地盤沈下の影響を未然に防止すること」

イ. 評価結果

本事業では、工事中に実施するプレロード工法により、圧密沈下をあらかじめ促進させていることから、地盤沈下の影響を未然に防止することと整合が図られていると評価する。

(3)存在による影響(地盤沈下:液状化現象)

①回避低減に係る評価

ア. 評価方法

調査及び予測の結果並びに保全対策を踏まえ、周辺地域における住宅その他の建物の地盤沈下の影響が、事業者の実行可能な範囲で回避され、又は低減されるのであるか否かについて検討する。

イ. 評価結果

マグニチュード 7.3 クラスの地震等が発生した場合、液状化が起こる可能性がある砂層 (As1) (As2) があるが、想定される沈下量は最大で 3.5cm と予測した。

また、本事業では、工事着手前に補足ボーリング調査を実施し、詳細な分布を把握するとともに土質性状に最適な、強固に締固めた砂杭を地中に造成して地盤を改良する、サンドコンパクションパイル工法等による改良を採用するなどの環境の保全のための措置を講ずることとしていることから、液状化現象の影響は、実行可能な範囲内で、最大限の回避・低減が図られていると評価する。

②基準や目標との整合性に係る評価

ア. 評価方法

予測結果が以下に示す基準又は目標との整合が図られるか否かを評価した。

・「周辺地域に対する影響を未然に防止すること」

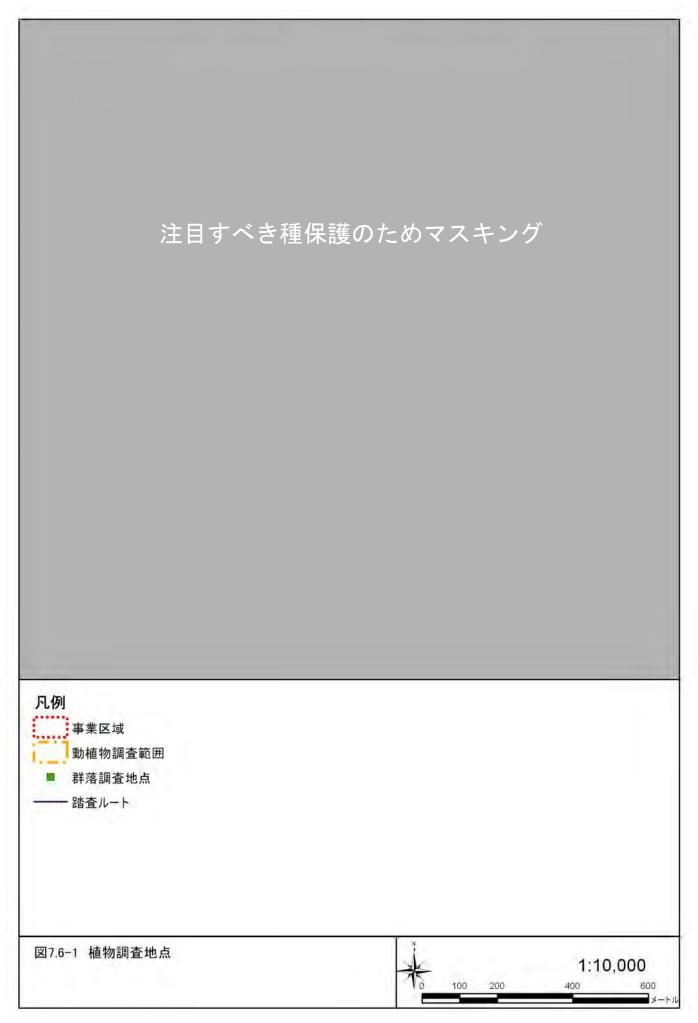
イ. 評価結果

本事業では、液状化現象が想定される砂層については、工事着手前に補足ボーリング調査を実施し、詳細な分布を把握するとともに土質性状に最適な、強固に締固めた砂杭を地中に造成して地盤を改良する、サンドコンパクションパイル工法等による改良を採用するなどの環境の保全及び創造のための措置を講ずることから、周辺地域に対する影響を未然に防止することと整合が図られていると評価する。

7.6.1 調 査

1)調査項目

事業区域及びその周辺における植物相及び注目すべき種、注目すべき群落の状況を把握するために、以下の項目について調査を行った。


表 7.6-1 調査項目

	調査項目	調査手法					
植物	植物相	生育種リストアップのための任意全域踏査					
	植生	植物社会学に準じたコドラート方形枠調査と植生境界区分 調査					
	居久根	植物相に準ずる調査、樹木の簡易生育状況調査					

2)調査地域等

調査地域は、事業区域の周辺 200mの範囲とする。

調査地域は図 7.6-1 に示す。主な踏査ルート、植生調査地点をあわせて示す。

3)調査方法

(1)植物相

調査地域を踏査し、調査地域内に生育する植物(維管束植物を対象とし、苔類のウキゴケ科で注目すべき種が見られたことから一部これらの種についても取上げた)の出現種を記録した。現地で同定できなかったものは標本を作製して後日同定し、合せてリストを作成した。リストの種の配列については、「自然環境保全基礎調査 植物目録」(1987年、環境庁 自然保護局編)に従い、これに記載のない種類、例えば外来植物については「日本帰化植物写真図鑑 第1巻」(2001年7月、清水矩宏他)、「同 第2巻」(2010年12月、清水矩宏他)に従い、在来種と区別するために、植栽、逸出、帰化の記号を用いて付記した。外来種の定義は前出の「日本帰化植物写真図鑑」に従った。

また、踏査中に注目すべき植物種が見つかった場合に、種名及び確認地点を記録した。

(2)植生

植物社会学に準拠した方法により植物群落の区分を行った。

調査地域内に成立している植物群落を確認しながら踏査し、均質で代表的な植分を選んで調査地点を設定した。植分の広がりに応じてコドラート調査枠を設定し、調査票に必要事項を記入したのち、図 7.6-2 に示す階層毎に出現種のリストを作成した上で、階層毎かつ種毎にブラウンーブランケ(Braun-Blanquet)の全推定法に従って、被度と個体数を組み合わせた階級である優占度を測定した。また同時に種毎の生育状況(個体の集合・離散の状態)を判定する指標の群度を測定した。

以上の方法により、合計 12 地点で植物群落調査を実施し、群落組成表を作成して群落を 区分した。

上記群落区分と現地での植生境界区分、空中写真判読と合せて現存植生図を作成した。

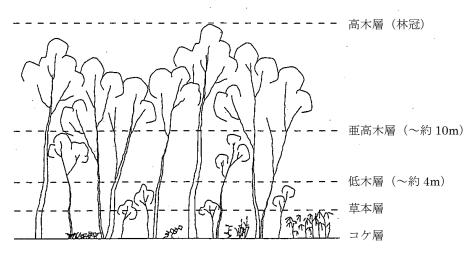


図 7.6-2 階層の判断基準

被度5

被度4

被度3

被度2

被度1

被度 5: 被度がコドラート面積の 3/4 以上を占めているもの 被度 4: 被度がコドラート面積の $1/2\sim3/4$ を占めているもの 被度 3: 被度がコドラート面積の $1/4\sim1/2$ を占めているもの

被度 2 : 個体数が極めて多いか、又は少なくとも被度が $1/10\sim1/4$ を占めているもの 被度 1 : 個体数は多いが被度が 1/20 以下、又は被度が 1/10 以下で個体数が少ないもの

被度+: 個体数も少なく被度も少ないもの

被度 r: 極めてまれに最低被度で出現するもの (+記号にまとめられることも多い)

図 7.6-3 被度(優占度)の判定基準

群度5

群度4

群度3

群度 2

群度1

群度5: 調査区内にカーペット状に一面に生育しているもの

群度4: 大きなまだら状又は、カーベット状のあちこちに穴があいているような状態のもの

群度3: 小群のまだら状のもの 群度2: 小群をなしているもの 群度1: 単独で生えているもの

図 7.6-4 群度の判定基準

(3)居久根

調査地域に見られるややまとまった樹林地となっている梅ノ木地区及び長喜城の居久根について、生育種をリストアップした。梅ノ木地区の居久根は、できる限りの範囲で林内を踏査した。長喜城の居久根については、周辺からの観察を行った。

また、梅ノ木地区の居久根について、胸高直径 5cm 以上の個体の生育状況を記録した。

4)調査期日

調査期日は表 7.6-2 に示す通りである。

表 7.6-2 調査期日

項目	季節	調査期日
	夏季	平成 23 年 9 月 12 日~14 日
植物相	秋季	平成 23 年 10 月 24 日~26 日
	春季	平成 24 年 4 月 26 日~28 日
植生	夏季	平成 23 年 9 月 12 日~14 日
但生	春季	平成 24 年 4 月 26 日~28 日
居久根の状況	夏季	平成 23 年 9 月 12 日~14 日
西外似の人仇	春季	平成 24 年 4 月 26 日~28 日

5)調査結果

(1)植物相

①確認種

現地調査で記録された植物は表 7.6-3 に示す 92 科 417 種類(品種などを含む)である。 内訳は、事業区域では 86 科 372 種類、周辺区域では 73 科 305 種類である。

調査地域は市街地に隣接した水田耕作地帯と市街地で、生育立地環境の多様性で見ると極めて単調な区域である。一方、事業区域内及び周辺区域の一部に居久根があって、樹林を形成している。記録された植物についてみると、低地に開かれた水田耕作地を主とした農耕地及び住宅地に普通に出現する種類がほとんどであるが、居久根では樹林性の種類が数多く見られた。

水田耕作地では周辺区域の一部に休耕地が僅かに見られる他はすべてイネの作付地として利用されており、ウキゴケ、マツモ、タネツケバナ、クサネム、ミゾハコベ、キカシグサ、チョウジタデ、セリ、ヒメジソ、キクモ、アゼナ、アゼトウガラシ、トキワハゼ、ムシクサ、ミゾカクシ、アメリカセンダングサ、タウコギ、トキンソウ、タカサブロウ、ハキダメギク、コナギ、イボクサ、イヌビエ、ケイヌビエ、タイヌビエ、エゾノサヤヌカグサ、ヌカキビ、オオクサキビ、マコモ、アオウキクザ、ウキクサ、コウキクサ、ヒメクグ、タマガヤツリ、マツバイ、クログワイ、テンツキ、ヒデリコ、ホタルイ、イヌホタルイなどがイネに紛れて生育している。これらの種も除草管理がなされているところでは僅かである。

耕作地で最も植物種が多く見られるところは畔及び水路脇などの区域である。水路内にはほとんど生育種が見られないものの、水際から法面には多くの種類が生育している。ここでは、近年生育立地が失われてきたことにより減少していると考えられている種や保全上重要と考えられている種(ふれあい種:注目すべき種の項で詳述する)であるミゾソバ、イヌナズナ、ナズナ、マキエハギ、カワラヨモギ、クサヨシ、ネズミノオなどが見られ、スギナ、ホトケノザ、ヨモギ、フキ、イヌビエ、チガヤ、ススキ、チカラシバ、スズメノカタビラなども普通に生育している。

ども普通に生育している。

一方、樹林地が少ない当該地区では事業区域内及び周辺区域の長喜城地区の居久根が特異な景観を呈している。ここでは植栽されたスギなどの他、

、ヤマグワ、
、ヤマガウ、、ネズミモチなどの亜高木以上の種が樹林を構成し、クマワラビ、ナンテン、ビワ、カマツカ、
、ツタウルシ、マサキ、ツリバナ、マユミ、
、アマチャヅル、キカラスウリ、、ヤマウコギ、タラノキ、、ヤツデ、キヅタ、
、オモト、ケチヂミザサなどの低木、草本類がその下に生育している。
居久根の植物相の中でも、
は「宮城県植物目録 2000」((2001 年 3 月,宮城植物の会・宮城県植物誌編集委員会)に記載がなく、「北本州産高等植物チェックリスト(1991 年,上野雄規編 東北植物研究会)」によると分布が福島県より南部とされている種

である。居久根は、激減している低地平野部の樹林地の中で、暖温帯樹林地生種の生育立地

としても、その存在が注目される。

表 7.6-3 植物相調査結果

		T	- IE 1/3 IE II/3 IE.				
分類群	科名	和名					
コケ植物	ウキゴケ科	ウキゴケ					
コク個物	リヤコク科	イチョウウキゴケ		_		-	
シダ植物	トクサ科	スギナ	0	0	0		
ング1040	オシダ科	ヤブソテツ		0	0	+	+
	オング作	クマワラビ		0		+	+
		オクマワラビ	0		0	+	+
	メシダ科	サトメシダ			0	+	
	7. 2 7.17	イヌワラビ	0	0	0	0	
		シケシダ					+
種子植物	マツ科	ヒマラヤスギ		0	0	+	植栽
裸子植物	Y 7 11T	クロマツ			0	0	植栽
1木 1 1世40	スギ科	スギ		0	0	0	植栽
	イチイ科	カヤ					植栽
被子植物	クルミ科	オニグルミ	- 				1世水
双子葉植物	ヤナギ科	タチヤナギ			0		
離弁花類	カバノキ科	イヌシデ					
門此开16規	ブナ科	クリ		0		0	植栽
	J J 11T	シラカシ					1世水
	ニレ科	エノキ	_				
	- V 17	ケヤキ	_				
	クワ科	クワクサ					+
	グソ付	カナムグラ	0	0	0	0	+
	+	トウグワ	0	0	0	0	逸出
	+				0	0	远 山
	イラクサ科	ヤマグワ クサコアカソ	0	0	0	<u> </u>	
	1ノグリ件					-	
	+	オニヤブマオ	0		0	+	+
	+	ヤブマオ アカソ	0	+	0	-	
			0		0	_	
	カデ科	アオミズミズヒキ		0	0	_	
	タデ科	ヤナギタデ		U	0	0	
	+	オオイヌタデ	0	+	0	-	
			0				
		イヌタデ	0		0	_	
		イシミカワ	0		0	_	
		ハナタデ サナエタデ	0			-	
			0		0	_	
		アキノウナギツカミ ミゾソバ			0		
		ミチヤナギ	0		0	_	
		イタドリ			0		
		ヒメスイバ			0		帰化
		ナガバギシギシ			0	_	
		ギシギシ エゾノギシギシ	0		0		
	1 3.12 3-19		0		0		帰化
	ヤマゴボウ科 オシロイバナ科	ヨウシュヤマゴボウ	0	0	0		帰化
		オシロイバナ			0		逸出
	ハマミズナ科	マツバギク			0		逸出
	スベリヒユ科	マツバボタン			0	+	逸出
	ナゴン・エゼ	スベリヒユ	0	1	0	-	[3.71 _c
	ナデシコ科	オランダミミナグサ	0	1	0		帰化
		ツメクサ	0	1	0	_	[3] /I.
	+	ムシトリナデシコ	0	1			帰化
	+	ノミノフスマ	0	1	0		-
		ウシハコベ	0	1	0	_	[3] /I.
	+	コハコベ	0		0	_	帰化
	マルがが	ミドリハコベ	0	0	0	0	
	アカザ科	シロザ	0	1	0		J= 11,
	+	ケアリタソウ	0	1	0		帰化
		コアカザ	0	1	0	_	帰化
	1, -, 41	ゴウシュウアリタソウ	0	1	0		帰化
	ヒユ科	ヒカゲイノコズチ		0			-
		ヒナタイノコズチ	0	1	0	_	-
		イヌビユ	0	1	0		
	カッ ン L tv	ホナガイヌビユ	0	1	0	_	帰化
	クスノキ科	クスノキ ゲッケイジ				0	逸出
	+	ゲッケイジュ			0		植栽?
	T- 1 / 12 24 1244	シロダモ					\& III
	キンポウゲ科	オダマキ	0		0	_	逸出
		センニンソウ		0	0	0	
	-) -XX-1	キツネノボタン	0		0	_	海川
	メギ科	ナンテン		0	0	0	逸出
	アケビ科	アケビ		0	0	0	
		ミツバアケビ		0		-	
	11	ムベ		0			
	マツモ科	マツモ					
	ドクダミ科	ドクダミ	0	0	0	0	X
	マタタビ科	キウイ	1	1	0	1	逸出
	ツバキ科	ヤブツバキ					旭田

分類群	科名	和名					
	ケシ科	クサノオウ	0		0		
		ナガミヒナゲシ	Ö		Ö	0	帰化
	フウチョウソウ科	セイヨウフウチョウソウ	0		0		帰化
	アブラナ科	シロイヌナズナ ハルザキヤマガラシ					帰化
		セイヨウカラシナ	0		0		帰化
		セイヨウアブラナ	Ö		Ö		帰化
		ナズナ					
		タネツケバナ	0		0		
		ヤマタネツケバナ	0		0		
		マメグンバイナズナ	0		0		帰化
		イヌガラシ	Ö		Ö		7/6/16
		スカシタゴボウ	0		0		
	ベンケイソウ科	コモチマンネングサ	0		0		
	コキャンカ利	ツルマンネングサ	0		0		帰化
	ユキノシタ科	ウツギ ガクアジサイ	0	0	0	0	逸出
		ユキノシタ					延田
	トベラ科	トベラ			0		
	バラ科	キンミズヒキ	0				
		ボケ		0			逸出
		ヘビイチゴ ヤブヘビイチゴ	0		0		
		ビワ		0			
		ヤマブキ		0			
		オヘビイチゴ	0				
		カマツカ		0			
		イヌザクラ		0			-
		ウワミズザクラ オオシマザクラ		0			
		ヤマナシ		0			
		シャリンバイ					
		ノイバラ	0	0			
		カジイチゴ					
	→ J ∰	ユキヤナギ					
	マメ科	クサネム ネムノキ	0	0	0	0	
		ヤブマメ	0	Ŭ			
		ウスバヤブマメ		0		0	
		ノササゲ		0		0	
		ツルマメ	0		0		
		マルバヤハズソウヤハズソウ	0		0		
		メドハギ	Ö		0		
		マキエハギ			Ĭ		
		ミヤコグサ	0		0		
		クズ	0	0	0		I= //.
		ニセアカシア ムラサキツメクサ		0	0	0	帰化 帰化
		シロツメクサ	0		0		帰化
		ヤハズエンドウ					70716
_		ヤブツルアズキ			0		
	カカバンが	フジ		1	0	0	J= //-
	カタバミ科	イモカタバミ カタバミ	0		0	0	帰化
		オッタチカタバミ	0		0	0	帰化
	フウロソウ科	アメリカフウロ	Ö		Ö		帰化
		ヒメフウロ	0				逸出
	1 1 10 1 10 1	ゲンノショウコ	0		0		
	トウダイグサ科	エノキグサ	0		0		[] [] [] [] [] [] [] [] [] [] [] [] [] [
		ハイニシキソウ コニシキソウ	0		0		帰化 帰化
		アカメガシワ		0	U	0	лр:[С
	ユズリハ科	ユズリハ				Ĭ	
	ミカン科	ナツミカン	_	0			逸出
	1-1.121.41	カラスザンショウ		0			Nr. 111
	センダン科 ウルシ科	センダン ツタウルシ		0		_	逸出
	モチノキ科	イヌツゲ					
	ニシキギ科	ツルウメモドキ		0		0	
		コマユミ		0	<u> </u>		
_		ツルマサキ		0			
		マサキ		0	0	0	
		ツリバナ マユミ		0		0	
		マユミ	0	0			
	クロウメモドキ科	ケンポナシ	+	0			+
		ナツメ			0		逸出
	ブドウ科	ノブドウ	0	0	0	0	

分類群	科名	和名					
		ヤブガラシ	0	0	0	0	
		ツタ	Ŭ	Ö			
	シナノキ科	シナノキ		Ö			
	アオイ科	ムクゲ	0				植栽
		ゼニバアオイ	0		0		帰化
	₩ > 4V	ゼニアオイ	0		0		帰化
	グミ科 スミレ科	オオナワシログミ タチツボスミレ					
	ハミレ料	スミレ	0				+
		ヒメスミレ	0				
		ニオイスミレ			0		帰化
		オカスミレ	0		Ŭ		71710
		ツボスミレ	Ö		0		
		ノジスミレ	0		0		
	ミゾハコベ科	ミゾハコベ	0		0		
	シュウカイドウ科	シュウカイドウ		0			帰化
	ウリ科	アマチャヅル		0			
		スズメウリ		0	0	0	illiada (I. I.aka
		アレチウリ	0		0		特定外来租
	5 0 . WM	キカラスウリ	0	0	0	0	
	ミソハギ科	キカシグサ	0				
	アカバナ科	チョウジタデ メマツヨイグサ	0	 	0	-	帰化
		ユウゲショウ	0	1	0		帰化
	ミズキ科	アオキ	Ĭ		Ĭ		/申1日
	N 2 1 1 1 1	ヤマボウシ		0			+
		ミズキ		0			+
	ウコギ科	ヤマウコギ		Ö			1
	1	ウド		Ö		0	1
		タラノキ		Ö		Ö	
		カクレミノ					
		ヤツデ		0			
		キヅタ		0		0	
	セリ科	シャク	0				
		ノチドメ	0		0		
		オオチドメ	0		0		
		チドメグサ			0		
牟花類	レヴェムバが	セリ カラタチバナ	0		0		
十化類	ヤブコウジ科	ヤブコウジ		0			
	カキノキ科	カキノキ		0		0	逸出
	モクセイ科	シナレンギョウ				0	逸出
	27 2 111	ネズミモチ		0		Ŏ	Z
		トウネズミモチ		Ö		Ö	逸出
		ヒイラギ		Ö		_	
	キョウチクトウ科	ニチニチソウ	0				逸出
		ツルニチニチソウ	0		0	0	帰化
	ガガイモ科	ガガイモ	0		0		
	アカネ科	ヤエムグラ	0		0		
		ヘクソカズラ	0	0	0	0	
	, , , , , , , , , , , ,	アカネ	0	0	0	0	
	ヒルガオ科	コヒルガオ		 	0	0	
		ヒルガオ	0	1	0	1	[3 /I.
		セイヨウヒルガオ	0	1			帰化
		マルバルコウ アサガオ	0		0		帰化 逸出
		マルバアサガオ		0	+		帰化
	ムラサキ科	ハナイバナ	0		0		л#1L
		ヒレハリソウ		†	Ö	1	帰化
		キュウリグサ	0	1	0	+	70716
	クマツヅラ科	コムラサキ	Ö	İ			逸出?
		クサギ		0		0	
		ヒメイワダレソウ	0				帰化
		ヤナギハナガサ			0		帰化
	シソ科	セイヨウジュウニヒトエ				0	帰化
· <u></u>		クルマバナ			0		
		トウバナ	0		0		
		イヌトウバナ		<u> </u>	0		
		ナギナタコウジュ	0	L	0		
		カキドオシ	0	0	0	0	+
		ホトケノザ	0	_	0	0	[3 II.
		ヒメオドリコソウ	0	0	0	0	帰化
		メハジキ	0	1	0		+
		コシロネ マルバハッカ	0	1	0		帰化
		ヒメジソ	0	1	0		л#1L
		イヌコウジュ	0	1			+
	1				 		36.11
		シソ	()		()		挽出
		シソ イヌゴマ	0		0		逸出

分類群	科名	和名					
		クコ	0				
		トマト	0				逸出
		ホオズキ アメリカイヌホオズキ	0				逸出 帰化
		オオマルバノホロシ			0		神工口
		イヌホオズキ	0		Ö		
	ゴマノハグサ科	ツタバウンラン			0		帰化
		キクモ アメリカアゼナ	0		0		帰化
		アゼトウガラシ	0		0		カサイム
		アゼナ	Ö		Ö		
		ムラサキサギゴケ	0		0		
		トキワハゼ ビロードモウズイカ	0		0		13 /1.
		ムシクサ	0		0		帰化
		タチイヌノフグリ	Ö	0	Ö		帰化
		フラサバソウ	0		0		帰化
		オオイヌノフグリ	0		0		帰化
	ノウゼンカズラ科	ノウゼンカズラ キササゲ		0	0	0	逸出 帰化
		キリ	0	0		0	逸出
	ハエドクソウ科	ハエドクソウ		Ö		L	7
	オオバコ科	オオバコ	0		0	0	
		ヘラオオバコ	0		0		帰化
	スイカズラ科	セイヨウオオバコ スイカズラ	0	0	0	0	帰化
	ハコルハノヤ	ニワトコ		0			1
		ガマズミ		Ö			
	オミナエシ科	オトコエシ	0				
	キキョウ科	ホタルブクロ			0		
	キク科	ミゾカクシ ブタクサ	0		0		帰化
	1 / 17	オオブタクサ	0	0	0	0	帰化
		カワラヨモギ		Ĭ	Ĭ		7,1,10
		ヨモギ	0		0		
		ノコンギク	0		0		ほル
		ヒロハホウキギク ホウキギク	0		0		帰化
		オオホウキギク	0		0		帰化
		コバノセンダングサ	Ö				帰化
		アメリカセンダングサ	0		0		帰化
		コセンダングサ	0		0		帰化
		シロノセンダングサ タウコギ	0		0		帰化
		トキンソウ	0		0		
		フランスギク	0				帰化
		ノハラアザミ			0		
		オオアレチノギク	0		0		帰化
		オオキンケイギク ハルシャギク	0		0		特定外来和
		コスモス	Ö		Ö		逸出
		キバナコスモス	0		Ö		逸出
		ベニバナボロギク	0	0	0		帰化
		アメリカタカサブロウ	0		0		帰化
		タカサブロウ ヒメムカシヨモギ	0		0		帰化
		ハルジオン	0	0	0	0	帰化
		ハキダメギク	Ö		0	Ö	帰化
		ハハコグサ	0		0	0	(m . v .
		タチチチコグサ セイタカハハコグサ	0		0		帰化
		ウラジロチチコグサ	0	0	0		帰化
		キクイモ	0		Ö		帰化
		コシカギク	0		0		帰化
		オオジシバリ	0		0		
		ニガナ カントウヨメナ	0		0		+
	+	アキノノゲシ	0	+	0		+
		トゲチシャ	Ö	0	Ö		帰化
		フキ	_	Ö			
		ノボロギク	0		0		帰化
		セイタカアワダチソウ	0	0	0	0	帰化
		オオアワダチソウオニノゲシ	0		0	0	帰化
	+	ノゲシ	0	+	0		/#TL
		ヒメジョオン	Ö	0	Ö	0	帰化
_		エゾタンポポ					
· · ·		セイヨウタンポポ	0	0	0	0	帰化
		オオオナモミ	0		0		帰化
	_1	オニタビラコ	0	1	0		

分類群	科名	和名					
		ヒメキンセンカ	0				帰化
単子葉植物	ユリ科	アサツキ	0				
		ニラ	0				逸出
		ヤブカンゾウ コバギボウシ	0		0	_	
		ヤブラン		0	0	+	
		ムスカリ属の1種	0	Ŭ	Ö		逸出
		ジャノヒゲ	Ō	0	Ō	0	
		オオバジャノヒゲ					
		アマドコロ	0				
		オモト		0		0	逸出
	ヒガンバナ科	サルトリイバラ ヒガンバナ	0	0	0	0	
	しカンハナ科	スイセン	0	0	0	0	逸出
	ヤマノイモ科	ナガイモ	Ö	Ŭ	Ŭ		逸出
		ヤマノイモ	-	0			
		オニドコロ		0			
	ミズアオイ科	コナギ					
	アヤメ科	シャガ		0			逸出
		キショウブ ヒメヒオオギズイセン	0	0		_	帰化 帰化
	イグサ科	クサイ		0	0	+	カサイム
	1 2 2 11	スズメノヤリ			Ö		
	ツユクサ科	ツユクサ	0	0	0	0	1
		イボクサ	Ö		Ö		
	イネ科	カモジグサ	0		0		
		コヌカグサ	0		0		帰化
		スズメノテッポウ	0				la n
	1	ケナシハルガヤ コブナグサ	0	1	0		帰化
		イヌムギ	0		0	_	帰化
		ジュズダマ	0		0	+	神工口
		カモガヤ	Ö		Ö		帰化
		メヒシバ	Ō		Ö		
		アキメヒシバ	0		0		
		イヌビエ	0		0		
		ケイヌビエ	0		0		
		タイヌビエ	0		0		
		オヒシバ シナダレスズメガヤ	0		0		帰化
		カゼクサ					カサイム
		ニワホコリ	0	—	0		
		コスズメガヤ	Ö		Ö		帰化
		オニウシノケグサ	0		0		帰化
		ヒロハノウシノケグサ	0		0		帰化
		チガヤ	0		0		
		アシカキ					
		エゾノサヤヌカグサ					J= /I.c
		ネズミムギ ホソムギ	0		0		帰化
		アシボソ	0		0	+	カサイム
		ススキ	Ö		Ö		
		ケチヂミザサ		0			
		コチヂミザサ		0			
		ヌカキビ	0	0	0		
	ļ	オオクサキビ	0	ļ	0		帰化
	1	スズメノヒエ	0	1	0		
		チカラシバ クサヨシ	0		0		
	1	ヨシ		 			
		ツルヨシ			0		
		マダケ		0	Ť		植栽
		モウソウチク		Ö			植栽
		アズマネザサ					
		スズメノカタビラ	0	ļ	0		I
	1	ナガハグサ	0		0		帰化
		ヤダケ オオバザサ		0		0	
		ミヤコザサ			1	0	
		アズマザサ		0	0	0	+
		アキノエノコログサ	0	† Š	0		
		コツブキンエノコロ	Ö		Ö		
		キンエノコロ	0		0		
				1			
		エノコログサ	0		0		
		エノコログサ ネズミノオ					
		エノコログサ ネズミノオ ナギナタガヤ	0		0		帰化
		エノコログサ ネズミノオ ナギナタガヤ マコモ					帰化
		エノコログサ ネズミノオ ナギナタガヤ					帰化

分類群	科名	和名					
	ウキクサ科	アオウキクサ	0		0		
		コウキクサ	0		0		
		ウキクサ	0		0		
	カヤツリグサ科	アオスゲ		0	0		
		ビロードスゲ	0	0	0		
		ヒメクグ	0		0		
		タマガヤツリ	0		0		
		アゼガヤツリ			0		
		コゴメガヤツリ	0		0		
		カヤツリグサ	0		0		
		アオガヤツリ	0				
		ウシクグ	0		0		
		マツバイ	0		0		
		クログワイ	0				
		テンツキ	0		0		
		ヒデリコ	0		0		
		ホタルイ	0		0		
		イヌホタルイ	0		0		
	ショウガ科	ミョウガ		0			逸出
計	92	417	280	131	279	77	

②注目すべき種

現地調査で確認された種のうち、表 7.6-4 に示した選定根拠に該当する種類は 24 科 40 種 類があげられる。「平成 15 年度自然環境基礎調査報告書」(2004 年,仙台市)で取上げられ ている種類については、特に環境指標種及びふれあい種は地域独自の選定によるもので、地 域特性を考える上で重要であり、すべての掲載種を対象とした。また、「宮城県植物目録 2000」 (2001年 宮城植物の会・宮城県植物誌編集委員会)に記載のないカクレミノとカラタチバ ナは分布限界種と考えられることから、下記根拠に当てはまらないが V-C1 に準じ選定した。 表 7.6-5 に注目すべき種一覧を、表 7.6-6 に種の特性表を示す。また、図 7.6-5 に確認地点 位置を示す。

なお、現地調査において、「特定外来生物による生態系等に係る被害の防止に関する法律」 (平成16年6月 法第78号) に指定されている特定外来生物として、アレチウリとオオキ ンケイギクの2種が確認されている。アレチウリは、事業区域及び周辺の水路脇の随所にや やまとまって生育していた。オオキンケイギクは事業区域及び周辺及び路傍に逸出と見られ る個体が少数生育していた。

		表 7.6-4 注目	目すべき種の選定根拠
	選定根拠		カテゴリー
記号	名称	記号	区分
I	「文化財保護法」(1950年)	特	特別天然記念物指定種
		天	天然記念物指定種
II	「絶滅の恐れのある野生動	国内	国内希少野生動植物種
	植物の種の保存に関する法	国際	国際希少野生動植物種
	律(種の保存法)」(1992 年)	緊急	緊急指定種
Ш	「哺乳類、汽水・淡水魚類、	EX	絶滅(EX)
	昆虫類、貝類、植物Ⅰ及びⅡ	EW	野生絶滅(EW)
	のレッドリストの見直しに	CR	絶滅危惧 I A 類(CR)
	ついて(環境省報道発表資	EN	絶滅危惧 I B 類(EN)
	料)」(2007年)	VU	絶滅危惧Ⅱ類(VU)
		NT	準絶滅危惧(NT)
		DD	情報不足 (DD)
		LP	絶滅のおそれのある地域個体群 (LP)
IV	「宮城県の希少な野生動植	EX	絶滅(EX)
	物・宮城県レッドデータブ	CR+EN	絶滅危惧 I 類(CR+EN)
	ック・(宮城県)」(2001 年)	VU	絶滅危惧Ⅱ類(VU)
		NT	準絶滅危惧(NT)
		DD	情報不足(DD)
		YO	要注目種(要)
V	「平成6年度自然環境基礎調	A	レッドデータブック注1該当種
	査報告書(仙台市)」(1995	B1	希産種 (市内の出現頻度がごくまれ)
	年)	B2	希産種(市内の出現頻度がまれ)
		C1	分布限界種 ^{注2} (仙台市付近を北限及び南限とする種)
		C2	分布限界種 ^注 2(県内における分布頻度が、まれ又はごくまれの種)
		D	基準標本種(仙台市をタイプ・ロカリティーとする種)
		E	景観構成種(景観構成に主要な役割を演ずる種)
		F1	絶滅危険種(レッドデータブックのリストには含まれていない が、仙台市において絶滅が心配される種
		F2	絶滅危険種(レッドデータブックのリストには含まれていない
			が、全国レベルでそれらに準じる種
VI	「平成 15 年度自然環境基礎	11, 2, 3, 4	学術上重要種 ^{注 3}
	調査報告書(仙台市)」(2004	②A、C、B	減少種注4
	年)	3	環境指標種
		4	ふれあい種
		5	RDB 種(国 RDB 種) ^{注 5}
L,		IVに準ずる	RDB種(県RDB種) ^{注6}

キュロル オロナッキほの 電中担加

注1) ここでいうレッドデータブックとは「我が国における保護上重要な植物種の現状」(1989 年)を指しているものとする注2)分布限界種は、宮城県を北限又は南限とする種のうちから選定されたものである注3)学術上重要な種のうち、 1 仙台市においてもともと希産あるいは希少である種。あるいは分布が限定されている種。 2 仙台市が分布の北限、南限となっている種。あるいは隔離分布となっている種。 3 仙台市が模式産地(タイプロカリティー)となっている種。

⁴ その他、学術上重要な種。 注 4) 減少種のうち、 A:現在ほとんど見ることが出来ない。B:減少が著しい。C:減少している。 注 5) RDB 種(国 RDB 種)は IUCN(国際自然保護連合)のカテゴリーに準じて 1997 年作成されたもので、Ⅲ及びV-A とは同一で はない 注 6) IVと同じ。

表 7.6-5 注目すべき種一覧

			確認	区域						定根拠		
科名	和名	事業	区域	周辺	区域		1	1	进	足似她	1	備考
行右	1/11/12					I	II	Ш	IV	V	VI	7用 45
ウキゴケ科	ウキコ゛ケ							CR+EN				
	イチョウウキコ゛ケ							CR+EN				
1チ1科	カヤ										①-2④	植栽
クルミ科	オニク゛ルミ										② (丘陵 B、市街地 B、田園 B) ③④	
カバノキ科	イヌシテ゛										①-4② (山地 C、丘陵 B、 海浜 C) ③	
ブナ科	シラカシ										①-2②(田園 C、海浜 C) ③④	
=ル科	エノキ										①-4② (丘陵 B、市街地 B、 田園 B)	
	ケヤキ										② (山地 C、丘陵 C、市街 地 B、田園 B) ③④	
タデ科	ミゾ゛ソハ゛										② (丘陵 C、市街地 B、田園 B) ③④	
クスノキ科	シロタ゛モ										①-2② (丘陵 C)	
マツモ科	マツモ							1		B1,F1	①-1② (田園 A) ③	
ツバキ科	ヤブ゛ツハ゛キ									1	② (丘陵 B、市街地 B) ③ ④	
アブラナ科	シロイヌナス゛ナ								YO			
	ナス゛ナ										② (丘陵 B、市街地 B、田園 B) ④	
ユキノシタ科	ユキノシタ										② (丘陵 B、市街地 B) ④	
バラ科	オオシマサ゛クラ								YO			
	シャリンバイ								YO	B1, C1	①-1.2②(海浜 C)③	逸出の可 能性あり
	カシ゛イチコ゛								YO	C1	①-1.3②(海浜 C)	
マメ科	ユキヤナキ゛ マキエハキ゛								YO NT	E,F1	①-1② (丘陵 C)	
<u> </u>	ヤハス゛エント゛ウ								YO	E'L1	①-1②(丘陵 ()	
ユス゛リハ科	ユス゛リハ			Ī					10	C2	①-1.2③	
モチノキ科	イヌツケ゛										② (丘陵 B) ④	
グミ科	オオナワシロク゛ミ								YO		@ (ctt p _t/cut p) @	
ミズキ科	アオキ										② (丘陵 B、市街地 B) ③ ④	
												根拠には ないが、仙 台市が北
ウコギ科	カクレミノ									(C-1)		限と見ら れる種
												根拠には ないが、仙 台市が北
					_					()		限と見ら
ヤブ コウシ 科 キク科	カラタチハ゛ナ カワラヨモキ゛					-		-	NT	(C-1)		れる種
1747									11/1		② (丘陵 C、市街地 B、田 園 B、海浜 C) ③④	
괴科	エゾ゛タンホ゜ホ゜ オオハ゛シ゛ャノヒケ゛									 	② (丘陵 B) ④	
ミス゛アオイ科	コナキ゛					<u> </u>					② (田園 C)	
(祥科	カセ゛クサ										② (市街地 B、田園 C) ④	
	アシカキ								YO	<u> </u>	((
	エソ゛ノサヤヌカク゛サ クサヨシ					 					② (田園 B) ② (海浜 B)	
											②(丘陵 C、市街地 C、田	
	3シ アス [*] マネサ [*] サ							-		-	園 C) ③④ ② (丘陵 B、市街地 B) ④	1
	ネス・ミノオ								YO		○ (正次五、印图地五) ⑤	
	マコモ										② (丘陵 B、田園 B) ③④	
	シバ										② (丘陵 B、市街地 B、田 園 B) ③④	
24 科	40 種					0種	0種	2種	11 種	7種	28 種	

注1) 選定根拠の記号及びは表 7.6-4 に準ずる


注2) カクレミノ及びカラタチバナについては、「宮城県植物目録 2000」(2001 年)宮城植物の会・宮城県植物誌編集委員会に記載のない種であり、分布限界種と考えられるため、表 7.6·4 の選定根拠には該当以内種であるが、選定した。

表 7.6-6 注目すべき種の確認状況及び一般生態

				へさ性の唯能仏がか		<u> </u>
種名		生活型注1)	生育環境 ^{注 2)}	我が国に ^{注2)} おける分布	花期注2)	生育状況
ウキコ [*] ケ 科	ウキコ゛ケ	苔類(HH)	湧水のある池、水 田、水路、湿った 地面	北海道~琉球	-	
	イチョウウキュ゛ケ	苔類(HH)	水田や池の水面に 浮遊、水を抜いた 水田	全国	-	
けれ	カヤ	常緑針葉高 木(MM)	低地~山地	本州 (宮城県以南)・ 四国・九州 (屋久島 まで)	4-5 月	
クルミ科	オニク゛ルミ	夏緑高木 (MM)	低地〜山地の河畔	北海道~九州	5-6 月	
か <i>、</i> /キ 科	イヌシテ゛	夏緑高木 (MM)	低地~山地	本州(岩手県・新潟 県以南)・四国・九州 (大隈半島まで)	4-5 月	
ブナ科	シラカシ	常緑高木 (MM)	低地の火山灰台地 など	本州(福島県・新潟 県以南)・四国・九州	5月	
シ科	エノキ	夏緑高木 (MM)	低地〜山地の適潤 地	本州・四国・九州	4-5月	
	ケヤキ	夏緑高木 (MM)	低地〜山地の斜 面、渓谷等の土壌 排水良好地	本州・四国・九州	4月	
好"科	ミソ゛ソハ゛	1 年草 (Th)	低地〜山地の水湿 地	北海道~九州	7-10 月	
クスノキ科	У¤У* स	常緑中高木 (MM)	低地の林内	本州・四国・九州・琉球	10-11 月	
マツモ科	マツモ	多年草 (HH)	低地の池沼、川	北海道~琉球	6-8月	
ツバキ科	ヤブ゛ツハ゛キ	常緑高木 (M)	低地の海岸風衝 地、常緑樹林内	本州 (青森県以南)・ 四国・九州・琉球	11-12 月ま たは 2-4 月	
アブラナ 科	シロイヌナ ス゛ナ	2 年草 (Th)	海岸や草地	北海道~九州	4-6月	
	ナス゛ナ	1~2 年草 (Th)	低地の路傍、畑地	日本全土	3-6月	
2キ/シタ 科	ユキノシタ	多年草(H)	各地の陰湿な岩上	本州・四国・九州	5-6月	
バラ科	オオシマサ゛クラ	夏緑高木 (MM)	暖地の沿海地の丘 陵地や低山	房総半島、伊豆半島、 伊豆七島	3月下旬- 四月上旬	
	シャリンハ゛イ	常緑低木(N)	低地、主に海岸	本州(宮城県・山形 県以南)・四国・九 州・小笠原・琉球	4-6 月	
	カジ・チュ゛	夏緑低木(N)	海岸の林縁部	本州 (関東以西の太 平洋側)・四国・九州 の沿海地・伊豆七島	3-4 月	
	ユキヤナキ゛	夏緑低木(N)	山地の川岸岩壁や 岩礫地	本州 (関東以西)・四 国・九州	4月	
マメ科	マキエハキ゛	夏緑低木(N)	丘陵地や低山地の 日当たりの良い乾 いた道端や岩地な どの草原	本州~琉球	8-9月	
	ヤハス゛エン ト゛ウ	1~2 年草 (Th)	道ばたや野原など の日当たりの良い 場所	本州~琉球	3-6 月	
ユス゛リハ 科	ユス゛リハ	常緑高木 (MM)	山地	本州(福島県以南)・ 四国・九州・琉球	4-5 月	
モチノキ科	<i>イ</i> ヌツケ゛	常緑低木(N)	山地の日当たりの 良い林縁や草地	本州(岩手県以南の 太平洋側および近畿 地方以西)・四国・九 州	6-7月	
グミ科	オオナワシロ ク゛ミ	常緑藤本(N)	海辺の丘陵地帯~ 内陸部	本州 (関東以西)・四 国・九州・琉球	10-11 月	
汉节科	アオキ	常緑低木(N)	暖温带林下	本州(中国地方を除 く)・四国(東部)	3-5月	
ウコギ科	カクレミノ	常緑小高木 (M)	常緑樹林内	関東(南部以南)・四 国・九州・琉球	7-8月	

種名		生活型注1)	生育環境 ^{注 2)}	我が国に ^{注2)} おける分布	花期 ^{注 2)}	生育状況
ヤブコウ ジ科	カラタチハ゛ナ	常緑小低木 (N)	常緑樹林内	本州(茨城県・新潟県 以南)・四国・九州・ 琉球	7月	
わ科	カワラヨモ キ゛	多年草 (H)	海岸や川岸の砂地	本州~琉球	9-10 月	
	エゾ゛タン ホ゜ホ゜	多年草(H)	日当たりの良い草 原	北海道・東北・中部 地方から関東地方	春	
괴科	オオハ゛シ゛ ャノヒケ゛	常緑多年草 (H)	低地の林下	本州~九州	7-8月	
汉 [*] アオイ 科	コナキ゛	1 年草 (Th)	低地の沼や水田	本州~琉球	9-10月	
(补科	力セ゛クサ	多年草(H)	低地の堤防、路傍	本州~九州	8-10月	
	アシカキ	多年草 (HH)	低地の水湿地、古 い水田	本州~琉球	8-10 月	
	エソ゛ノサヤ ヌカク゛サ	多年草 (HH)	低地の水湿地	北海道~九州	8-10 月	
	クサヨシ	多年草 (H)	低地の水湿地	北海道~九州	5-6月	
	ΣE	多年草 (HH)	低地〜山地の水湿 地	北海道~琉球	8-10 月	
	アス゛マネ サ゛サ	常緑低木(N)	低地〜丘陵地の林 縁など	北海道(西南部)・本 州・四国・九州	-	
	ネス゛ミノオ	多年草(H)	低地の路傍	本州~琉球	9-11 月	
	マコモ	多年草 (HH)	沼地、溝中	北海道~九州	8-10月	
	シハ゛	多年草(G~ H)	日当たりの良い草 地	日本全土	5-6 月	

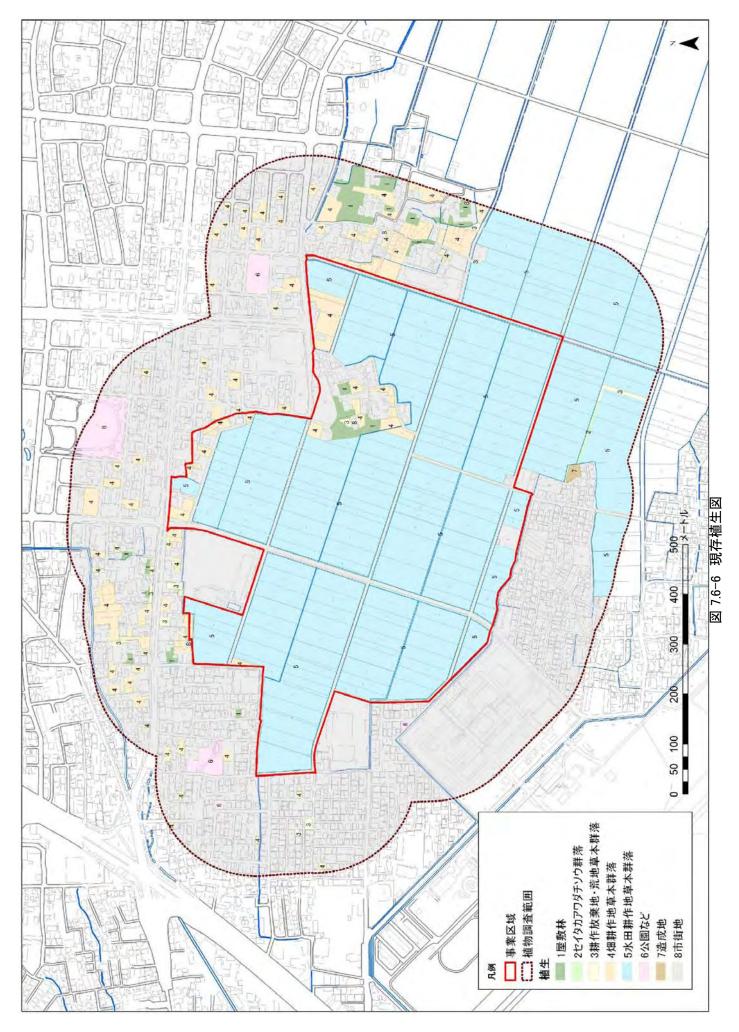
- 注 1)生育形と同時にラウンケア(Raunkiaer)の生活型を付記した。主な生活型は次の通りである
 - s: 多肉植物、E: 着生植物、MM: 中·大型地上植物、M: 小型地上植物、N: 矮型地上植物、Ch: 地表植物、
 - H: 半地中植物、G: 地中植物、HH: 水生植物、Th: 1年生植物
- 注 2) 生育環境、我が国における分布、花期については「改訂版日本植生便覧」 北川政夫監修 1983 年 至文堂 を参照しながら、以下の文献に従った
 - 「日本の野生植物 コケ」 岩槻善之助 2003年 平凡社
 - 「日本の野生植物 木本 I ・ II 」 佐竹義輔他 1989 年 平凡社
 - 「日本の野生植物 草本 I 」 佐竹義輔他 1982 年 平凡社
 - 「日本の野生植物 草本Ⅱ」 佐竹義輔他 1982年 平凡社
 - 「日本の野生植物 草本Ⅲ」 佐竹義輔他 1981年 平凡社
 - 「日本帰化植物写真図鑑」 清水矩宏他 2001年 全国農村教育協会

(2)植 生

①植生区分

調査地域は沖積平野にあって、標高 4~7mの低地である。事業区域の多くを占める水田耕作地は一様に標高 5m前後で、西部、北部の市街地に隣接している区域がやや高くなっている。

自然植生に近いと思われる植物群落は調査地域には見られず、人為的影響を強く受けた植生が広がっている。成立している植生も単純で、特筆すべき群落は見られなかった。


区分された植生は、セイタカアワダチソウ群落、耕作放棄地・荒地草本群落、水田耕作地草本群落で、居久根、畑耕作地草本群落、公園等、造成地、市街地の5つの土地利用区分を合せた凡例数8で現存植生図を作成した。

畔地や路傍では、面積的に調査区が設定できる程度の広がりを持った植物群落は確認できず、生育種の個体群がモザイク状、あるいはパッチ状に生育しているか、水田内に生育している種群が広がっているところが多く見られた。畑耕作地では除草が行き渡り、栽培作物以外に植物の生育しているところが見られない状態であった。

現存植生図を図 7.6-6 に示す。

②注目すべき群落

特筆すべき群落は、	地域住民に親しまれている群	落として、	があげられる。
については、	に調査結	果を示す。	

(3)居久根

植物相調査結果でも触れた通り、沖積平野にあって土地利用の進んだ調査地域を含む周辺地域においては、居久根が数少ない樹林性の植物の生育環境となっている。表 7.6-3 に示したとおり、居久根(梅ノ木地区及び長喜城)では 61 科 133 種類の植物を確認している。このうち、梅ノ木地区居久根の植物目録を、表 7.6-7 に示す。居久根は、事業区域内の梅ノ木地区ではスギは混在するものの、などの常緑広葉樹やなどの夏緑広葉樹が混在した林分で、林床は比較的植物相が豊富である。一方、長喜城の林分はスギを主体としており、林床は梅ノ木地区のものに比べてやや暗く、山地・丘陵地のスギ植林の様相を呈している。

表 7.6-7 梅ノ木地区居久根植物目録

分類群	科名	和名	注目すべき種等	備考
ンダ植物	トクサ科	スギナ		
	オシダ科	ヤブソテツ		
		クマワラビ		
	メシダ科	イヌワラビ		
重子植物	マツ科	ヒマラヤスギ		植栽
果子植物	スギ科	スギ		植栽
				植栽
被子植物				10-17
双子葉植物				
離弁花類	ブナ科	クリ		植栽
ML/1 1075R				10/10
		+		
	クワ科	クワクサ		
	2 2 AT	カナムグラ		
	ノニカ北朝	ヤマグワ		
	イラクサ科	アオミズ		
	タデ科	ミズヒキ		1= 11
	ヤマゴボウ科	ヨウシュヤマゴボウ		帰化
	ヒユ科	ヒカゲイノコズチ		36.11
	クスノキ科	クスノキ		逸出
	キンポウゲ科	センニンソウ		
	メギ科	ナンテン		逸出
	アケビ科	アケビ		
	ドクダミ科	ドクダミ		
	ユキノシタ科	ウツギ		
	バラ科	ボケ		逸出
		ヤブヘビイチゴ		
		ビワ		
		カマツカ		
		イヌザクラ		
		ヤマナシ		
		ノイバラ		
	マメ科	ネムノキ		
	17.11	ウスバヤブマメ		
		ノササゲ		
		クズ		
		ニセアカシア		帰化
	トウダイグサ科	アカメガシワ)#i L
	ミカン科	ナツミカン		逸出
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	カラスザンショウ		地田
	カンガン利			逸出
	センダン科	センダン ツタウルシ		选出
	ウルシ科			
) le 1809			
	ニシキギ科	ツルウメモドキ		
		マサキ		
		ツリバナ		
		ユモトマユミ		
	クロウメモドキ科	ケンポナシ		
	ブドウ科	ノブドウ	1	

分類群	科名	和名	注目すべき種等	備考
		ヤブガラシ		
	2 1 2 2 2	ツタ		
	シナノキ科	シナノキ	新規注意	
_	シュウカイドウ科	シュウカイドウ	材况任息	帰化
	ウリ科	アマチャヅル		加口
	7 2 11	スズメウリ		1
		キカラスウリ		
		ヤマボウシ		
	ウコギ科	ヤマウコギ		
		ウド		
		タラノキ	JI ₂ 7H	
		ナルゴ	北限北限	
		ヤツデ キヅタ	北欧	
合弁花類		779	新規注意	
口 丌 1 1 大久	ヤブコウジ科	ヤブコウジ	初死江忠	
	カキノキ科	カキノキ		逸出
	モクセイ科	ネズミモチ		
		トウネズミモチ		逸出
<u> </u>	アカネ科	ヘクソカズラ		
		アカネ		
	ヒルガオ科	アサガオ		逸出
		マルバアサガオ		帰化
	クマツヅラ科	クサギ		
	シソ科	カキドオシ		.I= /I,
	ノウゼンカズラ科	ヒメオドリコソウ キササゲ		帰化 帰化
	ノウセンガスノ科	キリ		逸出
	ハエドクソウ科	ハエドクソウ		旭田
	スイカズラ科	スイカズラ		
	21 22 21 24 1	ニワトコ		1
		ガマズミ		
	キク科	オオブタクサ		帰化
		ベニバナボロギク		帰化
		セイタカハハコグサ		帰化
		トゲチシャ		帰化
		セイタカアワダチソウ		帰化
\\\ = \dagger_{\text{del}}		ヒメジョオン		帰化
単子葉植物	ユリ科	ヤブラン		
		ジャノヒゲ		
		オモト		逸出
		サルトリイバラ		近山
	ヒガンバナ科	ヒガンバナ		
	ヤマノイモ科	ヤマノイモ		1
		オニドコロ		
	アヤメ科	シャガ		逸出
		ヒメヒオオギズイセン		帰化
	ツユクサ科	ツユクサ		
	イネ科	ケチヂミザサ		
		コチヂミザサ		1
		ヌカキビ		1-tr +h
		マダケ		植栽
		モウソウチク		植栽
		ミヤコザサ		+
		アズマザサ		+
		/ ^ × y y		
	ヤシ科	シュロ		
	ヤシ科カヤツリグサ科	シュロ アオスゲ		
	ヤシ科 カヤツリグサ科	アオスゲ		
	ヤシ科 カヤツリグサ科 ショウガ科			逸出

また、梅ノ木地区の居久根については胸高直径 5cm 以上の樹木を対象に生育状況を記録した。その結果、 77 本を計測した。このうち生育がやや不良な樹木は1 本、枯死個体が 2 本見出された他は生育が良好なものばかりであった。

表 7.6-8 に調査地点の樹木一覧を、資料編に計測結果一覧を示す。

表 7.6-8 調査地点の樹木一覧(胸高直径 5cm 以上)

	D/// 12/11 3	C (W.) [-] =	
		本数	
調査地点	樹種	(本)	備考
梅ノ木居久根		24	
(77本)	スギ	13	1本やや不良
		7	
	シナノキ	4	
	ヤマザクラ	3	
	クリ	3	1 本枯死
		2	
	ヒマラヤスギ	2	
		2	
		2	
	ヤマボウシ	1	
	タラノキ	1	
	キンモクセイ	1	
	イヌザクラ	1	枯死
		1	_
	ミズキ	1	
	イタヤカエデ	1	
	ナツミカン	1	

7.6.2 予 測

1) 工事による影響(切土・盛土・発破・掘削等)及び存在による影響(改変後の地形)

(1)予測内容

切土・盛土・掘削等の実施及び改変後の地形による植物相及び注目すべき種、植生及び注目すべき群落の消滅の有無・変化の程度とした。

(2)予測地域及び予測地点

予測地域は、植物相及び植生に対する影響が想定される地域とし、調査地域と同様に、事業区域及び周辺 200m の範囲とした。

予測地点は、植物相については予測地域全域とし、注目すべき種及び群落については、その生育地及び分布地とした。

(3) 予測時期

工事による影響では、影響要因が最大となる時期とする。存在による影響では順当に土地 利用がなされている時点とする。

(4) 予測方法

現在の計画の内容から考えられる事業区域の環境変化を想定し、現況の植物種・植物群落の変化などについて予測を行なう。

(5)予測結果

①植物相及び注目すべき種

事業区域内の植物相は、居久根を除き、その多くが改変されるため、そこに生育する植物種の多くが影響を受けると予測される。

注目すべき種については、特に、減少が懸念されるものであり、表 7.6-9 に注目すべき種に与える影響を整理する。

確認地点が マキエハギ、カワラヨモギ、エゾタンポポ、マコモは改変される。確認地点が に見られた種については、一部区画道路を設置する部分を除き現状を維持するため、カヤ、イヌシデ、オオシマザクラ、ユズリハ、イヌツゲ、オオナワシログミ、カクレミノ、カラタチバナ、オオバジャノヒゲは残存する。

確認地点が ナズナ、ナズナ、ユキノシタ、ユキヤナギ、ヤハズエンドウ、コナギ、カゼクザ、エゾノサ ヤヌカグサ、クサヨシ、ヨシ、ネズミノオ、シラカシ、エノキ、ケヤキ、シロダモ、ヤブツ バキ、アオキ、アズマネザサについては、種自体がすべて改変されることはないと予測され る。

シャリンバイは、 に1個体が生育しているほか、多くは した区域に生育しており、工事により損傷の影響が予測されるため、影響が生じないよう注意が必要である。

アシカキ、シバ、オニグルミ、については確認地点がであり、生育地に変化 を与える要因は見当たらず、影響はないと予測される。

表 76-9 注目すべき種の予測結果

		表 7.6-9 注目すべき種の	
種名	確認地点	確認状況	予測結果
ウキゴケ			の個体は改変されると見られる が、周辺区域の個体群の規模は大きく、こ ちらは工事による影響や存在後の影響を受 ける可能性はないと予測される。
イチョウ ウキゴケ			すべて改変されると予測される。
カヤ			されるため、個体は残存する と予測される。
オニグルミ			工事による影響や改変後の影響を受けない と予測される。
イヌシデ			は維持されるため、個体は残存すると予測される。
シラカシ			は維持されるため、生育個体は残されると予測される。 に 生育している個体は影響を受ける可能性はないと予測される。
エノキ			は維持されるため、生育個体は残されると予測される。 生育している個体は影響を受ける可能性はないと予測される。
ケヤキ			は維持されるため、生育個体は残されると予測される。 に 生育している個体は影響を受ける可能性はないと予測される。
ミゾソバ			は改変されると見られる が、市街地の水路や水田の用水路脇にも普 通に生育しており、こちらの個体群はほと んど影響を受けないものと予測される。
シロダモ			は維持されるため、生育個体は残されると予測される。 生育している個体は影響を受ける可能性はないと予測される。
マツモ			すべて改変されると予測される。
ヤブツバキ			は維持されるため、生育個体は残されると予測される。 生育している個体は影響を受ける可能性はないと予測される。
シロイヌナズナ			は改変されると見られるが、周辺区域の水田用水路脇等にも普通に生育しており、こちらの個体群はほとんど影響を受けないものと予測される。
ナズナ			は改変されると見られるが、周辺区域の畔や路傍などの個体群が影響を受ける可能性はないと予測される。造成後の裸地では個体が増加する可能性もあると予測される。
コキノシタ			は改変されると予測される。周辺区域の個体は市街地の水路脇に生育しており、工事中の排水はない場所であることから工事の影響は受けないものと予測される。

種名	確認地点	確認状況	予測結果
オオシマザクラ	MAPPO CONT	PREMIU V V V	は維持されるため、個体は残存すると予測される。
シャリンバイ			事業区域内の個体は改変されると予測される。周辺地域の数固体は、事業区域の境界にあって、工事による影響が予測される。
カジイチゴ			事業区域の にあって、改変される可能 性があると予測される。
コキヤナギ			は改変されると予測される。周辺区域の1地点はででででいることが、水際からは離れていることから、工事の影響は受けないと予測される。
マキエハギ			すべて改変されると予測される。
ヤハズエ ンドウ			は改変されると見られる が、周辺区域の畔や路傍などの個体群が影響を受ける可能性はないと予測される。造 成後の裸地では個体が増加する可能性もあ ると予測される。
ユズリハ			は維持されるため、個体は残存すると予測される。
イヌツゲ			は維持されるため、個体は残存する と予測される。 は維持されるため、個体は残存する
シログミ			と予測される。
アオキ			は維持されるため、生育 個体は残されると予測される。 は影響を受ける可能性はないと予測される。
カクレミ ノ			は維持されるため、個体は残存する と予測される。
カラタチバナ			は維持されるため、個体は残存する と予測される。
カワラヨモギ			すべて改変されると予測される。
エゾタン ポポ			すべて改変されると予測される。
オオバジャノヒゲ			は維持されるため、個体は残存すると予測される。
コナギ			は改変されると見られるが、周辺区域の水田に生育している個体群は工事による影響や改変後の影響を受ける可能性はないと予測される。
カゼクサ			は改変されると見られるが、周辺区域の個体群の規模は大きく、こちらは工事による影響を受ける可能性はないと予測される。また、存在後は未舗装部分に生育地を広げる可能性があると予測される。
アシカキ			工事中の排水はない場所であることから、 工事の影響は受けないものと予測される。

種名	確認地点	確認状況	予測結果
エゾノサヤヌカグサ			は改変されると見られるが、 に生育している個体は残存する に生育しており、工事による影響や改変後の影響を受けるないと予測される。
クサヨシ			は改変されると見られるが、 の個体群は一部、 の個体群は一部、 によって、直接的に影響を受けるものもあると見られるが、それ以外では、工事による影響や存在後の影響を受ける可能性はないと予測される。
ヨシ			は改変されると見られるが、 は工事による影響や存在後の影響を受ける可能性はないと予測される。
アズマネ ザサ			は維持されるため、生育個体は残されると予測される。 は影響を受ける可能性はないと予測される。
ネズミノオ			は改変されると見られるが、に生育している個体はに生育しており、工事による影響や存在後の影響を受ける可能性はないと予測される。
マコモ			すべて改変されると予測される。
シバ			場所であることから、 工事による影響や改変後の影響を受けない と予測される。

②植生及び注目すべき群落

については、一部区画道路を設置する部分を除き 現状を維持するため、影響は小さいと予測される。 について も改変はないため影響はないと予測される。

2)存在による影響(樹木伐採後の状況)

については、一部区画道路を設置する部分を除き 現状を維持するため、影響は小さいと予測される。 について も改変はないため影響はないと予測される。

7.6.3 環境の保全及び創造のための措置

1) 工事による影響(切土・盛土・発破・掘削等)及び存在による影響(改変後の地形)

工事の実施及び改変後の地形の存在による、植物相、注目すべき種及び注目すべき群落の消滅の有無・変化の程度を予測した結果、事業区域内の水田耕作地に成育する種が影響を受けると予測された。本事業の実施にあたっては、このうち特に注目すべき種を対象に、以下の環境保全措置を講ずることとする。

(1)環境保全措置の検討方針

①植物相及び注目すべき種、植生及び注目すべき群落の消滅の有無・変化

事業区域内に生育する注目すべき種を対象とし、本事業の実施による影響を最小限度にすることを保全方針とした。

(2)環境保全措置の検討結果

①植物相及び注目すべき種、植生及び注目すべき群落の消滅の有無・変化

植物相及び注目すべき種、注目すべき群落の消滅の有無・変化に係る環境保全措置の検討結果を表 7.6-10 に示す。

表 7.6-10 環境保全措置検討結果の整理

	T		
環境保全 措置の 種類	低減	低減	代償
実	事業区域内に位置する梅ノ木地区の 居久根について、区画道路の整備等 展集小限の改変にとどめ、現状を する。また、換地設計は現状を土地、 有を考慮し、減歩等の緩和を大板の 全にの予定であり、居所有者 全にのいまであり、に所有者の は現状であり、に所有者の は現れの一部では 地利用計画への意向にゆだる がは現定された保存緑地制度に 規定された保存緑地制度に が、所有者を支援していく が、所有者を支援していくより でありない。 といい、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	工事中の大気・水質に係る環境保全措置を確実に実施する(詳細は、p. WII-1-57~58 及び p. WII -4-10 参照)。	事業の実施により消滅 を免れない注目すべき 種については、 に移植する。
実 施 期 間	事業計画立案時	工事中	工事中
効果及び 変 化	居久根に生育する注目すべき種を保 全することが出来る。	事業区域及び周辺の植物種の生育に対する影響を軽減できる。	自生地での保全は出来 ないが、同様の環境での 存続を図ることが出来 る。
副次的な影響等	他の環境要素に影響を与えることはない。	他の環境要素に影響を 与えることはない。	移植先に成育する個体に影響が生じないよう、 移植方法を検討する必要がある。 その他の環境要素に影響を与えることはない。

2) 存在による影響(樹木伐採後の状況)

については、一部区画道路の整備等により改変が

想定されるが、必要最小限にとどめる方針であり、影響は小さいと予測される。

についても改変はないため影響はないと予測される。

しかし、近接する場所で工事が行われ、が改変されることから、以下に示すとおり環境保 全措置を検討する。

(1)環境保全措置の検討方針

①樹木・樹林等の消滅の有無・変化

事業区域内に立地する樹木・樹林等を対象とし、本事業の実施による影響を最小限度にすることを保全方針とした。

(2)環境保全措置の検討結果

①樹木・樹林等の消滅の有無・変化

樹木樹林等の消滅の有無・変化に係る環境保全措置の検討結果を表 7.6-10 に示す。

表 7.6-11 環境保全措置検討結果の整理

環境保全 措置の 種類	低減	低減	低減
実 施容	工事中の大気・水質に 係る環境保全措置を 確実に実施する(詳細 は、(詳細は、p.WI-1-57 ~58及びp.WI-4-10参 照)。	梅ノ木地区の居久根の隣接地に公園・緑道を配置し、居久根と一体的に整備するよう関係機関と協議していく。	事業区域内に位置する海域内に位置する梅の整体 大地にのではどいでは、 大地では、 大地で、 大地で、 でいるで、 でいるで、 でいました、 では、 では、 では、 では、 では、 では、 では、 では
実 施 間	工事中	事業計画立案時	事業計画立案時
効果及び 変 化	事業区域及び周辺の 植物種の生育に対す る影響を軽減できる。	居久根との連続性を持た せることで、新たな植物の 生育環境が創出される。	居久根に立地する注目すべき種を保全 することが出来る。
副次的な影響等	他の環境要素に影響を与えることはない。	動物の生息環境の創出と なる。	他の環境要素に影響を与えることはない。

7.6.4 評価

- 1) 工事による影響(切土・盛土・発破・掘削等)及び存在による影響(改変後の地形)
- (1)回避・低減に係る評価
 - ①評価方法

環境保全措置の検討結果を踏まえ、注目すべき種及び注目すべき群落 について、 それらを保全するために適切な措置を講じ、影響が、実行可能な範囲内での回避・低減が図られるか否かを評価基準とする。

②評価結果

で確認されたイチョウウキゴケ、マツモ、カジイチゴ、マキエハギ、カワラヨモギ、エゾタンポポ、マコモの7種については、 保全は難しく生育地の改変を免れないことから、回避・低減を図ることはできないものと評価する。

注目すべき群落である については、現状を維持する方針であり回避が図られると評価する。同時に、の残存によって種の多くが残存すると考えられる。 で確認されたカヤ、イヌシデ、オオシマザクラ、ユズリハ、イヌツゲ、オオナワシログミ、カクレミノ、ヤツデ、カラタチバナ、オオバジャノヒゲの9種は、 によって影響を回避できると評価する。

その他、 にあり、改変による影響をほとんど受けないと予測された種については、工事中に に対する一般的な配慮がなされることによって、影響の低減か図られるものと判断される。

(2)基準や目標との整合性に係る評価

①評価方法

表 7.6-4 に示す関係法令等や以下の基準、目標との整合が図られているか否かを評価した。

- ・「宮城県環境基本計画」の重点プログラム「豊かな自然環境の保全」: 物多様性の保全及 び自然環境の再生
- ・「杜の都環境プラン(仙台市環境基本計画)」の"市街地地域"の生態系に関連する環境 配慮指針:生態系の連続性を考慮し、緑化の推進や多様な生物の生育の場となるビオト ープ(生物の生息・生育空間)づくりに努める

②評価結果

国あるいは県、市で高いランクに指定されている種はウキゴケ、イチョウウキゴケの2種が確認されている。2種ともに苔類で、水上に浮遊するか湿地上で生活し、水田の管理手法の相違に大きく左右されると見られるが、ウキゴケは改変されないに良好に生育する個体群が見出されている。イチョウウキゴケはでの確認であり、消失を免れないものと評価する。

の維持によって多くの種が残存することになる。

なお、カジイチゴ、マキエハギ、カワラヨモギ、エゾタンポポは直接影響を受けることに

なるが、元々攪乱を受けている環境に生育しているので、移植することで積極的な種の保全に繋がるものと考える。他の種については、 に立地する種であり、 に移植する代償措置を講じれば消失を免れるものと評価する。

2)存在による影響(樹木伐採後の状況)

(1)回避・低減に係る評価

①評価方法

環境保全措置の検討結果を踏まえ、 を保全するために適切な措置を講じ、影響が、 実行可能な範囲内での回避・低減が図られるか否かを評価基準とする。

②評価結果

については、保全措置を講じることにより影響が 回避される。 も改変はなく、工事中の影響の保全措置を講じ ることにより、影響は低減されると評価できる。

(2)基準や目標との整合性に係る評価

①評価方法

以下の基準、目標との整合が図られているか否かを評価した。

- ・「宮城県環境基本計画」の重点プログラム「豊かな自然環境の保全」: 物多様性の保全及 び自然環境の再生
- ・「杜の都環境プラン(仙台市環境基本計画)」の"市街地地域"の生態系に関連する環境 配慮指針:生態系の連続性を考慮し、緑化の推進や多様な生物の生育の場となるビオト ープ(生物の生息・生育空間)づくりに努める。

②評価結果

工事の実施及び存在による樹木・樹林等への影響について、工事中の配慮、居久根の保全や公園・緑道を配置等の環境保全措置を実施することにより、樹木・樹林等が保全されることから、基準、目標との整合が図られるものと評価する。

3)6月~8月期に調査を実施しなかったことによる影響の検討

本調査は9月~5月の間に実施しており盛夏を含む6月~8月に実施していないため、概況 調査範囲内で本事業区域の東側約1kmで実施された「(仮称) 仙台市荒井東土地区画整理事業 環境影響評価書」(平成21年8月)と比較し、本事業で確認できていない種がどの程度ある かについて検討した。

本来の生育立地が事業区域には存在しないことや、植栽起源、逸出・帰化種等を除いた、調査時期に起因した可能性のある未確認種を抽出すると、スズメノエンドウ、カスマグサ、トボシガラ、スズメノチャヒキ、ネジバナ、ヌカボ、ヌマイチゴツナギの8種が挙げられる。これらに注目すべき植物種は含まれていない。

なお、本調査地域は津波の浸水範囲になっておらず、また震災による立地の消滅もないこ

とから、植物の生息環境に対する震災の影響はないと考えられる。

7.6.5 代償措置の検討

(1)移植の方針検討

表 7.6-9 に示した予測結果によると、注目すべき種のうちでで確認された種として、イチョウウキゴケ、マツモ、カジイチゴ、マキエハギ、カワラヨモギ、エゾタンポポ、マコモの 7 種があげられる。これらの種について、表 7.6-12 に示すように、まず回避・低減が可能かどうかを検討し、できないものについては代償措置として移植を検討した。その結果、7 種すべてについて移植を行う必要があると判断した。

なお、のみで確認されたカヤ、イヌシデ、オオシマザクラ、ユズリハ、イヌツゲ、オオナワシログミ、カクレミノ、カラタチバナ、オオバジャノヒゲの9種は、本事業においては基本的に維持されるが、区画道路の整備等で避けられない場合は、

にも生育している種については、代償措置を取らなければならないほどの減少種 はなく、移植の必要はないと判断した。

移植による代償措置が必要であると判断される。

表 7.6-12 注目すべき種の保全措置の比較検討

次 / 0 12 / Дロ) で性の体工用画の最大(大田)							
保全措置 対象項目	現生 育地	保全	产方法	効果	検討結果		
イチョウ ウキゴケ	水田 耕作 地	回避・ 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる。	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。		
		代償	移動	事業の影響のない場所へ移動 させることで、個体群の消失を 免れることができると考える。			
マツモ		回避・ 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる。	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。		
		代償	生育地 の土壌 移設	事業の影響のない場所へ越冬 芽が残されていると見られる 生育地の土壌を移設すること で、個体群の消失を免れること ができると考える。			
カジイチゴ		回避・ 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる。	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。		
		代償	移植	事業の影響のない場所へ移植 することにより、個体の維持が 可能であると考える。			
マキエハギ		回避・ 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる。	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。		
		代償	移植	事業の影響のない場所へ移植 することにより、個体の維持が 可能であると考える。			
カワラヨモギ		回避・ 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる。	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。		
		代償	移植	事業の影響のない場所へ移植 することにより、個体の維持が 可能であると考える。			
エゾタンポポ		回避· 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる。	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。		
		代償	移植	事業の影響のない場所へ移植 することにより、個体の維持が 可能であると考える。			

保全措置 対象項目	現生 育地	保全方法		効果	検討結果
マコモ		回避・ 低減	生育地 の一部 残存	生育環境及び個体の消失を回 避できる	水田耕作地などの生育立地がすべて改 変されるので回避・低減はできないもの と考える。
		代償	移植	事業の影響のない場所などへ 移植することで、個体群の消失 を免れることができると考え る。	

(2)移植方法等の検討

移植対象に選定した7種について、表7.6-12に移植方法等の検討結果を示す。

また、図 7.6-7 に移植候補地を示す。移植候補地は、水源確保の点から事業区域内への創出が難しいことから、 現生育環境と同等の環境の場所を選定することとし、 と同等の環境を有する場所とした。選定箇所は であり、事業実施後も現在の環境で維持される場所である。

なお、移植に際しては、移植先に生育する個体に影響が生じないよう、移植先の注目すべき種の分布にも留意する。

表 7.6-13 注目すべき種の移植方法の検討結果

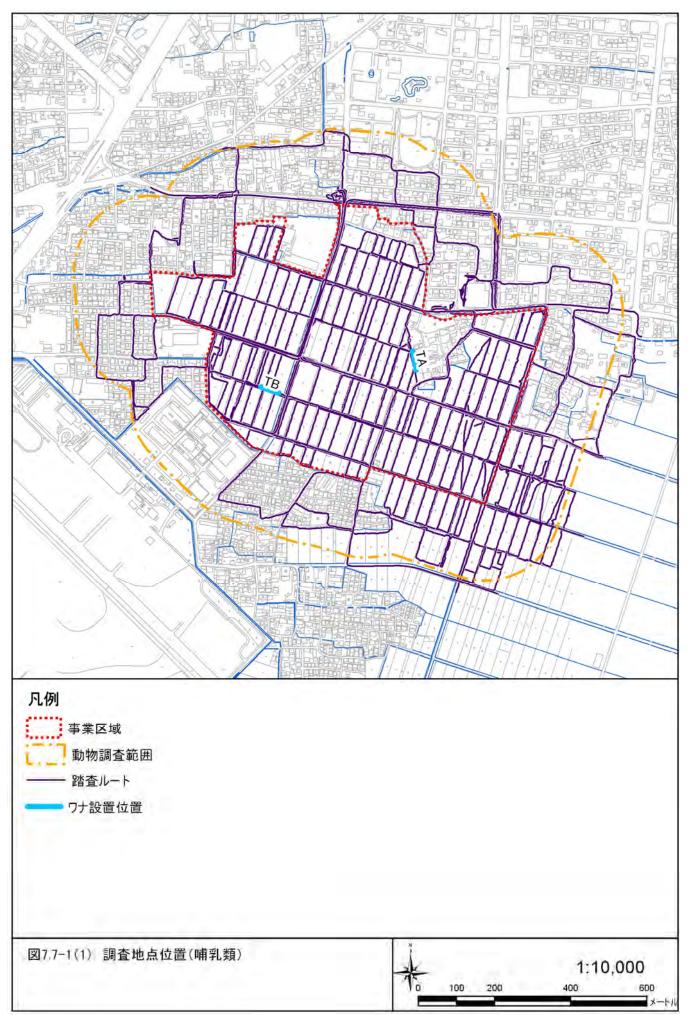
保全 対象	実施方法	保全措置 の効果	移植 時期	保全措置に伴う 影響	回避・低減が 困難な理由	保全措置後の 維持管理
イチョウウキゴケ		移動することに より個体群の消 失を免れること ができる。	秋~ 冬季	特になし。	事業区域はほ とんど陸地化 するので生育 立地が改変さ れる。	特になし
マツモ		移動することに より個体群の消 失を免れること ができる。	秋~ 冬季	特になし	事業区域はほ とんど陸地化 するので生育 立地が改変さ れる。	特になし
カジイチゴ		移植することに より個体の消失 を免れることが できる。	晚秋、 早春	対象個体は低木 であり、移植先に よっては周辺の 植物と合わない 可能性がある。	事業区域で、そ の生育地の残存 を確保しと させることが 困難である。	特になし
マキエハギ		移植することに より個体の消失 を免れることが できる。	晚秋、 早春	特になし	事業区域で、そ の生育地のみ を確保し残存 させることが 困難である。	個体が生長す るまでは他の 植物に被圧さ れないように 適宜管理す る。
カワラヨモギ		移植することに より個体の消失 を免れることが できる。	晚秋、 早春	特になし	事業区域で、そ の生育地のみ を確保し残存 させることが 困難である。	個体が生長す るまでは他の 植物に被圧さ れないように 適宜管理す る。
エゾタンポポ		移植することに より個体の消失 を免れることが できる。	晚秋、 早春	特になし	事業区域はほ とんど陸地化 するので生育 立地が改変さ れる	特になし
マコモ		移植することに より個体の消失 を免れることが できる。	晚秋、 早春	特になし	事業区域はほ とんど陸地化 するので生育 立地が改変さ れる。	特になし

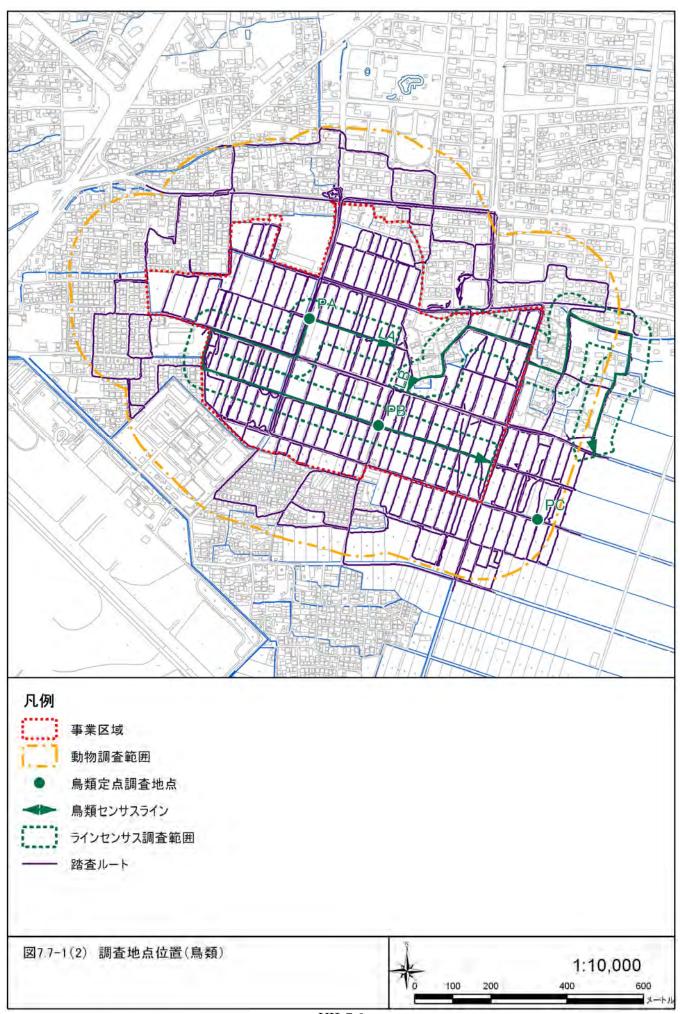
注目すべき種保護のためマスキング 凡例 事業区域 植物調査範囲 移植先候補地 図7.6-7 移植候補地点 1:10,000

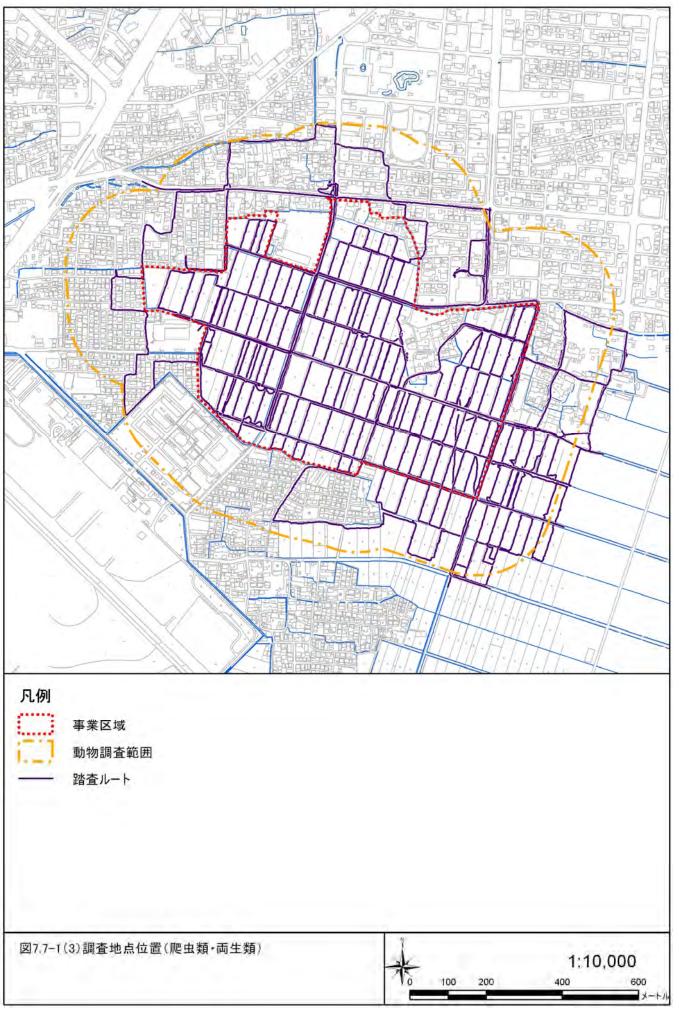
7.7.1 調 査

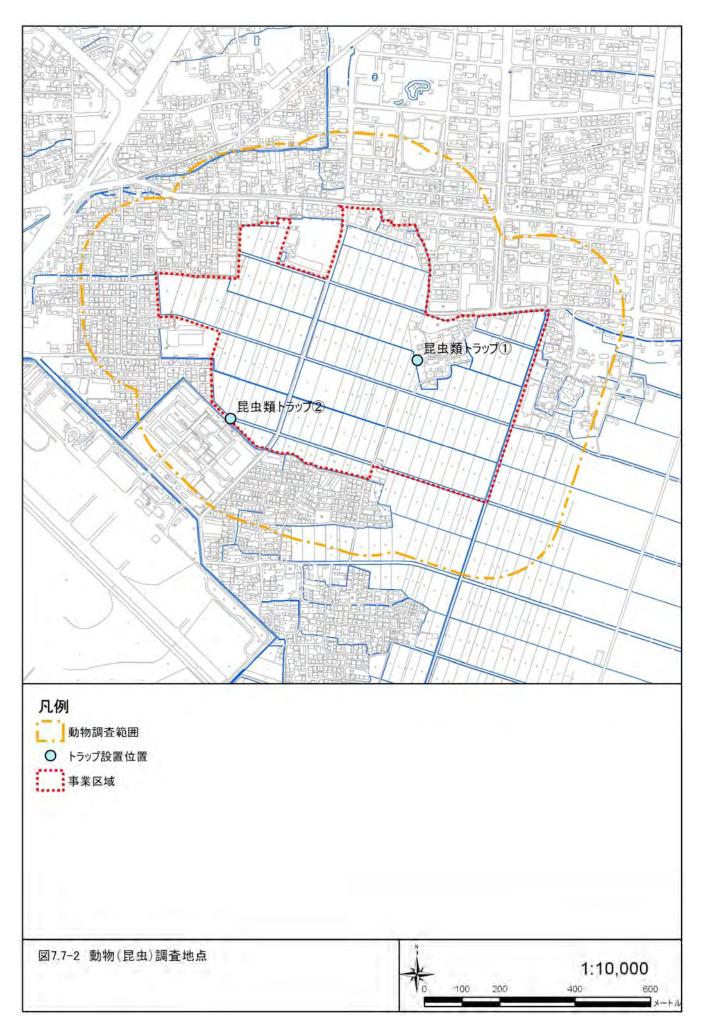
1)調査項目

事業区域及びその周辺における動物相及び注目すべき種、注目すべき生息地の状況を把握 するために、以下の項目について調査を行った。


表 7.7-1 調査項目


項	[]	調査項目	調査方法
動物	陸域	哺乳類	踏査、捕獲調査(ネズミ類)
		鳥類	踏査、ラインセンサス調査、定点調査
		両生類	踏査
		爬虫類	踏査
		昆虫類	踏査、捕獲調査(ライトトラップ調査、ベイトトラップ調査)
	水域	魚類	捕獲調査
		底生動物	任意採集調査


2)調査範囲・調査地点


調査範囲は、事業予定地及びその周辺において動物に対する影響が想定される地域とし、 事業区域の周囲 200m を設定する。

各調査項目の調査地点は、図 7.7-1(1)~(5)に示す。

注目すべき種保護のためマスキング 凡例 事業区域 ___動物調査範囲 ● 動物(水域) 図7.7-1(5) 動物調査地点(魚類·底生動物) 1:10,000 200

3)調査方法

(1)哺乳類

①踏 査

個体の目撃及び生活痕跡(フィールドサイン)の確認を目的とした踏査を実施した。個体や生活痕跡が確認された場合、確認日付、種名、確認状況(目撃、死体、生活痕跡、足跡、糞、食痕、坑道、巣など)を記録し、地図上に位置を記録した。

②捕獲調査

小型哺乳類のうち、主にネズミ類を対象とした捕獲調査を実施した。捕獲には、H.B.Sherman Trap 社製 LFAHD Folding Trap を用い、調査地 2 か所に調査ラインを設け、ネズミ類の行動圏を考慮し 10mごとに 20 個/ライン設置した。ワナは鳥類の錯誤捕獲を回避するために、夕方稼働させ、早朝見回った直後、いったん閉じたのち、再度夕方稼働させ翌日早朝回収した(2 晩設置)。捕獲された個体は、種同定後計測(体重、頭胴長、後足長)し、放逐した。

(2)鳥類

①踏查

調査地域を踏査し、出現した鳥類の種名、個体数、同定根拠(さえずり、地鳴、飛行、止まり目撃)を記録し、地図上に位置を記録した。調査には8倍の双眼鏡、20~60倍の望遠鏡を適宜使用した。調査時間帯は日出から正午までである。

フクロウ類の繁殖期にあたる冬季 $(1 \, \mathrm{J})$ ・春季 $(3 \, \mathrm{J} \cdot 4 \, \mathrm{J} \cdot 5 \, \mathrm{J})$ については、夜間調査を合わせて実施した。調査時間帯は日没から 1 時間である。

②ラインセンサス調査

あらかじめ設定した調査ライン(2本)上をゆっくしとした一定速度(時速約 2km)で歩き、ラインから両側 50m(観察幅 100m)に出現した鳥類の種名、個体数、同定根拠(さえずり、地鳴、飛行、止まり目撃)を記録し、地図上に位置を記録した。

③定点調査

あらかじめ調査地点(3点)を設定し、一定時間(30分間)以内に出現した鳥類の種名、個体数、同定根拠(さえずり、地鳴、飛行、止まり目撃)を記録し、地図上に位置を記録した。

④ガン類・ハクチョウ類調査

調査地東方向約 3km に水どりの生息環境となっている大沼があり、ここには、ハクチョウ類、カモ類のほか国レベルの注目すべき種であるマガンが生息する可能性がある。このなかで、ハクチョウ類、マガンは大沼をねぐらとして利用し、周辺の農耕地を採餌場所として利用している可能性が考えられることから、マガンやハクチョウ類の生息時期である秋~春にかけて、大沼を利用する水鳥を確認し、生息した場合、周辺の農耕地の利用状況を確認した。

なお、調査では、ねぐら出前の早朝に大沼に生息する鳥類を確認し、ガン類・ハクチョウ類が 確認された場合、ねぐら出の時刻、方向、個体数を記録し、ねぐら出方向から、事業区域方向で 採餌する可能性がある場合、採餌場所を特定するための踏査を実施した。

(3)爬虫類•両生類

1) 踏査

調査地を踏査し確認された爬虫類・両生類の種名、確認状態(両生類:卵塊、幼生、幼体、成体、鳴声、死体、爬虫類:幼体、成体、死体)を記録し、地図上に位置を記録した。

(4)昆虫類

①任意採集

調査範囲内を踏査し、スイーピング、ビーティング、見つけ捕り等により採集を行った。

②ライトトラップ調査

夜間光に集まる種を対象に、紫外線及び白色の蛍光灯を照射して誘引された昆虫を捕獲した。

③ベイトトラップ調査

地上を徘徊する種を対象に、誘引餌を入れたプラスチックコップを 1 箇所に付き 10 個地中に 埋設し、一晩放置して誘引された昆虫を捕獲した。

4目視観察

調査範囲内を踏査し、スイーピング、ビーティング、見つけ捕り等により昆虫類を採集した。

(5)魚 類

①捕獲調査

主にタモ網を使用し、水路にいる魚類を追い込んだり、底の泥や水際植物の中の魚類をすくったりして捕獲した。また、餌を入れたかご網を一晩放置し、かかった魚類を捕獲した。捕獲した個体は、基本的にその場で同定して放流した。

(6)底生動物

①任意採集

主にタモ網、D フレームネットを使用し、底の泥や水際植物をすくって試料を採集し、現場にて 10%ホルマリンで固定した後持ち帰り、同定を行った。

4)調査期日

調査期日は表 7.7-2 に示す通りである。

表 7.7-2 調査期日

41 (J. T.)/, #4	I. hh	-m-+-tin to
動物群集	季節	調査期日
	夏季	平成 23 年 9 月 11 日~13 日
哺乳類	秋季	〃 10月24日~26日
.1111778	冬季	平成 24 年 1 月 18 日~20 日
	春季	″ 4月26日∼28日
	夏季	平成 23 年 9 月 11 日~13 日
	秋季	″ 10月24日∼27日
島 類	冬季	平成 24 年 1 月 18 日~19 日
/ / / / /		平成 24 年 3 月 26~28 日
	春季	″ 4月26日∼28日
		″ 5月7~8日
爬虫類	夏季	平成 23 年 9 月 11 日~13 日
	秋季	″ 10月24日∼26日
10年3月	春季	″ 4月26日∼28日
	个 字	″ 5月7~8日
	夏季	平成 23 年 9 月 11 日~13 日
	秋季	″ 10月24日∼26日
両生類		平成 24 年 3 月 26~27 日
	春季	″ 4月26日∼28日
		″ 5月7∼8日
	夏季	平成 23 年 9 月 11 日~13 日
昆虫類	秋季	″ 10月24日∼27日
	春季	平成 24 年 5 月 7~8 日
	夏季	平成 23 年 9 月 11 日~12 日
魚類	秋季	〃 10月24日~25日
	春季	平成 24 年 5 月 7~8 日
底生動物	夏季	平成 23 年 9 月 11 日~12 日
	秋季	〃 10月24日~25日
	冬季	平成 24 年 2 月 17 日
	春季	平成 24 年 5 月 7~8 日

5)調査結果

(1)哺乳類

①確認種

現地調査で確認された哺乳類は、3目5科6種である。確認された哺乳類は平地の農耕地に 生息する種で構成されている。また、市街地に近接する調査地の環境であっても、周辺に広大 な農耕地が広がるため、市街地化によって生息することが困難になると思われるキツネが利用 することは特筆される。

確認場所を見ると、事業区域及び周辺の農耕地であり、周辺の住宅地にはほとんど見られなかった。これは、住宅地のほとんどが舗装道路に囲まれ、また、森林や草地植生がほとんどないことによる。なお、アブラコウモリについては、家屋にねぐらをとり、水路周辺で採餌する種であることから、事業区域周辺の住宅地も利用している可能性がある。

確認された哺乳類のうち、調査地域に広く確認された種はアズマモグラとイタチである。そのほかの種は、 $1\sim2$ 例確認されたのみであり、調査地を利用する頻度は多くないと思われる。

目 科 種 季節 備考 夏 秋 春 アズマモグラ モグラ科 食虫目 翼手目 ヒナコウモリ科 アブラコウモリ lacktriangle食肉目 イヌ科 キツネ タヌキ イタチ科 イタチ lacktriangleジャコウネコ科 ハクビシン 外来種 3 目 5科 5種 3種 1種 3種 6種

表 7.7-3 確認種一覧

②注目すべき種

現地調査で確認された種のうち、アズマモグラ、イタチの2種が注目すべき種としてあげられる。アズマモグラは を中心に広く坑道がみられた。イタチは、 に足跡が確認された。

表 7.7-4 注目すべき種一覧

	天然	種の				亻	台市		
種名	記念	保存	玉	県	学術上	減少	锺	環境	ふれ
1里石	物	法	RDB	RDB	重要種	市街地	田園	指標 種	あい 種
アズマモグラ						C			•
イタチ						В	С	•	•
6 種	0	0	0	0	0	2	1	1	2

天然記念物:文化財保護法(昭和二十五年五月三十日法律二百十四号)における天然記念物及び特別天 然記念物

種の保存法: 絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五

号) における国内希少野生動植物種及び国際希少野生動植物種

国 RDB: 絶滅のおそれのある野生生物の種のリスト(平成 19 年 10 月 5 日 修正版)

県 RDB:宮城県の希少な野生動植物-宮城県レッドデータブックー(平成 13 年 3 月、宮城県)

仙台市: 平成 15 年度自然環境に関する基礎調査業務報告書(平成 16 年 2 月、仙台市)

表 7.7-5 注目すべき種の確認状況及び一般生態

確認状況 不種は本州中部以北に主要分布地があり、そのほか紀伊半島南部を含む本州南部の各地に点在する山地、四国山地、小豆島などにコウベモグラに囲まれた孤立個体群を持つ。土壌層が深く土壌の粒子が微細で含水量の多い、標高の低い平野部に最も多いが、徳島県剣山山頂のような高山の草原にもみられる。主要な生息地は平野部の耕作地であり、水田の畔、河原、牧草地、用水路の土手などで最も高密度でみられる。適潤な土壌におおいのは坑道を掘りやすいほか、餌となる無脊椎動物がおおいことが影響するとされる。餌は、ミミズ類、昆虫類(鞘翅目幼虫、ケラ、双翅目幼虫、鱗翅目幼虫)が主である。トンネル網を構築し、その中に繁殖巣を作る。関東地方では、出産期が4月後半から6月初頭にみられ、宮城県での確認例では8月に妊娠した個体が確認されて	種名	アズマモグラ
確認状況 冬季 春季 本種は本州中部以北に主要分布地があり、そのほか紀伊半島南部を含む本州南部の各地に点在する山地、四国山地、小豆島などにコウベモグラに囲まれた孤立個体群を持つ。土壌層が深く土壌の粒子が微細で含水量の多い、標高の低い平野部に最も多いが、徳島県剣山山頂のような高山の草原にもみられる。主要な生息地は平野部の耕作地であり、水田の畔、河原、牧草地、用水路の土手などで最も高密度でみられる。適潤な土壌におおいのは坑道を掘りやすいほか、餌となる無脊椎動物がおおいことが影響するとされる。餌は、ミミズ類、昆虫類(鞘翅目幼虫、ケラ、双翅目幼虫、鱗翅目幼虫)が主である。トンネル網を構築し、その中に繁殖巣を作る。関東地方では、出産期が4月後半から6月初頭にみられ、宮城県での確認例では8月に妊娠した個体が確認されて		夏季
春季 本種は本州中部以北に主要分布地があり、そのほか紀伊半島南部を含む本州南部の各地に点在する山地、四国山地、小豆島などにコウベモグラに囲まれた孤立個体群を持つ。土壌層が深く土壌の粒子が微細で含水量の多い、標高の低い平野部に最も多いが、徳島県剣山山頂のような高山の草原にもみられる。主要な生息地は平野部の耕作地であり、水田の畔、河原、牧草地、用水路の土手などで最も高密度でみられる。適潤な土壌におおいのは坑道を掘りやすいほか、餌となる無脊椎動物がおおいことが影響するとされる。餌は、ミミズ類、昆虫類(鞘翅目幼虫、ケラ、双翅目幼虫、鱗翅目幼虫)が主である。トンネル網を構築し、その中に繁殖巣を作る。関東地方では、出産期が4月後半から6月初頭にみられ、宮城県での確認例では8月に妊娠した個体が確認されて	7年号7八十八口	秋季
本種は本州中部以北に主要分布地があり、そのほか紀伊半島南部を含む本州南部の各地に点在する山地、四国山地、小豆島などにコウベモグラに囲まれた孤立個体群を持つ。土壌層が深く土壌の粒子が微細で含水量の多い、標高の低い平野部に最も多いが、徳島県剣山山頂のような高山の草原にもみられる。主要な生息地は平野部の耕作地であり、水田の畔、河原、牧草地、用水路の一般生態 土手などで最も高密度でみられる。適潤な土壌におおいのは坑道を掘りやすいほか、餌となる無脊椎動物がおおいことが影響するとされる。餌は、ミミズ類、昆虫類(鞘翅目幼虫、ケラ、双翅目幼虫、鱗翅目幼虫)が主である。トンネル網を構築し、その中に繁殖巣を作る。関東地方では、出産期が4月後半から6月初頭にみられ、宮城県での確認例では8月に妊娠した個体が確認されて	4年前64人7年	冬季
る山地、四国山地、小豆島などにコウベモグラに囲まれた孤立個体群を持つ。土壌層が深く土壌の粒子が微細で含水量の多い、標高の低い平野部に最も多いが、徳島県剣山山頂のような高山の草原にもみられる。主要な生息地は平野部の耕作地であり、水田の畔、河原、牧草地、用水路の土手などで最も高密度でみられる。適潤な土壌におおいのは坑道を掘りやすいほか、餌となる無脊椎動物がおおいことが影響するとされる。餌は、ミミズ類、昆虫類(鞘翅目幼虫、ケラ、双翅目幼虫、鱗翅目幼虫)が主である。トンネル網を構築し、その中に繁殖巣を作る。関東地方では、出産期が4月後半から6月初頭にみられ、宮城県での確認例では8月に妊娠した個体が確認されて		春季
いる。	一般生態	る山地、四国山地、小豆島などにコウベモグラに囲まれた孤立個体群を持つ。土壌層が深く土壌の粒子が微細で含水量の多い、標高の低い平野部に最も多いが、徳島県剣山山頂のような高山の草原にもみられる。主要な生息地は平野部の耕作地であり、水田の畔、河原、牧草地、用水路の土手などで最も高密度でみられる。適潤な土壌におおいのは坑道を掘りやすいほか、餌となる無脊椎動物がおおいことが影響するとされる。餌は、ミミズ類、昆虫類(鞘翅目幼虫、ケラ、双翅目幼虫、鱗翅目幼虫)が主である。トンネル網を構築し、その中に繁殖巣を作る。関東地方では、出

出典:食虫類の自然史(1998年,比婆科学教育振興会)

種名	イタチ
	夏季
確認状況	秋季
1年101人()[冬季
	春季
一般生態	日本固有種。本州、九州、四国、佐渡、隠岐諸島、伊豆大島などに生息し、北海道、八丈島、与論島、波照間島などではネズミ類駆除のために導入された個体が定着している。西日本では外来種のチョウセンイタチが優勢であり、イタチの分布息は限られてきている。雌は一定の行動圏を持ち、土穴などをを巣とする。雄はいくつかの雌の行動圏と重なるような行動圏を持つ。九州では年2回繁殖し、産仔数は平均3~5。カエル、ネズミ類、鳥類、昆虫類、ザリガニなどの甲殻類、魚類を餌とする。

出典:日本の哺乳類 改訂版 (2005年, 東海大学出版会).

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 イタチ(足跡) アズマモグラ(坑道) 図7.7-2(1) 注目すべき種確認位置(哺乳類・夏季) 1:10,000

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 アズマモグラ(坑道) イタチ(足跡) イタチ(糞) 図7.7-2(2) 注目すべき種確認位置(哺乳類・秋季) 1:10,000

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 アズマモグラ(坑道) 図7.7-2(3) 注目すべき種確認位置(哺乳類・冬季) 1:10,000

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 イタチ(足跡) アズマモグラ(坑道) 図7.7-2(4) 注目すべき種確認位置(哺乳類・春季) 1:10,000

③注目すべき生息地

調査地域には、越冬地や集団分布地、繁殖地など哺乳類群集の生息地として注目される場所は確認されなかった。

(2)鳥 類

①確認種

現地調査で確認された鳥類は8目26科46種である。

季節別確認種数では、留鳥以外をみると、夏季には、サギ類、ツバメ、セッカなど夏鳥が、 越冬期にはコハクチョウ、コチョウゲンボウ、タヒバリ、ジョウビタキ、ツグミ、ミヤマガ ラスといった冬鳥で構成されている。また、春の渡りの時期には、エゾムシクイ、アカハラ といった森林性夏鳥が確認された.

調査地の鳥類の生息環境は、水田、住宅地、居久根に大別される。水田は調査地の大部分を占め、主要な鳥類の生息環境となっている。湛水期(鳥類では、春の渡りの時期、繁殖期)には魚類、両生類、甲殻類などの水生動物を餌とするサギ類など水鳥の生息環境となっているが、非湛水期(鳥類では、秋の渡りの時期及び越冬期)では、用水路の水量もかなり低下し、水田内は乾燥しているため、生息する鳥類はタシギなど湿性を利用する種はかなり限られている構成になっている。

なお夜間調査の結果、フクロウ類は確認されなかった。フクロウ以外の猛禽類は越冬期に多く見られたほか、オオタカは繁殖期前期にオス成鳥が確認されたが、事業区域内にはオオタカが営巣可能な、まとまった森林環境はなく、出現頻度も低いことから事業計画区域に営巣していないと考えられる。

表 7.7-6 確認種一覧

	1	又 7.7	O HED	8種一覧 季				調査方法	
				学	비고			则且刀齿	
Ħ	科	種	夏	秋	冬	春	ラインセンサス	定点観察	踏査
ペリカン目	ウ科	カワウ				•	•		
コウノトリ目	サギ科	ササゴイ	•			•	•		•
		アカガシラサギ				•	•		
		ダイサギ	•			•	•	•	•
		コサギ	•			•		•	
		アオサギ				•			•
カモ目	カモ科	コハクチョウ			•				•
		カルガモ	•			•			•
タカ目	タカ科	トビ	•	•	•	•	•	•	•
		オオタカ		•	•	•		•	•
		ハイタカ			•		•		
		ノスリ		•	•	•		•	•
	ハヤブサ科	ハヤブサ		•		•		•	•
		コチョウゲンボウ		•		•	•	•	•
		チョウゲンボウ		•	•	•	•	•	•
キジ目	キジ科	キジ				•	•	•	
ツル目	クイナ科	バン				•			•
チドリ目	チドリ科	ムナグロ			_	•		•	
	シギ科	タシギ		•	•		•	•	•
	カモメ科	オオセグロカモメ				•			•
) 🖽	1 11	ウミネコ				•			•
ハト目	ハト科	キジバト	•	•	•	•	•	•	•
キツツキ目 スズメ目	キツツキ科 ヒバリ科	コゲラ ヒバリ	•	•	•	•	•	•	
	ツバメ科	ツバメ							
	セキレイ科	ハクセキレイ		•	•			•	
		タヒバリ			•				
	ヒヨドリ科	ヒヨドリ							•
	モズ科	モズ							
	ツグミ科	ジョウビタキ			•				
	2 2 NTI	アカハラ				•	•	1	
		ツグミ			•	•	•	•	•
	ウグイス科	エゾムシクイ				•	•	<u> </u>	_
		セッカ	•			_	-		•
	シジュウカラ科	シジュウカラ	_		•				•
	メジロ科	メジロ			-	•			•
	ホオジロ科	ホオジロ			•		•		•
		アオジ		•		•	•		•
	アトリ科	カワラヒワ		•	•	•	•	•	•
	ハタオリドリ科	スズメ	•	•	•	•	•	•	•
	ムクドリ科	コムクドリ	•				•		•
		ムクドリ	•	•	•	•	•	•	•
	カラス科	ミヤマガラス		•	•		•		•
		ハシボソガラス	•	•	•	•	•	•	•
		ハシブトガラス	•	•	•	•	•	•	•
10 目	26 科	45 種	18	21	22	34	28	24	36
野生化飼鳥等	ハト目ハト科	ドバト							

②注目すべき種

注目すべき鳥類として、以下に示す11種が確認された。

表 7.7-7 注目すべき種一覧

	天然	種の	団	ΙĦ			仙台市		
種名	記念	保存	国 RDB	県 RDB	学術上	減少	種	環境指	ふれあ
	物	法	NDD	NDD	重要種	市街地	田園	標種	い種
コサギ					2	В		0	0
オオタカ			NT	NT	1,4	В	В	0	0
ハイタカ			NT	NT	1,4	C	C	0	
ハヤブサ			VU	NT	1,4	В	В		
チョウゲンボウ					1,4	В	C		0
バン						В	C	0	
ヒバリ						В		0	0
モズ						В	С	0	0
セッカ						В	С	0	
ホオジロ						В			0
アオジ					1	С	В		
11 種	0	0	3	3	6	10	7	6	6

天然記念物:文化財保護法(昭和二十五年五月三十日法律二百十四号)における天然記念物及び特別天然記念物種の保存法:絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五号)にお

ける国内希少野生動植物種及び国際希少野生動植物種

国 RDB: 絶滅のおそれのある野生生物の種のリスト(平成 18 年 12 月 22 日 公表)

県 RDB: 宮城県の希少な野生動植物-宮城県レッドデータブックー(平成 13年3月、宮城県)

仙台市:平成15年度自然環境に関する基礎調査業務報告書(平成16年2月、仙台市)

表 7.7-8 注目すべき種の確認状況及び一般生態

種名	コサギ	
	夏季	で1個体1例飛行確認
確認	秋季	確認されず
状況	冬季	確認されず
	春季	で1個体1例飛行確認
		で、本州から九州までの各地で繁殖する。低地から山地の水田、湖沼、河 潟でも採餌する。川の浅瀬、水田を歩いて、ドジョウ、フナ、オイカワな
一般	どの魚類、カエル、アメ	リカザリガニなどをくちばしではさみとる。繁殖期は4~9月、年1回の繁
生態		繁殖する。ゴイサギ、ダイサギ、チュウサギなどと混生して集団繁殖する
		木林、竹林などの樹上に営巣する。1 巣卵数は 4~7 個、抱卵日数は 22~
	24日、育雛期間は1か月] である。非繁殖期にはコロニーとは別の林に集団ねぐらを形成する。

出典:原色日本野鳥生態図鑑<水鳥編> (1995年,保育社)

種名	オオタカ					
	夏季	確認されず				
確認	秋季	で1個体5例飛行確認、すべて幼鳥				
状況	冬季	で1個体1例飛行1例幼鳥確認				
	春季	で1個体2例幼鳥および成長雄確認				
		は、北海道から九州に分布し、宮城県では全域が調査されており、そのうち7~8				
	割のメッシュで生	.息が確認され、繁殖を確認されているメッシュも少なくない。山地の森林から都				
一般	市の緑地まで幅広	い環境に生息する。なかでも、平地から丘陵地が主な生息場所であり、そこは農				
生態	耕地や河原等の開	けた環境や、森林、集落がモザイク状に存在する断片化の進んだ農耕地帯である。				
土忠	日本亜種の餌動物	はスズメ、ムクドリなどの小型鳥類や、ハト、カラス、キジなどの中型鳥類を主				
	に捕食する。ネズミ、リス、モグラ、イタチ、ノウサギなどの小型~中型哺乳類も餌とするが、鳥					
	類より占める割合	は低い。				

出典:オオタカの生態と保全・その個体群保全に向けて・(2008年,社団法人日本森林技術協会)

種名	ハイタカ	
	夏季	確認されず
確認	秋季	確認されず
状況	冬季	で1例1個体止まり確認
	春季	確認されず
一般生態	定期的な渡り鳥であ 強いが、冬季に餌事 冬季にはネズミ類が	本州で繁殖確認されており、四国の一部で繁殖可能性があるが、中国地方ではる。越冬期は北海道から九州でみられ、沖縄でもまれに観察される。留鳥性が情が悪くなる地方では平地や南方に移動する。餌のほとんどが小鳥であるが、増加する。本州の中部ではツミよりやや標高の高い山地の混交林、スギ・ヒノカラマツ林などで繁殖する。営巣環境は近くに狩場として開けた土地があり、

出典:図鑑日本のワシタカ類(1995年, 文一総合出版)

種名	ハヤブサ				
	夏季	確認されず			
確認	秋季	で1個体1例飛行確認			
状況	冬季	確認されず			
	春季	事業区域周辺で1個体1例飛行確認			
	北海道から九州と周辺諸島で繁殖し、越冬期には北海道から沖縄でみられる。餌				
一般	であり、キクイタダ	キといった小鳥からガン類など大型鳥類まで捕食するとされるが、ハトやヒョ			
生態	ドリ、ツグミが主な餌である。国内で繁殖する個体はほとんどが留鳥で、海岸の断崖や、山中にあ				
土忠	る岸壁などのほか近	年ではビルなど人工構造物での営巣が確認されている。営巣に適したがけの有			
	無と餌の量によって	繁殖分布は不規則になり、特定地方に集中することがある。			

出典:図鑑日本のワシタカ類(1995年, 文一総合出版)

種名	チョウゲンボウ	
	夏季	確認されず
確認	秋季	で1個体1例飛行確認
状況	冬季	で1個体2例飛行確認
	春季	で1個体2例飛行及び電柱での止まり確認
一般生態	越冬期では、本州 類や食虫類が主で 虫類、カエル類な い。農耕地、草地	、東北地方から中部地方にかけての本州で繁殖しているが、北海道では少ない。から沖縄のほか、北海道でも少数越冬する個体がいるとされる。餌は、ネズミあるが、小鳥類、ばった類などの昆虫類、トカゲ、カナヘビ、ヘビ類などの爬ども捕食する。餌の種類の割合は、地域変異及び季節変動があり、一定ではな、湿地、広い河原などが広がる開けた環境に生息し、岩や土質の崖の穴または鳥の巣などの自然物のほか、ビルの棚状の部分、倉庫の通風口、橋桁などであ

出典:図鑑日本のワシタカ類(1995年,文一総合出版)

種名	バン							
	夏季	確認されず						
確認	秋季	確認されず						
状況	冬季	確認されず						
	春季	で1個体1例水田畔で確認						
	日本では北海道	直及び関東以北では夏鳥として渡来し、西日本では留鳥として生息する。淡水域の						
一般	ヨシやガマが生	三育する湿地に生息する。干潟で見られることもある。水草の葉・茎・種子を食べ						
生態	る。水生昆虫、	る。水生昆虫、昆虫、貝、甲殻類、オタマジャクシやミミズも採餌する. アシ、マコモ、イ、ガ						
	マなどの草むら	っ、水田などに枯れ草を積んで皿形の巣を雌雄でつくる。						

出典:原色日本野鳥生態図鑑<陸鳥編>(1995年,保育社)

種名	ヒバリ	
	夏季	確認されず
確認	秋季	で20例2.0±2.63個体(平均生標準偏差)水田上で確認
状況	冬季	で 12 例 11.1±8.14 個体(平均±標準偏差)水田上で確認
	春季	で 24 例 1.4±1.10 個体(平均±標準偏差)轉り飛翔など確認
		重ヒバリが九州以北から北海道で繁殖する。積雪の多い地方では冬に南下し、留鳥
一般		として生息する。越冬期には、亜種オオヒバリが北海道以南に、亜種カラフトチュ
生態	ウヒバリが本州	以南に渡来して越冬する。牧場、草原、河原、農耕地、埋め立て地に生息するが、
土忠	丈の低い草が顔	Fらに生え、露出した地面の多い乾燥地を好む。草の実や昆虫類を餌とする。2月
	下旬ごろから繁	※殖地に渡来し、4月初旬から7月までに、年1~3回繁殖する。地上に営巣する。

出典:原色日本野鳥生態図鑑<陸鳥編>(1995年,保育社)

種名	モズ	
	夏季	確認されず
確認	秋季	で 14 例止まり及び飛行確認
状況	冬季	で5例止まり及び飛行確認
	春季	で3例止まり確認
一般 生態	る。中部日本の 河原、自然公園 虫やミミズ、同	日各地に留鳥として年中生息するが、冬に北海道では大部分が温暖な地域へ移動す の高原や多雪地域で繁殖したモズも、冬は暖地へ移動する。集落や農耕地の周辺、 は、高原、林縁など、低木のある開けた環境があれば至る所で繁殖する。餌は、昆 防生爬虫類、鳥類、小型哺乳類のほか、冬は、ハゼ、サンショウ、マサキなどの植 繁殖期は2月下旬~7月、年に1~2回繁殖する。営巣地は低木や藪のなかである。

出典:原色日本野鳥生態図鑑<陸鳥編>(1995年,保育社)

種名	セッカ	
	夏季	で1例1個体さえずり確認
確認	秋季	確認されず
状況	冬季	確認されず
	春季	で1例1個体さえずり確認
一般生態	ては局地的に分布する 山地の草原、水田に生む。海岸や河口のやや を食べる。繁殖期は4	秋田県に生息するが、とくに本州中南部に集中し、北陸・東北地方にかける。多くの地方では夏鳥として繁殖するが、沖縄では留鳥である。低地からまし、チガヤやカルカヤのようにやや丈が低いイネ科草本が茂る草原を好った草原や河原の草原に多い。植物の茎を移動しながら、昆虫、クモ類月~9月、年2~3回繁殖する。一夫多妻で雄は求愛巣をつくるだけで、抱いわらない。雄のテリトリー内に複数の巣があり、各巣にいる雌は排他的ない。

出典:原色日本野鳥生態図鑑<陸鳥編>(1995年,保育社)

種名	ホオジロ	
	夏季	確認されず
確認	秋季	確認されず
状況	冬季	で3例3個体地鳴確認
	春季	確認されず
一般 生態	牧草地などの周辺の 多いところなどでみら とする。植物質のほか	の全土に留鳥として繁殖する。低地や低山帯の藪地を好み、集落、農耕地、極地、また疎林、植林、いろいろなタイプの樹林の林縁、路傍の雑草と藪のれる。イネ科、カヤツリグサ科、タデ科、キク科、マメ科などの種子を餌い、鱗翅目の幼虫などの昆虫類も餌とする。繁殖期は、4月~9月、年1~3億の小枝の又に営巣する。

出典:原色日本野鳥生態図鑑<陸鳥編>(1995年,保育社)

種名	アオジ	
確認 状況	夏季	確認されず
	秋季	で 4 例 4 個体地鳴確認
	冬季	確認されず
	春季	で 6 例 9 個体地鳴確認
一般生態	地帯上部から亜高山帯 林縁、若木林を好む。 藪、ヨシ原などで見ら	北、北海道で繁殖する。越冬期は本州西南部、四国、九州でみられる。産 下部にかけての、比較的乾いた明るい林にすみ、疎林で藪が多いところ、 越冬地では、常緑樹林の林縁、人家の生垣、竹林、溝や河川の堤防沿いの いれる。タデ科、イネ科などの種子、ズミ、イボタノキなどの果実、夏には 食べる。繁殖期は5~7月、地上1~2mぐらいの藪のなかの枝のまた状に

出典:原色日本野鳥生態図鑑<陸鳥編>(1995年,保育社)

③注目すべき生息地

調査地域には、越冬地や集団分布地、繁殖地など鳥類群集の生息地として注目される場所は確認されなかった。

注目すべき種保護のためマスキング 凡例 記号 V:止まり目撃 C:地鳴き F:飛行 事業区域 コサギ ヒバリ 動物調査範囲 モズ • セッカ 図7.7-3(1) 注目すべき種確認位置(鳥類・夏季) 1:10,000

注目すべき種保護のためマスキング

凡例

事業区域

動物調査範囲

オオタカ

ハヤブサ

記号

チョウゲンボウ

N: 止まり目撃 C: 地鳴き F: 飛行

ヒバリ

モズ

アオジ

図7.7-3(2) 注目すべき種確認位置(鳥類・秋季)

1:10,000

注目すべき種保護のためマスキング 凡例 記号 N: 止まり目撃 C: 地鳴き F: 飛行 事業区域 オオタカ ハイタカ 動物調査範囲 チョウゲンボウ ヒバリ モズ ホオジロ 図7.7-3(3) 注目すべき種確認位置(鳥類・冬季) 1:10,000 200

注目すべき種保護のためマスキング

④ガン類・ハクチョウ類調査

大沼での調査ではハクチョウ類が冬季調査でのみ確認された。秋・春の渡りの時期には、 カモ類のみ確認され、ガン類・ハクチョウ類は確認されなかった。また、カモ類は、秋の渡 りの時期では多くの種類が利用していたが、越冬期では利用する種類は少なくマガモとオナ ガガモがほとんどであり、これは春の渡りの時期でも同様であった。

越冬期のハクチョウ類は計 508 個体(2012/1/20)のねぐら利用が確認され、これらのほとんどが亜種コハクチョウであり、少数のオオハクチョウと亜種アメリカコハクチョウが混在する構成となっていた。

目	科	種	2011/10/24	2011/10/25	2012/1/18	2012/1/20	2012/3/26	2012/3/26
	17	1里	12:31	5:35	14:25	7:00	6:00	12:35
カイツブリ目	カイツブリ科	カイツブリ	+					
ペリカン目	ウ科	カワウ	+					
コウノトリ目	サギ科	アオサギ	+					
カモ目	カモ科	オオハクチョウ			8	26		
		コハクチョウ			11	478		
		アメリカコハクチョウ				4		
		マガモ	+	40	+	158		38
		カルガモ	+	3				
		コガモ		103				8
		ヒドリガモ	+	24		5	+	1
		オナガガモ	+	5	+	83	+	2000
		ハシビロガモ	+	13				
		ホシハジロ	+	12				
		キンクロハジロ		5				
		ミコアイサ				21		
ツル目	クイナ科	オオバン	+	104		18		12
5 目	5科	16 種	10	9	4	8	2	5

表 7.7-9 大沼における生息確認鳥類

越冬期に大沼をねぐら利用しているハクチョウ類は、7:30 頃からねぐら出が始まり、周辺の採餌場所へ移動した。ねぐら出は、おそらく家族群と思われる少数の群れ(4.22 ± 3.04 [平均 世標準偏差])単位で長時間(約2時間)続き、集中する時間帯はなかった。採餌場所はねぐらから約1600m離れた草地(F1:108 個体)、同じく3115m 離れた草地(F2:346 個体)が確認され、ねぐら出の方向、採餌している群れとねぐら出個体数から判断して、大沼をねぐらとしている個体群のほとんどはこれら草地を採餌場所としているといえる。

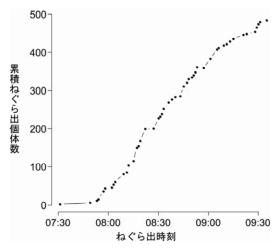


図 7.7-4 越冬期の大沼でのコハクチョウねぐら出個体数の推移

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 採餌場所 ねぐら ねぐら出後の飛行コース及び個体数 図7.7-5 越冬期の大沼でのコハクチョウねぐら出方向及び個体数 1:30,000

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 採餌場所 ねぐら ねぐらとの直線距離 図7.7-6 越冬期の大沼でのコハクチョウねぐら出後の採餌場所 1:30,000

(3)爬虫類

①確認種

現地調査で確認された爬虫類はシマヘビ1種(死骸)である。

表 7.7-10 確認種一覧

н	科	種	確認状態	季 節			
P	17	作里	2017个公司进行	夏	秋	春	
有鱗目	ナミヘビ科	シマヘビ	死骸, 成体	•		•	
1目	1科	1種	-	1	0	1	

②注目すべき種

以下の資料に該当する爬虫類は確認されていない。

天然記念物:文化財保護法(昭和二十五年五月三十日法律二百十四号)における天然記念物及び特別天 然記念物

種の保存法: 絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五

号) における国内希少野生動植物種及び国際希少野生動植物種

国 RDB: 絶滅のおそれのある野生生物の種のリスト(平成 18 年 12 月 22 日 公表)

県 RDB: 宮城県の希少な野生動植物 - 宮城県レッドデータブック - (平成 13 年 3 月、宮城県)

仙台市:平成15年度自然環境に関する基礎調査業務報告書(平成16年2月、仙台市)

③注目すべき生息地

調査地域には、越冬地や集団分布地、繁殖地など爬虫類群集の生息地として注目される場所は確認されなかった。

(4) 両生類

①確認種

確認された両生類はニホンアマガエル、ニホンアカガエルの2種である。

表 7.7-11 確認種一覧

Ī	目			-1 == 15 bis	季節			
		科	種	確認状態	夏	秋	春	
Ī	無尾目	アマガエル科	ニホンアマガエル	声・目撃・死骸	•	•	•	
		アカガエル科	ニホンアカガエル	目撃・死骸	•	•	•	
	1 目	2 科	2 種	-	2	2	2	

②注目すべき種

注目すべき両生類として、ニホンアカガエル1種が確認された。

表 7.7-12 注目すべき種一覧

		天然				仙台市					
;	種	記念物	種の 保存 法	国 RDB	県 RDB	学術上	減少種		環境	ふれ	
	7里					重要種	市街地	田園	指標 種	あい 種	
	ニホンアカガエル				NT		В			0	
	1種			0	1	0	1	0	0	1	

天然記念物:文化財保護法(昭和二十五年五月三十日法律二百十四号)における天然記念物及び特別天 然記念物

:種の保存法:絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五号)における国内希少野生動植物種及び国際希少野生動植物種

国 RDB: 絶滅のおそれのある野生生物の種のリスト(平成 18年 12月 22日 公表)

県 RDB: 宮城県の希少な野生動植物-宮城県レッドデータブックー(平成13年3月、宮城県)

仙台市:平成15年度自然環境に関する基礎調査業務報告書(平成16年2月、仙台市)

表 7.7-13 注目すべき種の確認状況及び一般生態

植名	ニホンアカガエ	-)V					
	夏季	で確認					
確認状況	秋季	で確認					
	春季	で確認					
一般生態	秋季で確認						

出典日本カエル図鑑(1989年, 文一総合出版)

③注目すべき生息地

調査地域には、越冬地や集団分布地、繁殖地など両生類群集の生息地として注目される場所は確認されなかった。

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 ニホンアカガエル(幼体目撃) ニホンアカガエル(成体目撃) 図7.7-7(1) 注目すべき種確認位置(両生類・夏季) 1:10,000

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 ニホンアカガエル(幼体目撃) ニホンアカガエル(成体目撃) 図7.7-7(2) 注目すべき種確認位置(両生類・秋季) 1:10,000

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 ニホンアカガエル(卵塊) ニホンアカガエル(成体目撃) 図7.7-7(3) 注目すべき種確認位置(両生類・春季) 1:10,000

(5)昆虫類

①確認種

現地調査で確認された昆虫類は、9目 79科 175種である。確認された昆虫類は草地環境に生息するバッタ類が多種見られたほか、水辺に依存するアメンボ類やゲンゴロウ類も確認された。

表 7.7-14 確認種一覧

н	↑I	任		季節		調査	方法	備
目	科	種	夏	秋	春	踏査	トラップ	考
トンボ	アオイトトンボ	オツネントンボ		•	•	•		
	ヤンマ	ギンヤンマ	•					
	オニヤンマ	オニヤンマ	•					
	トンボ	ウスバキトンボ	•					
		ナツアカネ	•					
		アキアカネ		•		•		\dagger
		ノシメトンボ	•	Ŏ		Ŏ		\dagger
		マイコアカネ	•	T .		•		\dagger
バッタ	カマドウマ	クラズミウマ	ě				•	
	キリギリス	ヒメギス	•			•		
		ヒメクサキリ						1
		クサキリ		•		•		
		ウスイロササキリ						1
		ハヤシノウマオイ		_		•		+
	ツユムシ	セスジツユムシ		•				+
	コオロギ	タンボオカメコオロギ					•	
		ハラオカメコオロギ	•	_		•		+
		タンボコオロギ				•		+
		エンマコオロギ						-
				•			•	-
		ツヅレサセコオロギ	•	•		•	•	-
	マツムシ	カンタン	-	_		•		-
	ヒバリモドキ	マダラスズ	•	•		•		
		シバスズ	•			•		
		キタヤチスズ	•			•		1
	ケラ	ケラ			•	•		
	ノミバッタ	ノミバッタ	•			•		
	ヒシバッタ	ハネナガヒシバッタ		•				
		ハラヒシバッタ			•			
	オンブバッタ	オンブバッタ	•	•				
	バッタ	コバネイナゴ		•		•		
ハサミムシ	ハサミムシ	ヒゲジロハサミムシ	•					
	オオハサミムシ	オオハサミムシ	•			•		
カメムシ	アオバハゴロモ	アオバハゴロモ	•	•				
	セミ	ミンミンゼミ	•			•		
	オオヨコバイ	ツマグロオオヨコバイ	•	•				
		オオヨコバイ	•					
	アブラムシ	エノキワタアブラムシ	•					
		ノゲシフクレアブラムシ		•				
		ニセダイコンアブラムシ		•				
		セイタカアワダチソウ						
		ヒゲナガアブラムシ		•		•		
		ワタアブラムシ		•				
		ガマノハアブラムシ						
	イトアメンボ	ヒメイトアメンボ	•	† -		•	1	
	カタビロアメンボ	ケシカタビロアメンボ	ě	1		•		
	アメンボ	アメンボ	ě	•	•		t	†
		ヤスマツアメンボ		+			<u> </u>	+
		ヒメアメンボ		+			<u> </u>	+
	ミズムシ	コミズムシ		+			 	+
	ハナカメムシ	ナミヒメハナカメムシ		•			-	+
	, · / // // A /	ヤサハナカメムシ		+=	1		 	+
	サシガメ	ヤニサシガメ		+=	1		-	+-+
	リマルグ	1 ーリ イ ル グ			<u> </u>		L	لــــــــــــــــــــــــــــــــــــــ

目	科	種	F	季節	#	調査	方法	備
			夏	秋	春	踏査	トラップ゜	老
	ナガカメムシ	ヒメナガカメムシ	•	•	•	•		
		ニッポンコバネナガカメムシ		•		•		
	ヘリカメムシ	ホオズキカメムシ	•			•		
	ヒメヘリカメムシ	ケブカヒメヘリカメムシ		•		•		
	ツチカメムシ	ツチカメムシ						
		ミツボシツチカメムシ						
	カメムシ	ムラサキカメムシ				•		
		ブチヒゲカメムシ				•		
		クサギカメムシ				•		
		チャバネアオカメムシ			Ŏ	Ŏ		
アミメカゲロウ	クサカゲロウ	ヨツボシクサカゲロウ	•			_	•	
, , , , , , , , , , , , , , , , , , , ,	ウスバカゲロウ	ウスバカゲロウ				•		1
コウチュウ	オサムシ	アトモンミズギワゴミムシ				- 		1
コリナユリ	A リムン				•	•		
		キアシヌレチゴミムシ	•	_				
		セアカヒラタゴミムシ	•	•				
		オオヒラタゴミムシ		•		•		
		ヒメツヤヒラタゴミムシ						
		オオクロツヤヒラタゴミムシ						
		ニセマルガタゴミムシ						
		コマルガタゴミムシ			•	•		
		ホシボシゴミムシ			Ŏ	Ť		
		ゴミムシ					Š	
		オオズケゴモクムシ						
					<u> </u>			-
		ヒメケゴモクムシ			•			-
		クロゴモクムシ	•				•	_
		ウスアカクロゴモクムシ		•		•		
		コゴモクムシ						
		クビアカツヤゴモクムシ						
		キベリゴモクムシ						
		ミドリマメゴモクムシ						
		ツヤマメゴモクムシ		Ť		•		
		オオアトボシアオゴミムシ			_	_		\dagger
		アオゴミムシ						+-
					-			-
		オオキベリアオゴミムシ	•				•	-
		コルリアトキリゴミムシ		•		•		-
	ホソクビゴミムシ	ミイデラゴミムシ	•			•		
	ゲンゴロウ	チビゲンゴロウ		lacksquare				
	ガムシ	ヒメガムシ						
		トゲバゴマフガムシ				•		
		ゴマフガムシ		•		•		
	シデムシ	オオヒラタシデムシ		Ť	Ť	Ŭ		
	ハネカクシ	カラカネツヤメダカハネカクシ						\vdash
	7 12 12 2	アオバアリガタハネカクシ						-
	_ # 4)) (•			-
	コガネムシ	マメコガネ			•	•		_
		コアオハナムグリ	•		•	•		
	コメツキムシ	マダラチビコメツキ				•		
		サビキコリ						
	ジョウカイボン	ムネアカジョウカイ				•		
	ジョウカイモドキ	ツマキアオジョウカイモドキ				•		
	ケシキスイ	クロハナケシキスイ			_	•		
	7 3 4 24 1	クリヤケシキスイ	•	_		•		
		ツバキヒラタケシキスイ						-
				•		•		-
		モンチビヒラタケシキスイ		•	 	•		<u> </u>
		マルキマダラケシキスイ	•	1	<u> </u>	<u> </u>	•	
	テントウムシダマシ	ョツボシテントウダマシ		1	•			
	テントウムシ	ヒメアカホシテントウ						L
		ナナホシテントウ			•	•		
		ナミテントウ	•	•	•	•		T
		ヒメカメノコテントウ	Ŏ	+	Ŏ	•		t
	クビナガムシ	<i>こ</i>	 	+				1
				 			1	-
	アリモドキ	ョツボシホソアリモドキ		•	•	•		<u> </u>
	ハナノミダマシ	クロフナガタハナノミ			•	•		<u> </u>
	ゴミムシダマシ	キマワリ		<u></u>	<u>L</u>			1
	カミキリムシ	キボシカミキリ					1	

Ħ	科	種		季節		調査	方法	備
目	<u> </u>		夏	秋	春	踏査	トラッフ゜	考
	ハムシ	イネクビボソハムシ			•	•		
		ドウガネツヤハムシ	•		•	•		↓
		ヨモギハムシ			•	•		
		コガタルリハムシ	•		•	•		
		フジハムシ			•	•		+
		クロウリハムシ			_			+
		アトボシハムシ ヨツボシハムシ			<u> </u>			+-
		キスジノミハムシ						+
ハチ	ハバチ	セグロカブラハバチ						+
, , ,		ニホンカブラハバチ		•				+
		ルイスアカマルハバチ				•		+
	アシブトコバチ	キアシブトコバチ	•			•		
	ツチバチ	キンケハラナガツチバチ		•		•		_
	アリ	ムネボソアリ	•		•	•		
		ヒメアリ		•	•	•	•	
		アズマオオズアリ	•	•			•	
		トビイロシワアリ			•	•		
		クロヤマアリ			•			
		トビイロケアリ	•		•			
		アメイロアリ			•		•	
	ベッコウバチ ドロバチ	オオシロフベッコウ	•			•		
	ドロバチ	オオフタオビドロバチ	•			•		↓
		ミカドトックリバチ	•			•		
		スズバチ				•		
	スズメバチ	セグロアシナガバチ	-			•		
		コアシナガバチ				•		+
		コガタスズメバチ		•				+
	アナバチ	オオスズメバチ クロアナバチ						+-
	アナバチ	アカガネコハナバチ			•			+-
		フタモンカタコハナバチ						+
	ハキリバチ	キヌゲハキリバチ						+
		バラハキリバチモドキ	Ŏ			•		+
		マメコバチ			•	•		
	コシブトハナバチ	クマバチ	•		•	•		
	ミツバチ	オオマルハナバチ	•			•		
		ニホンミツバチ	•			•		
ハエ	ガガンボ	キイロホソガガンボ			•			
		キリウジガガンボ			•			
	ケバエ	ハグロケバエ			•	•		
	ミズアブ	エゾホソルリミズアブ			•	•		┸
		コウカアブ	•			•		↓
	アシナガバエ	マダラアシナガバエ	•	•		•		ــــــ
	ハナアブ	クロヒラタアブ		•		•		
		フタスジヒラタアブ ホソヒラタアブ						+
		エゾコヒラタアブ	•			•		+-
		ナミホシヒラタアブ						+
		ホソヒメヒラタアブ	+		•			+-
		ヒメヒラタアブ	•	•	•			+
		ケヒラタアブ						+
		ツヤヒラタアブ		•		•		+
		キアシマメヒラタアブ	•	-	•	•		
		ホシメハナアブ	•	1	_	•		\top
		シマハナアブ		•	•	•		1
		ハナアブ		•		•		
		アシブトハナアブ	•	•		•		I
		シマアシブトハナアブ		•	•	•		
		オオハナアブ		•	· · · · · · · · · · · · · · · · · · ·	•		
		モモブトチビハナアブ		•		•		
	ミバエ	ミスジミバエ		•		•		$oxed{oxed}$
	ヤチバエ	ヒゲナガヤチバエ		•		•		↓
	ミギワバエ	カマキリバエ	1				1	1

E E	科	種		季節		調査	方法	備
Ħ	件	· ·	夏	秋	春	踏査	トラッフ゜	考
	フンバエ	ヒメフンバエ		•		•		
	クロバエ	キンバエ		•	•	•		
		ツマグロキンバエ	•	•		•		
チョウ	ハマキガ	トビモンコハマキ			•		•	
	スガ	コナガ	•				•	
	メイガ	シロオビノメイガ	•	•		•		
		マエアカスカシノメイガ		•		•		
	セセリチョウ	イチモンジセセリ	•	•		•		
		チャバネセセリ		•		•		
	アゲハチョウ	キアゲハ	•			•		
		クロアゲハ	•			•		
		ナミアゲハ	•	•	•	•		
	シロチョウ	モンキチョウ	•	•	•	•		
		キタキチョウ	•	•		•		
		スジグロシロチョウ			•	•		
		モンシロチョウ	•	•	•	•		
	シジミチョウ	ベニシジミ	•	•	•	•		
		ルリシジミ	•			•		
		ツバメシジミ	•			•		
		ヤマトシジミ	•	•	•	•		
	タテハチョウ	ヒメアカタテハ		•		•		
		キタテハ	•	•	•	•		
		アカタテハ	•			•		
	ジャノメチョウ	ヒカゲチョウ	•			•		
		ヒメジャノメ	•			•		
		サトキマダラヒカゲ	•			•		
	シャクガ	フトベニスジヒメシャク	•				•	
	シャチホコガ	オオエグリシャチホコ	•				•	
	ヒトリガ	アメリカシロヒトリ	•			•		外来種
	カノコガ	カノコガ	•			•		
	ヤガ	ツメクサガ		•		•	•	
		コウスチャヤガ		•			•	
		クロクモヤガ		•		•	•	
		オオカバスジヤガ		•			•	
		イチジクキンウワバ	•				•	1
		オオウンモンクチバ	•				•	
9 目	89 科	215 種	193 種	90 種	70 種	183 種	40 種	1

注)種名、記載順は基本的に「日本産野生生物目録 無脊椎生物編 II 」(1995 年, 環境庁) に従ったが、一部は近年の文献により修正した。

②注目すべき種

確認された注目すべき昆虫類は、以下の5種である。

表 7.7-15 注目すべき種一覧

				ì	選定基準	i	
 	種名	丁 炒	種の	표	IB	/u-/	仙台市 H15
111-12	1里石	天然 記念物	種の 保存法	国 RDB	県 RDB	仙台市 H6	学術上重要種 または減少種
オニヤンマ	オニヤンマ						0
キリギリス	ハヤシノウマオイ						0
オオハサミムシ	オオハサミムシ				NT		
カミキリムシ	キボシカミキリ				YO		
セセリチョウ	チャバネセセリ				YO	0	0
5科	5種	0種	0種	0種	3種	1種	3種

天然記念物:文化財保護法(昭和二十五年五月三十日法律二百十四号)における天然記念物及び特別天 然記念物

種の保存法:絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五

号) における国内希少野生動植物種及び国際希少野生動植物種

国 RDB: 絶滅のおそれのある野生生物の種のリスト(平成 18 年 12 月 22 日 公表)

県 RDB:宮城県の希少な野生動植物-宮城県レッドデータブックー(平成 13年3月、宮城県)

仙台市:平成15年度自然環境に関する基礎調査業務報告書(平成16年2月、仙台市)

表 7.7-16 注目すべき種の確認状況及び一般生態

種名	オニヤンマ	
確認状況	夏季	任意採集にて2地点で確認
	秋季	未確認
	春季	確認されず
一般生態	幼虫は平地な	いら山地にかけての樹林を伴う小川や湧水など広い水域に生息する。

出典:日本産トンボ幼虫・成虫検索図鑑(1988年, 東海大学出版)

種名	ハヤシノウマ	マオイ
確認状況	夏季	1地点で複数個体の鳴き声を確認
	秋季	未確認
	春季	確認されず
一般生態	山地の林縁部	Rに生息。ハムシや蛾の幼虫など主に昆虫類を捕食する。

出典:バッタ・コオロギ・キリギリス大図鑑(2006年,日本直翅類学会)

種名	オオハサミ	
確認状況	夏季	任意採集にて1個体を確認
	秋季	未確認
	春季	確認されず
一般生態	本州以南に分	分布。乾燥した砂地などに生息する。

出典:新訂原色昆虫大図鑑Ⅲ(2008年, 北隆館)

種名	キボシカミニ	キリ
確認状況	夏季	任意採集にて1個体を確認
	秋季	任意採集にて1個体を確認
	春季	確認されず
一般生態		分布しクワやイチジクの害虫として知られる。各地で地域ごとの変異が大き10 亜種に分けられている。

出典:日本産カミキリムシ(2007年, 東海大学出版)

種名	チャバネセヤ	z J
確認状況	夏季	未確認
	秋季	任意採集にて1個体を確認
	春季	確認されず
一般生態		分布するも、寒冷地では個体数が少ない。越冬の北限は関東地方であると思
	われる。イス	ネ科のススキやメヒシバなどを食草とする。

出典:原色日本蝶類図鑑(1976年,保育社)

③注目すべき生息地

調査地域には、繁殖地など昆虫群集の生息地として注目される場所は確認されなかった。

注目すべき種保護のためマスキング 凡例 事業区域 オオハサミムシ 動物調査範囲 オニヤンマ キボシカミキリ チャバネセセリ ハヤシノウマオイ 図7.7-8 注目すべき種確認位置(昆虫類) 1:10,000

(6)魚 類

①確認種

現地調査で確認された魚類は、3 目 4 科 9 種である。確認された魚類は主に止水環境に生息するコイ科やドジョウ科で、小規模で流れが緩やかな農業用水路という環境を反映する結果となった。地点®は事業区域外であるが、3 面張りのコンクリート護岸で植生も無く、魚類相も貧弱であった。

また、今回確認されたメダカはヒメダカであり、放流されたものであるとみられる。

表 7.7-17 確認種一覧

	£	125		季節					調査	地点				備
目	科	種	夏	秋	春	1	2	3	4	5	6	7	8	考
コイ目	コイ科	ギンブナ	•	•	•	•	•	•	•	•	•			
		キンブナ												
		アブラハヤ	•	•	•		•							
		タモロコ	•	•	•	•	•	•	•	•	•	•		
		ニゴイ	•									•		
		コイ		•					•					
	ドジョウ 科	ドジョウ	•	•	•	•	•	•	•	•	•	•	•	
ダツ目	メダカ科	ヒメダカ	•				•							放流
スズキ 目	ハゼ科	Rhinogobius 属	•					•						
3 目	4 科	9種	8種	6種	4種	4種	6種	5種	4種	3種	3種	3種	1種	

表 7.7-18 注目すべき種一覧

		選定基準							
科名	種名	一块	種の	Ī	Ш	MLA±	仙台市 H15		
行石		> 17111	種の 保存法	国 RDB	県 RDB	仙台市 H6	学術上重要種 または減少種		
コイ科	キンブナ			NT					
1科	1種	0種	0種	1種	0種	0種	0種		

種の保存法: 絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五

号)における国内希少野生動植物種及び国際希少野生動植物種

国 RDB: 絶滅のおそれのある野生生物の種のリスト(平成 18 年 12 月 22 日 公表)

県 RDB: 宮城県の希少な野生動植物-宮城県レッドデータブックー(平成13年3月、宮城県)

仙台市:平成15年度自然環境に関する基礎調査業務報告書(平成16年2月、仙台市)

表 7.7-19 注目すべき種の確認状況及び一般生態

種名	キンブナ
確認状況	夏季 にて2個体を確認
	秋季 にて3個体を確認
	春季 確認されず
一般生態	フナ類の中では最も小さい。日本固有の亜種で、東日本を中心に太平洋側では関東地方以北、日本海側では山形県以北に分布するとされている。背鰭条数が1 棘 11 から 14 軟条と少ないことで、他のフナ類と区別される。また体は黄褐色または赤褐色で腹鰭や尻鰭は濃黄色を帯び、体側の各うろこの外縁が明るく縁取られていることが本亜種の顕著な特徴であるが、上記分類基準では判断の付かない個体も多数存在する。河川の下流域や湿地帯でギンブナと同時に獲れることが多い。水生昆虫などを好むが、付着藻類など
	も食う雑食性である。産卵期は 4~6 月、水草などに卵を産み付ける。

出典:山渓カラー名鑑 日本の淡水魚(1989年,山と渓谷社)

③注目すべき生息地

調査地域には、越冬地や集団分布地、繁殖地など動物群集の生息地として注目される場所は確認されなかった。

注目すべき種保護のためマスキング 凡例 事業区域 動物調査範囲 ● キンブナ 図7.7-8 注目すべき種確認地点(魚類) 1:10,000

(7)底生動物

①確認種

現地調査で確認された底生動物は、16 目 22 科 39 種である。確認された底生動物は、流れが緩やかな農業用水路という環境を反映し、水質が悪い環境に生息する種が多かった。季節別に見ると冬季が最も少ないが、冬季は農業用水が止められた渇水期間で、唯一通年通水を行っている②(基地付近)を除き、降雨等による一時的にできた水溜りか水が無く調査のできない状況であったためである。また、移入種、外来種も多くみられ、きわめて人為的影響の強い環境を反映していた。

表 7.7-20(1) 確認種一覧(季節)

						季	節		
門	綱	目	科	種	夏季	秋季	冬季	春季	備考
軟体動物門	腹足綱	盤足目	ミズツボ科	コモチカワツボ	•	•		•	外来種注1
		基眼目	モノアラガイ科	モノアラガイ科	•	•			
			サカマキガイ科	サカマキガイ	•	•	•	•	外来種 ^{注1}
	二枚貝綱	マルスダレガイ目	シジミ科	Corbicula 属	•	•	•		
環形動物門	ミミズ綱	イトミミズ目	イトミミズ科	エラミミズ	•	•	•	•	
				Limnodrilus 属					
				イトミミズ科	•				
		ツリミミズ目	_	ツリミミズ目		•	•		
	ヒル綱	吻蛭目	グロシフォニ科	ハバヒロビル	•				
		無吻蛭目	ヘモピ科	ウマビル					
			イシビル科	シマイシビル	•	•			
				ナミイシビル	•				
				イシビル科					
		_	_	ヒル綱		•			
節足動物門	軟甲綱	ヨコエビ目	マミズヨコエビ科	フロリダマミズヨコエビ					外来種 ^{注1}
		ワラジムシ目	ミズムシ科	ミズムシ					
		エビ目	ヌマエビ科	ヌカエビ					
-			アメリカザリガニ科	アメリカザリガニ					要注意注2
	昆虫綱	カゲロウ目(蜉蝣目)	コカゲロウ科	サホコカゲロウ					
				Cloeon 属					
				Hコカゲロウ					
		カメムシ目(半翅目)	アメンボ科	アメンボ					
				ヤスマツアメンボ					
				ヒメアメンボ					
		トビケラ目(毛翅目)	シマトビケラ科	Cheumatopsyche 属	•				
		ハエ目(双翅目)	ガガンボ科	Limonia 属		•			
				Tipula 属					
			チョウバエ科	チョウバエ科					
			ユスリカ科	Chironomus 属					
				Cryptochironomus 属					
				Dicrotendipes 属					
				Hydrobaenus 属					
				Orthocladius 属					
				Paratanytarsus 属					
				Polypedilum 属	•	•	•	•	
				Rheotanytarsus 属	•				
				Tanytarsus 属					
				エリユスリカ亜科	•	•			
				モンユスリカ亜科	•				
				ユスリカ科 (蛹)		•			
			ミズアブ科	ミズアブ科					
		コウチュウ目(鞘翅目)	ゲンゴロウ科	ゲンゴロウ科					
			ガムシ科	コガムシ					
3	6	16	22	39	22	26	19	27	1

注) 備考の内容は以下のとおり。

外来種:「外来の河川底生動物」(篠田授樹 2007年)をもとに選定。

要注意:要注意外来生物。問題はあるが現段階では法律「特定外来生物による生態系等に係る被害の防止に関する法律(平成16年法第78号)」で規制することが難しい種として環境省がリストアップした種。

表 7.7-20(2) 確認種一覧(調査地点)

88	√HZI	П	.tN	T.F.			語	査地.	点		
門	綱	目	科	種	1	2	3	4	5	6	8
軟体	腹足	盤足目	ミズツボ科	コモチカワツボ				•			
動物	綱	基眼目	モノアラガイ科	モノアラガイ科				•			
門			サカマキガイ科	サカマキガイ	•	•		•		•	
	二枚貝綱	マルスダレガ イ目	シジミ科	Corbicula 属		•		•	•	•	
環形	33	イトミミズ目	イトミミズ科	エラミミズ	•	•					
動物	ズ綱			Limnodrilus 属	•	•					
門				イトミミズ科	•						
		ツリミミズ目	_	ツリミミズ目	•						
	ヒル	吻蛭目	グロシフォニ科	ハバヒロビル							
	綱	無吻蛭目	ヘモピ科	ウマビル						•	
			イシビル科	シマイシビル						•	
				ナミイシビル							
				イシビル科	•						
		_	_	ヒル綱					•	•	
節足	軟甲	ヨコエビ目	マミズヨコエビ科	フロリダマミズヨコエビ		•		•		•	
動物	綱	ワラジムシ目	ミズムシ科	ミズムシ		•		•			•
門		エビ目	ヌマエビ科	ヌカエビ	•						
			アメリカザリガニ科	アメリカザリガニ	•	•	•	•	•	•	
	昆虫	カゲロウ目	コカゲロウ科	サホコカゲロウ		•					
	綱	(蜉蝣目)		Cloeon 属				•			
				Hコカゲロウ							•
		カメムシ目	アメンボ科	アメンボ		•		•	•		
		(半翅目)		ヤスマツアメンボ							<u> </u>
				ヒメアメンボ							<u> </u>
		トビケラ目 (毛翅目)	シマトビケラ科	Cheumatopsyche 属		•					•
		ハエ目(双翅	ガガンボ科	Limonia 属							
		目)		Tipula 属		•			•		
			チョウバエ科	チョウバエ科							
			ユスリカ科	Chironomus 属		•					
				Cryptochironomus 属				•		•	
				Dicrotendipes 属		•					
				Hydrobaenus 属		•		•			
				Orthocladius 属		•		•			
				Paratanytarsus 属				•			
				Polypedilum 属					•		
				Rheotanytarsus 属		•		•		•	•
				Tanytarsus 属							•
				エリユスリカ亜科							•
				モンユスリカ亜科					•		•
				ユスリカ科(蛹)				•			
			ミズアブ科	ミズアブ科				•			
		コウチュウ目	ゲンゴロウ科	ゲンゴロウ科		•					
		(鞘翅目)	ガムシ科	コガムシ					•		
3	6	16	23	39	10	23	1	24	14	17	20

②注目すべき種

以下の資料に該当する底生動物は確認されていない。

文化財保護法(昭和二十五年五月三十日法律二百十四号)における天然記念物及び特別天然記念物 絶滅のおそれのある野生動植物の種の保存に関する法律(平成四年六月五日法律第七十五号)における国 内希少野生動植物種及び国際希少野生動植物種

絶滅のおそれのある野生生物の種のリスト(平成 18 年 12 月 22 日 公表) 宮城県の希少な野生動植物-宮城県レッドデータブックー(平成 13 年 3 月、宮城県) 平成 15 年度自然環境に関する基礎調査業務報告書(平成 16 年 2 月、仙台市)

③注目すべき生息地

調査地域には、集団分布地、繁殖地など動物群集の生息地として注目される場所は確認されなかった。

7.7.2 予 測

1)工事による影響(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)及び存在による影響 (改変後の地形)

(1) 予測内容

資材等の運搬、重機の稼動、切土・盛土・掘削等の実施及び改変後の地形による動物相及 び注目すべき種、注目すべき生息地の消滅の有無・変化の程度とした。

(2)予測地域及び予測地点

予測地域は、動物相に対する影響が想定される地域とし、調査地域と同様に、事業区域及 び周辺 200m の範囲とした。

予測地点は、予測地域全域とした。

(3)予測時期

予測時期は、工事の期間中(平成 24 年度~平成 28 年度)及び工事完了後(平成 29 年度) とした。

(4) 予測方法

調査結果により得られた注目すべき種等に関する情報と事業計画の内容を照らし合わせて、定性的な予測を行った。

(5)予測結果

①動物相及び注目すべき種

ア. 哺乳類

存在による影響については、事業区域内のほぼ全域が改変されることから、現況で生息する哺乳類はアブラコウモリ以外のほとんどが個体あるいは利用環境が消失し、影響を受ける。

種により事業区域の利用度に違いがあるため、受ける影響の程度は種によって異なる。 行動圏の狭いアズマモグラについては事業区域内に生息する個体を考えると影響がある。 キツネ、タヌキ、イタチ、ハクビシンは行動圏が広く、事業区域を行動圏の一部として 利用する種であり、個体の受ける影響は少ない。アブラコウモリは、そのほとんどが事 業区域周辺の家屋にねぐらをつくり、事業区域は採餌場所での利用であることから、受 ける影響はさらに低い。

一方地域個体群への影響を考えると、アズマモグラでは事業区域周辺にも生息個体数が多いこと、アブラコウモリでは採餌場所が減少するが一部、公園、緑地等が新たに出現すること、事業区域周辺には採餌場所となる水田・水路が広がることなどから受ける影響は小さいといえる。その他の哺乳類については、人家をねぐらとして利用できるハクビシン以外、特に都市化によって利用しなくなると考えられるキツネは、事業区域以外へ行動圏をシフトすることが予想される。

供用後は、一度攪乱された土壌と隔離された公園となることから、アズマモグラの再

導入は不可能であるが、アブラコウモリは採餌場所が減少するがねぐら場所の増加により、利用形態をねぐら環境として利用することが考えられる。その他の種については、 隣接して農耕地が広がる環境が残る限りは、通過などの一時的な利用はあるものの、採 餌、繁殖、避難といった主要な生息環境として使われることはなくなることが予想され る。以上のことから、供用後に形成される哺乳類相は、アブラコウモリを中心とした、 市街地化した環境にみられるものとなると予想される。

工事による影響については、特に土壌環境を利用するアズマモグラが掘削等の影響を受けると考えられる。振動による早い段階での餌環境の変化から、事業区域外への移動が予測される。工事用車両による中型哺乳類を中心とした轢死の発生も考えられるが、哺乳類の多くは夜間に活発に活動することから、工事用車両の運行時間帯における発生は少なく、影響は小さいと予測する。

種名 アズマモグラ 生息域を重機が通行する場合、圧死する可能性があるが、振動により餌と 資材等の運搬 なる昆虫類やミミズ類が消失し、それとともに周辺へ移動することで死滅 は最小限に抑えられると考えられ、影響は小さいと予測される。 工事によ 表土の攪乱により採餌場所や餌が消失するが、それとともに周辺へ移動し 重機の稼働 る影響 て死滅は最小限に抑えられると考えられ、影響は小さいと予測される。 公園等に生息環境が新たに作られるが、舗装道路などにより隔離されてお 切土・盛土・発 り、人為的に再導入しない限り、回復することは困難である。したがって 破•掘削等 工事中の段階的な施工により自発的な移動を促す必要がある。 生息域を重機が通行する場合、圧死する可能性があるが、振動により餌と 存在によ 改変後の地形 なる昆虫類やミミズ類が消失し、それとともに周辺へ移動することで死滅 る影響 は最小限に抑えられると考えられ、影響は小さいと予測される。

表 7.7-21 注目すべき種の予測結果(哺乳類)

種名	イタチ	
	資材等の運搬	主に夜行性であることから、日中の資材の運搬が与える影響は少ない。
工事によ	重機の稼働	主に夜行性であることから、日中の重機の稼働が与える影響は少ない。
る影響	切土・盛土・発 破・掘削等	土地の改変による水場など採餌場所の減少及び餌となる両生類の減少に伴い、利用頻度が減少する。
存在によ る影響	改変後の地形	生息地の消失とともに周辺へ移動すると予測される。

イ. 鳥 類

存在による影響については、事業区域のほぼ全域が改変され商業地区を含む市街地化が進むことから、現状の農耕地にみられる鳥類相から市街地で見られる鳥類相に大きく変化する。特に、サギ類、カモ類など水鳥、コチョウゲンボウ、セッカ、ヒバリ、タヒバリ、ミヤマガラスといった広大な農耕地を指標する種は上空通過以外利用しなくなり、代わりにキジバト、ヒヨドリ、ムクドリ、スズメ、カラス類などの市街地で生息可能な少数の種が突出して優占する種構成となると予測される。

これらの変化は工事の進捗と並行して進む。多くの鳥類は移動性が高いため周辺を利用するようになると考えられるが、盛土による、セッカ、ヒバリといった事業区域内で営巣すると考えられる種に与える影響は大きいと予測される。

農耕地で繁殖する鳥類の地域個体群に与える影響は、現状では周囲に同様の環境が多く存在するが、周辺各地で進められている農耕地の市街地化は徐々に広がっており、ま

た、震災により海岸部の農耕地が激変していることから、当該地域の農耕地性鳥類への 影響は平年よりも大きいことも予想される。

工事による影響については、鳥類は移動性が高いため、早い段階での事業区域外への 移動が予想され、影響は小さいと予測する。

表 7.7-22 注目すべき種の予測結果(鳥類)

種名	コサギ	
	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響は ほとんどないと考えらえる。
工事によ	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れた場所では採餌に利用することが予想され影響は少ないと考えられる。
る影響	切土・盛土・発破・掘削等	採餌環境としての水場が消失することから影響を受けるが、移動能力が高く、これらの種の生息及び繁殖に与える影響は小さいと予測される。 は維持されるため、休息環境としては引き続き利用されるものと推察される。
存在による影響	改変後の地形	採餌環境としての水場が消失することから、影響を受けるが、移動能力が 高く、これらの種の生息及び繁殖に与える影響は小さいと予測される。 は維持されるため、休息環境としては引き続き利用されるものと推察される。

種名	オオタカ	
	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響は ほとんどないと考えらえる。
工事によ	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れた場所では採餌に利用することが予想され、影響は少ないと考えられる。
る影響	切土・盛土・発破・掘削等	現状で主要な餌となっているのは当該地域で個体数の多いドバト、ムクドリと考えられる。これらの餌動物は市街地性の種であることから、土地の改変により個体数は若干減るものの、多くは生息すると考えられる。そのため、影響は少ないと考えられる。
存在によ る影響	改変後の地形	現況で営巣地は事業計画区域内にないため直接的な影響はない。また、全体の餌量は減少するものの、主要な餌であるドバト、ムクドリの量は減らず、影響は小さいといえる。

種名	ハイタカ	
	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響は ほとんどないと考えらえる。
工事によ	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れた場所では採餌に利用することが予想され影響は少ないと考えられる。
る影響	切土・盛土・発破・掘削等	主として小鳥類を餌とすること、越冬期及び渡りの時期の生息であることから、越冬期及び渡りの時期に小鳥類が集まる環境を利用していると思われる。従ってカワラヒワなど群れで利用する種は切土・盛土などにより、利用個体数が減少し、ハイタカの採餌場所としての利用は減少すると予測される。
存在による影響	改変後の地形	改変後、市街地内の公園といった環境でも生息可能なスズメ、ムクドリ、 ヒヨドリなど餌となる小鳥類は生息するため、利用する個体はあるが、全 体的に小鳥類の個体数は減少することから、利用頻度は減少すると予測さ れる。

種名	ハヤブサ	
	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響は ほとんどないと考えらえる。
工事による影響	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れた場所では採餌に利用することが予想され影響は少ないと考えられる。
の必要	切土・盛土・発 破・掘削等	切土・盛土などの実施区域では、餌動物の消失とともに、利用頻度は減少すると予測されるが、小鳥類などの一部は事業区域を利用するために、採 餌場所として利用する個体は残ると予測される。
存在による影響	改変後の地形	現状で主要な餌となっているのは当該地域で個体数の多いドバト、ムクドリと考えられる。これらの餌動物は、市街地性の種であることから、土地の改変により個体数は若干減るものの、多くは生息する。そのため受ける影響は少ないと考えられる。

種名	チョウゲンボウ	
	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響はほ
	貝切みの建脈	とんどないと考えらえる。
工事によ	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れ
る影響	里域の修測	た場所では採餌に利用することが予想され影響は少ないと考えられる。
る影響	切土・盛土・発破・掘削等	切土・盛土などの実施区域では、餌動物の消失とともに、利用頻度は減少す
		ると予測されるが、小鳥類などの一部は事業区域を利用するために、採餌場
		所として利用する個体は残ると予測される。
カナルト		餌となる小型哺乳類、昆虫類、両生爬虫類が減少することから、利用頻度は
存在によ	改変後の地形	減少するが、スズメなどの市街地性小鳥類は生息すると考えられるため、こ
る影響		れを利用する個体もあり、受ける影響は少ないと考えられる。

種名	ヒバリ	
	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響はほ とんどないと考えらえる。
工事による影響	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れ た場所では採餌に利用することが予想され影響は少ないと考えられる。
の必要	切土・盛土・発 破・掘削等	農耕地の地面に営巣する本種にとって、営巣期に切土・盛土が実施される場合に影響はあるが、営巣期を避けて工事に着手することにより、影響は小さくなると予測される。
存在によ る影響	改変後の地形	現状で存在する営巣環境はすべて消失してしまうため、工事中の営巣期を避けた施工により自発的な移動を促す必要がある。

種名	モズ	
	資材等の運搬	現状でも事業計画区域内の交通量はあることから、資材等の運搬による影響 はほとんどないと考えらえる。
工事による影響	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れ たれた場所では採餌に利用することが予想され影響は少ないと考えられる。
の必要	切土・盛土・発 破・掘削等	事業区域は集落以外にほとんど低木もない環境であり、主に採餌場所として 利用している。切土・盛土により一時的に餌量が減少するが、現状でも事業 区域の利用は少ないと考えられることから影響は少ないと予測される。
存在による影響	改変後の地形	新たに作られる公園を中心として、周辺の農耕地に面した場所ではいくらか の利用がみられると予測される。現状でも事業区域の利用は少ないと考えら れることから影響は少ないと予測される。

種名	セッカ	
	資材等の運搬	現状でも事業計画区域内の交通量はあることから、資材等の運搬による影響はほとんどないと考えらえる。
工事による影響	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れ たれた場所では採餌に利用することが予想され影響は少ないと考えられる。
の必要	切土・盛土・発 破・掘削等	事業区域に営巣している時期に切土・盛土が実施される場合、影響は大きいと予測されるが、営巣期を避けて工事に着手することにより、影響は小さくなると予測される。
存在によ る影響	改変後の地形	水路沿いにみられるチガヤ草地など営巣環境がすべて消失してしまうため、 工事中の営巣期を避けた施工により自発的な移動を促す必要がある。

種名	ホオジロ	
	資材等の運搬	現状でも事業計画区域内の交通量はあることから、資材等の運搬による影響 はほとんどないと考えらえる。
工事による影響	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れ たれた場所では採餌に利用することが予想され影響は少ないと考えられる。
の必要	切土・盛土・発 破・掘削等	事業計画区域内には営巣環境はほとんどないことから、切土・盛土の影響は 主に採餌場所の減少に限られるが、生息個体数が少ないことから影響は小さ いと予測される。
存在によ る影響	改変後の地形	現状での主な利用状況である採餌環境としては減少するが、事業区域の利用は現状でも少なく、繁殖期の利用もないため、影響は少ないと予測される。

種名	アオジ	
	資材等の運搬	現状でも事業計画区域内の交通量はあることから、資材等の運搬による影響 はほとんどないと考えらえる。
	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れ
工事による影響		たれた場所では採餌に利用することが予想され影響は少ないと考えられる。 当該地域では越冬あるいは渡りの時期の利用であることから、採餌環境とし
	切土・盛土・発 破・掘削等	ての利用である。また、休耕田などの雑草地がほとんどないことから、農耕 地を利用する個体はほとんどおらず、主として、 に少数が利用
		するだけであったことから、切土・盛土による影響は小さいと予測される。
存在による影響	改変後の地形	越冬・渡りの時期の一時的な利用であることから、環境の攪乱のためさらに利用すること位は少なくなると予測される。越冬・渡りの時期の本種の生息環境は だけではなく、 などである。また、越冬・渡り時期には市街地の公園等でもみられることから、改変後も利用環境は存在し、影響は少ないと予測される。

ウ. 爬虫類

現状では水田といった単調な環境が広がるため、単純な爬虫類相となっている。事業 計画によると、事業区域内のほぼ全域が改変されるため、餌となるカエル類のほとんど が事業区域外へしてしまう。そのため、爬虫類もあわせて移動する予測される。

工. 両生類

存在による影響については、現地調査で確認された両生類はニホンアマガエルとニホンアカガエルの 2 種であり、両種とも調査地に広く分布していた。事業計画によると事業区域内のほぼ全域が改変され、恒常的な水域はなく、越冬環境も乏しくなることから、ほとんどのカエル類は消失し、少数のニホンアマガエルが公園等を利用するものと予測される。

工事による影響については、現状で事業区域に生息するカエル類は工事が進むにつれ、 周辺に残された同等の環境へ移動するものと思われるが、越冬期に工事が実施された場 合、ほとんどの個体が消失すると予測される。

表 7.7-23 注目すべき種の予測結果(ニホンアカガエル)

種名	ニホンアカガエル	
	資材等の運	雨天に資材の運搬を実施した場合、道路で轢死する個体があると予想される
	搬	が、活動時間の夜間は作業を行わないので、影響は小さいと予測される。
	重機の稼働	生息域を重機が通行する場合、圧死する可能性があり、冬季に実施した場合は
工事によ		冬眠個体が一部死滅ため、冬眠時期を避けた工事着工が必要である。
る影響		段階的な施工により、周辺環境への自発的な移動を促すことにより影響は小さ
	切土・盛土・	いと予測される。
	発破•掘削等	冬眠時期に工事が行われた場合、生息地の攪乱及びそれに伴う土壌の乾燥化に
		よりほとんどの個体は死滅するため、冬眠時期を避けた施工が必要である。
存在によ	改変後の地	恒常的な産卵場所の消失、冬眠場所の消失により、影響を受けるため、工事中
る影響	形	の段階的な施工により自発的な移動を促す必要がある。

才. 昆虫類

確認された種類の多くは水田耕作地周辺に一般的に生息する種類であり、一部に平地 性樹林に依存した種類が得られている。事業計画によると事業区域内のほぼ全域が改変 されるが、水田周辺のトンボ類やチョウ類などは移動性の強い種類が多く、工事により 一時的な影響が生じるものの、一部については改変後の環境に適応し外部から供給され ることが予想されるため大きな影響は少ないと予測される。バッタ類やゴミムシ類など は改変による生息地の消失に伴い影響を受けると思われる。

確認された樹林性の種類は、に依存しているが、

の改変は最小限に抑える計画であることから、影響は少ないと予測される。

なお、トンボ類の幼虫は水生動物であるが、事業区域内の農業用排水路は冬季の農閑 期には水が無く干上がった状態となることから、元々トンボ類の幼虫の生息には適して いないものと推察される。よって、事業による影響は小さいと予測する。

表 7.7-24 注目すべき種の予測結果(昆虫類)

種名	オニヤンマ	
	資材等の運搬	幼虫期の生息環境は水域内であるが、事業区域内の水路は元々生息に適していないため、影響は小さい。成虫期は移動性が強く影響は小さい。
工事による影響	重機の稼働	幼虫期の生息環境は水域内であるが、事業区域内の水路は元々生息に適していないため、影響は小さい。成虫期は移動性が強く影響は小さい。
	切土・盛土・発 破・掘削等	幼虫期の生息環境は水域内であるが、事業区域内の水路は元々生息に適していないため、影響は小さい。成虫期は移動性が強く影響は小さい。
存在によ る影響	改変後の地形	成虫の生息環境である樹林環境として、 は維持される ため、影響は小さいと考えられる。

TT H	1.5 1.5.			
種名	ハヤシノウマオ	ハヤシノウマオイ		
	資材等の運搬	本種の生息する樹上部までは影響は及ばないものと思われる。		
工事によ	重機の稼働	本種は夜行性であるため、主な稼働時間である昼間は影響は小さいと考え		
る影響		られる。		
0 10	切土・盛土・発	本種は樹林性の種であり、生息環境であるは維持され		
	破・掘削等	るため、影響は小さいと考えられる。		
存在によ	改変後の地形	本種は樹林性の種であり、生息環境であるは維持され		
る影響	以多後の地形	るため、影響は小さいと考えられる。		

種名	オオハサミムシ	
工事による影響	資材等の運搬	本種は騒音·振動は特に生息忌避要因と成り得ないため、資材等の運搬による影響は受けない。
	重機の稼働	本種は騒音・振動は特に生息忌避要因と成り得ないため、重機の稼動による 影響は受けない。
(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	切土・盛土・発 破・掘削等	切土・盛土・発破・掘削等により、生息地への一時的な圧力となり得るが、 不安定な裸地環境への適応力が強い種であるため影響は小さいと考えられ る。
存在によ る影響	改変後の地形	改変により生息地の一時的な圧力となり得るが、不安定な裸地環境への適 応力が強い種であるため影響は小さいと考えられる。

種名	キボシカミキリ	
	資材等の運搬	本種は騒音·振動は特に生息忌避要因と成り得ないため、資材等の運搬による影響は受けない。
工事によ る影響	重機の稼働	本種は騒音・振動は特に生息忌避要因と成り得ないため、重機の稼動による 影響は受けない。
	切土・盛土・発 破・掘削等	本種の寄生しているクワやイチジクは に混在しているが、 は維持されるため、影響は小さいと考えられる。
存在によ る影響	改変後の地形	本種の寄生しているクワやイチジクは に混在しているが、 は維持されるため、影響は小さいと考えられる。

種名	チャバネセセリ	
	資材等の運搬	本種は騒音・振動は特に生息忌避要因と成り得ないため、資材等の運搬による影響は受けない。
工事によ る影響	重機の稼働	本種は騒音・振動は特に生息忌避要因と成り得ないため、重機の稼動による 影響は受けない。
	切土・盛土・発 破・掘削等	本種は騒音・振動は特に生息忌避要因と成り得ないため、切土・盛土・発破・ 掘削等による影響は受けない。
存在によ る影響	改変後の地形	本種は移動性が強く、定期的に事業区域外から成虫個体が飛来している状況であるため、改変後に影響を受けることは無い。

力. 魚 類

存在による影響については、事業計画によると事業区域内の農業用排水路である地点 ①、地点③、地点④、地点⑤、地点⑥はほぼ全域が改変されることから、魚類の生息環境はほとんど失われると予測する。しかし、現状においても、事業区域内の農業用排水路は冬季の農閑期には水が無く干上がった状態となることから、元々魚類の生息には適しておらず、非通水期には下流側に移動しているものと推察される。よって、事業による影響は小さいと予測する。

また、事業区域外の地点②、地点⑦、地点⑧は、事業実施後も改変されない。キンブナ確認地点のひとつであるでは、事業実施後も個体及び生息環境とも現状と同様に維持されると考えられる。

表 7.7-25 注目すべき種の予測結果(キンブナ)

種名	キンブナ	
	資材等の運搬	本種は騒音・振動は特に生息忌避要因と成り得ないため、資材等の 運搬による影響は受けない。
工事による	重機の稼働	本種は騒音・振動は特に生息忌避要因と成り得ないため、重機の稼動による影響は受けない。
影響	切土・盛土・発 破・掘削等	工事中の濁水は全て仮設調整池に流入させる計画であり、確認場所の水質への影響は少ない。 は改変されるが、現状でも非湛水期には干上がり魚類の生息できない環境となることから、非湛水期に工事を行うことでにより、影響は小さいと予測する。
存在による 影響	改変後の地形	については水路を改変しないため、影響はないと考えられる。

キ. 底生動物

事業計画によると事業区域内の農業用排水路である地点①、地点③、地点④、地点⑤、地点⑥はほぼ全域が改変され、恒常的な水域はなくなることから、底生動物の生息環境はほとんど失われると予測される。しかし、現状においても、冬季の農閑期には水が無く干上がった状態となり、元々底生動物の生息には適さない状況である。

また、事業区域外の地点②、地点⑦、地点⑧は、事業実施後も改変されず、事業実施後も現状と同様に維持されると考えられる。

②注目すべき生息地

注目すべき生息地は確認されていない。

7.7.3 環境の保全及び創造のための措置

1)工事による影響(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)及び存在による影響 (改変後の地形)

資材等の運搬、重機の稼動、切土・盛土・掘削等の実施及び改変後の地形により、動物相及 び注目すべき種の消滅の有無・変化の程度を予測した結果、影響を受けると予測された種のう ち、特に注目すべき種を対象に、本事業の実施にあたって、以下の環境保全措置を講ずること とする。

(1)環境保全措置の検討方針

①動物相及び注目すべき種の消滅の有無・変化

事業区域内に生息する注目すべき種を対象とし、本事業の実施による影響を最小限度にすることを保全方針とした。

(2)環境保全措置の検討結果

①動物相及び注目すべき種の消滅の有無・変化

注目すべき種の消滅の有無・変化に係る環境保全措置の検討結果を表 7.7-26 に示す。

表 7.7-26 環境保全措置検討結果の整理

環境保 全措置 の 種 類	低減	低減	低減
海 密	工事中の大気・水質・騒音・ 振動に係る環境保全措置を 確実に実施する(詳細は各項 目の環境保全措置の項参 照)。	工事時期の調整を行い、特に 配慮が必要な鳥類の営巣時 期、ニホンアカガエルの越冬 時期に該当箇所を避けて造 成を実施する。また、段階的 な施工を行い、周辺環境への 自発的な移動を促す。	梅ノ木地区の居久根の隣接 地に公園・緑道を配置し、居 久根と一体的に整備するよ う関係機関と協議していく。
実 施 期 間	工事中	工事中	事業計画立案時
効果及 び変化	事業区域及び周辺の周辺の 動物種の生息に対する影響 を軽減できる。	事業区域の改変場所から隣接する残存環境への自発的な移動を促すことで、個体への影響を軽減できる。	事業実施により一旦逃避し た動物種の回帰が期待され る。
副次的 な影響 等	他の環境要素に影響を与えることはない。	他の環境要素に影響を与えることはない。	他の環境要素に影響を与えることはない。

環境保 全措置 の種類	低減
実 内 密	事業区域内に位置する梅ノ木地区の居久根について、区画道路の整備等必要最小限の改変にとどめ、現状を維持する。また、換地設計は現状の土地利用を考慮し、減歩等の緩和を行い、保全に努める予定であり、居久根の存続については現状と同様に所有者の土地利用計画への意向にゆだねる。また、例えば杜の都の環境をつくる条例に規定された保存緑地制度等を活用するなどの手法を関係機関に働きかけ、所有者を支援していくことで当該居久根の永続的な保全をより確実なものにしていく。
実 施 期 間	事業計画立案時
効果及 び変化	居久根を生息場にする種を保全することが出来る。
副次的 な影響 等	他の環境要素に影響を与えることはない。

7.7.4 評 価

1)工事による影響(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)及び存在による影響 (改変後の地形)

(1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、動物相及び注目すべき種、注目すべき生息地への影響が、工事手法、 保全対策等により、実行可能な範囲で回避・低減が図られているか否かを判断する。

②評価結果

工事の実施及び存在による動物相及び注目すべき種・群集への影響について、環境保全 措置を実施することにより、影響を低減できるものと評価する。

よって事業者の実行可能な範囲内で環境影響を出来る限り回避・低減するものと評価する。

なお、予測の不確実性に対しては、本事業の工事中モニタリングを実施し、対象種の保 全状を確認する。

(2) 基準や目標との整合性に係る評価

①評価方法

環境省及び宮城県のレッドリスト対象種、仙台市自然環境基礎調査の保全上重要な動物の保全が図られているかどうかを検討する。

②評価結果

工事の実施及び存在による動物相及び注目すべき種・群集への影響について、環境保全 措置を実施することにより、注目すべき種が保全されることから、整合が図られるものと 評価する。

2)6月~8月期に調査を実施しなかったことによる影響の検討

本調査は9月~5月の間に実施しており盛夏を含む6月~8月に実施していないため、概況 調査範囲内で本事業区域の東側約1kmで実施された「(仮称)仙台市荒井東土地区画整理事業 環境影響評価書」(平成21年8月)と比較し、本事業で確認できていない種がどの程度ある かについて検討した。

本来の生育立地が事業区域には存在しないこと等を除いた、調査時期に起因した可能性のある未確認種を抽出すると、鳥類のバン、ゴイサギ、爬虫類のカナヘビ、ヤマカガシが挙げられる。これらに注目すべき種は含まれていない。

なお、昆虫類については、荒井東と荒井西の共通種が104種、東のみで確認された種が105種で、このうち調査時期に起因した可能性のある未確認種は54種と考えられ、他の分類群に比べて多くなっている。従って、事業着工前の夏季に追補調査を行い注目すべき種等の新規出現の確認を行う必要があると考えられる。

この結果により、新たに注目すべき種が確認された場合は、他の種と同様に事業の実施に

よる影響及び保全対策を検討する。

なお、本調査地域は津波の浸水範囲になっておらず、また震災による立地の消滅もないことから、動物種の生息環境に対する震災影響はないと考えられる。より移動能力の高い鳥類については、震災により海岸部の農耕地が激変していることから、当該地域の農耕地性鳥類への影響は平年よりも大きいことも予想されるものの、震災前の荒井東と震災後の荒井西とを比較する限りでは、影響は認められない。

7.8.1 調 査

事業区域及び周辺に形成されている生態系は、大きく分けると、市街地と農耕地であり、 これらが接する地域となっていることから、これらが複合した生態系としてとらえる。

市街地は、舗装道路や住宅地などの人工構造物に覆われているため、植生を育む土壌はほとんどない。そのため極度に限られた種で構成された植生がごくわずかに分布するのみであり、そこに生息する動物もかなり限られたものとなる。

一方、農耕地のなかでも水田ではイネといった単一の植物により優占される単純な植生により構成されているが、湛水期があることから、限られた期間のなかではあるが魚類を中心とした周辺との生物の循環があり、乾燥した畑地よりも季節変化のある多様な生態系となっている。

また農耕地に接して集落が散在しており、昔なからの集落には居久根が発達している。ほとんどが農耕地の草地環境である当該地域にあっては、まとまった樹林からなる居久根は、 多様な生物の生息環境になっている。

1)調查項目

まず、植生と土地利用区分から環境類型区分をまとめた。次に、環境類型区分上に形成される食物網を把握するために、植物・動物調査結果に基づき食物網模式図を作成し、事業区域及び周辺にみられる生態系のなかで特徴的な種(群)を上位性及び典型性の観点から抽出した。

(1) 湛水期(5月~9月)

①上位性種(群)

哺乳類のイタチ、キツネ、鳥類のオオタカ(鳥類食)、チョウゲンボウ(哺乳類、鳥類、両生類及び爬虫類、昆虫類食)及びサギ類(両生類、魚類食)が上位性の観点から選定される。

②典型性種(群)

事業区域及び周辺に広く分布する水田を指標する種として、両生類のニホンアカガエルが 選定される。

③特殊性種(群)

事業区域及び周辺は市街地及び農耕地からなり、特殊な環境は見られないため、特殊性の 観点から特徴的な種(群)は選定しない。

(2) 非湛水期(10 月~4 月)

①上位性種(群)

哺乳類のイタチ、キツネ、鳥類のオオタカ・ハイタカ・コチョウゲンボウ(鳥類食)、チョ

ウゲンボウ・ノスリ(哺乳類、鳥類、両生類及び爬虫類、昆虫類食)が上位性の観点から選定される。

②典型性種(群)

調査地に広く分布する水田は非湛水期には、乾燥した環境となり、その環境を指標する種としては、哺乳類のアズマモグラ、鳥類のヒバリが選定される。

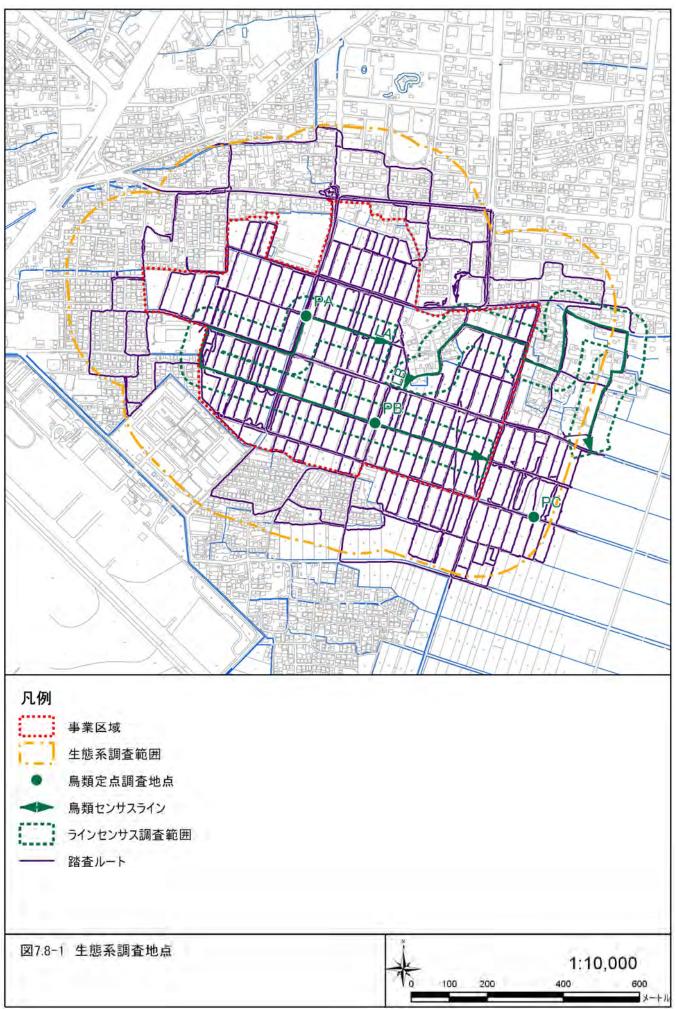
③特殊性種(群)

事業区域及び周辺は市街地及び農耕地からなり、特殊な環境は見られないため、特殊性の 観点から特徴的な種(群)は選定しない。

表 7.8-1 調査項目

調査項目	調査内容	
	環境類型区分	
生熊系	食物網模式図	
生態术	生態系を特徴付ける種(群)の抽出	
	特徴的な種群の分布状況	

2)調査範囲・調査地点


調査範囲は事業区域及び周辺 200mの範囲である。 調査範囲は図 7.8-1 に示す。

3)調査期日

調査期日は表 7.8-2 に示す通りである。

表 7.8-2 調査期日

季節	調査期日
夏季	平成 23 年 9 月 11 日~13 日
秋季	″ 10月24日~26日
冬季	平成 24 年 1 月 18 日~20 日
春季	″ 5月7日~9日

4)調査方法

湛水期及び非湛水期ごとに抽出した上位性種(群)及び典型性種(群)について生息分布状況 を調査した。

(1)湛水期調査

①イタチ・キツネ(上位性)

個体の目撃及び生活痕跡(フィールドサイン)の確認を目的とした踏査を実施した。個体や 生活痕跡が確認された場合、確認日付、種名、確認状況(目撃、死体、生活痕跡:足跡、糞、 食痕、坑道、巣など)を記録し、地図上に位置を記録した。

②ワシタカ類(上位性)

あらかじめ調査地点(3点)を設定し、出現した鳥類の種名、個体数を記録し、地図上に位置を記録した。また、餌となる鳥類及び両生類の分布を調査するために、調査地を踏査し、出現した鳥類及び両生類及び爬虫類の種名、個体数を、地図上に位置を記録した。

③サギ類(上位性)

あらかじめ調査地点(3点)を設定し、出現した鳥類の種名、個体数を記録し、地図上に位置を記録した。また、餌となる両生類の分布を調査するために、調査地を踏査し、出現した両生類及び爬虫類の種名、個体数を、地図上に位置を記録した。

④ニホンアカガエル(典型性)

調査地を踏査し、個体及び卵塊の目視確認による調査を実施した. 確認された場合、個体数(卵塊数)を記録し、地図上に位置を記録した。

(2) 非湛水期調査

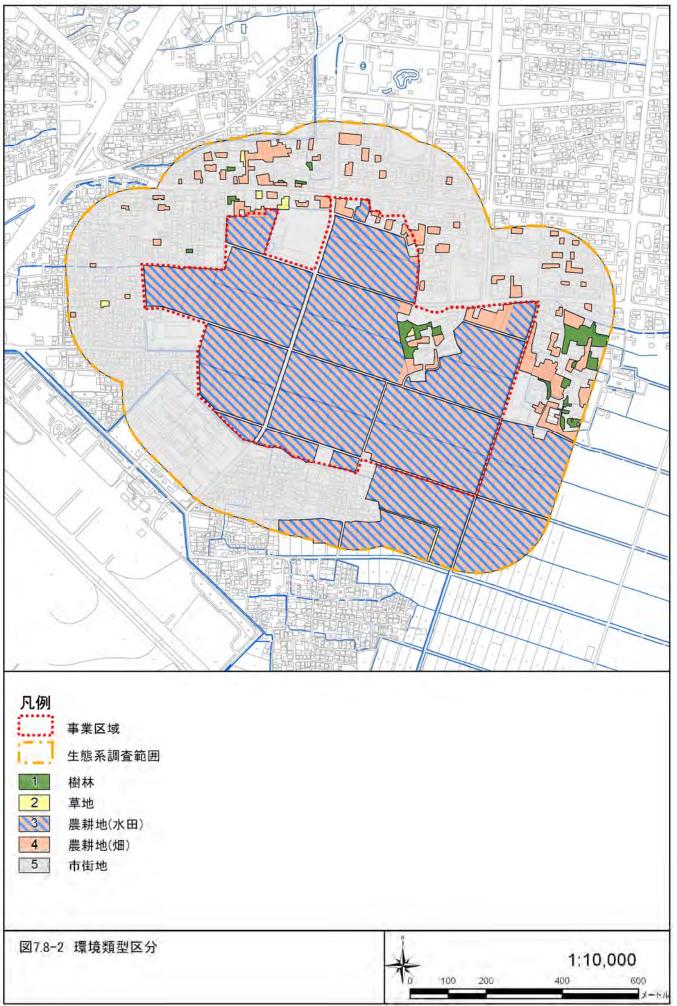
①ニホンアカガエル(典型性)

個体の目撃及び生活痕跡(フィールドサイン)の確認を目的とした踏査を実施した。個体や 生活痕跡が確認された場合、確認日付、種名、確認状況(目撃、死体、生活痕跡:足跡、糞、 食痕、坑道、巣など)を記録し、地図上に位置を記録した。

②ワシタカ類(上位性)

あらかじめ調査地点(3点)を設定し、出現した鳥類の種名、個体数を記録し、地図上に位置を記録した。また、餌となる鳥類及び両生類の分布を調査するために、調査地を踏査し、出現した鳥類及び両生類及び爬虫類の種名、個体数を、地図上に位置を記録した。

③アズマモグラ(典型性)


個体の目撃及び生活痕跡(フィールドサイン)の確認を目的とした踏査を実施した。個体や 生活痕跡が確認された場合、確認日付、確認状況(目撃、死体、生活痕跡:足跡、糞、食痕、 坑道、巣など)を記録し、地図上に位置を記録した。

④ヒバリ(典型性)

調査地を踏査し、出現したヒバリの個体数を、地図上に位置を記録した。

5)調査結果

調査地域の植生と土地利用区分から作成した環境類型区分を図 7.8-2 に、また食物連鎖模式図を湛水期及び非湛水期に分けて図 7.8-3 及び図 7.8-4 に示す。

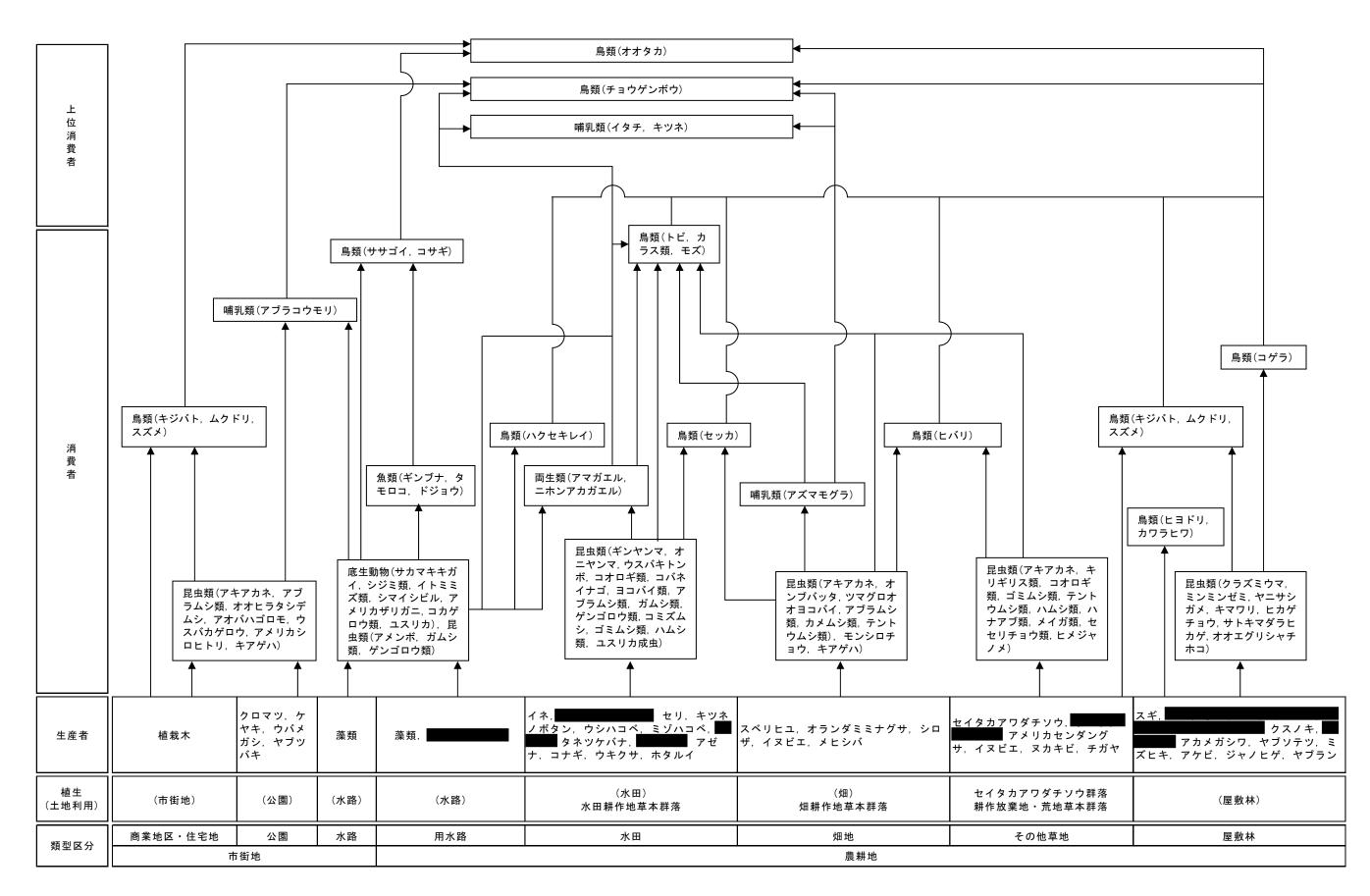


図 7.8-3 食物連鎖模式図(湛水期)

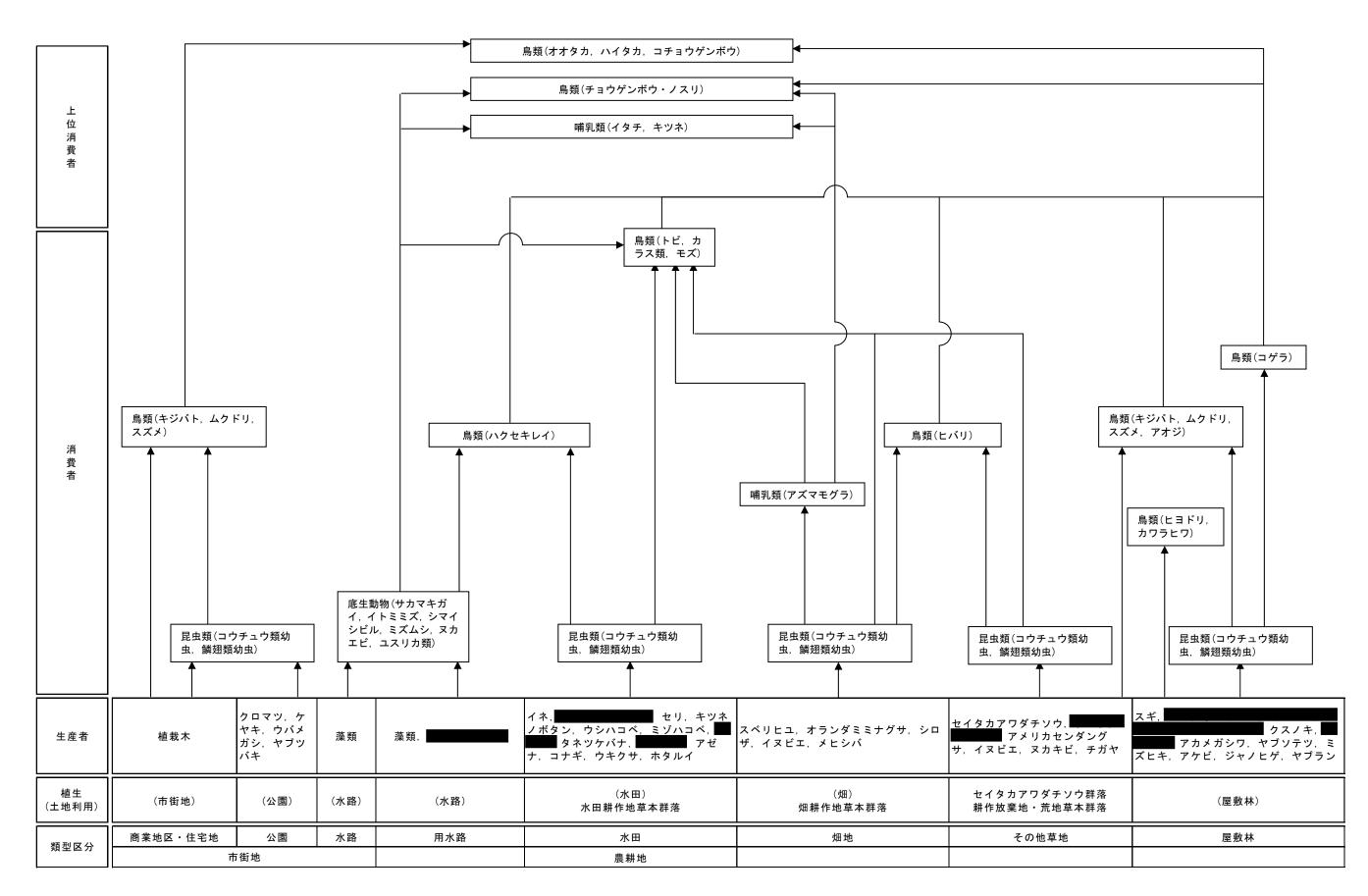


図 7.8-4 食物連鎖模式図(非湛水期)

(1) 湛水期

①イタチ・キツネ(上位性)

イタチ・キツネの確認状況を図 7.8-5 に示す。

湛水期にイタチ・キツネは確認されなかった。これらの種は季節的に移動をする種ではないことから、水路が増水し、水田内を耕作している湛水期には、フィールドサインの発見率が低いことが原因していることが考えられる。また、これらの種の餌動物は小型哺乳類や両生類、甲殻類等であり、湛水期にも得られることから、湛水期にも上位性の種群として位置づけられるものと考えられる。

②ワシタカ類(上位性)

図 7.8-5 に示すとおり、湛水期に確認されたワシタカ類はノスリである。確認例は 1 例であり、利用頻度は低いと考えられる。生息する餌動物は、両生類及び爬虫類は増加する。また鳥類ではサギ類が増加するものの、小鳥類は繁殖期にあたり、一般に群れでの行動が多くなる非繁殖期に比べ全体的に生息密度は低下しているものと推察される。

注目すべき種保護のためマスキング 凡例 事業区域 生態系調査範囲 ノスリ 図7.8-2 イタチ・キツネ及びワシタカ類状況(湛水域) 1:10,000

③サギ類(上位性)

サギ類の確認状況を図7.8-6に示す。

進水期に確認されたサギ類は5種であり、このうち、アオサギは上空通過であり、実際に調査範囲内での採餌などの利用は確認されていない。また、アカガシラサギはの樹木で休息している個体の確認である。残るササゴイ、ダイサギ、コサギの3種は、で確認され、特にササゴイは水路の低い位置の目立たない位置で採餌していた。餌動物としては、アメリカザリガニ、カエル類、魚類が考えられる。

注目すべき種保護のためマスキング 凡例 事業区域 ササゴイ 生態系調査範囲 アカガシラサギ ダイサギ コサギ アオサギ 図7.8-6 サギ類状況(湛水期) 1:10,000

④ニホンアカガエル典型性)

ニホンアカガエルの確認状況を図7.8-7に示す。

調査地でのニホンアカガエルの産卵は、湛水が開始されると同時に始まる。現地調査では、 調査地北部と南部で卵塊が確認された。ニホンアカガエルの分布状況は、昨年の平成 23 年 9 月及び 10 月のアカガエル成体の分布では に分布しており、特に今回の 調査で卵塊の確認された区域に集中して見られていない。このことから、卵塊の分布は耕作 年度ごとの導水の順序、水田利用の範囲などにより変動すると考えられる。

注目すべき種保護のためマスキング 凡例 ニホンアカガエル 事業区域 卵塊以外の確認 生態系調査範囲 卵塊数0-2 11 3-4 11 5-6 11 7-9 // 10 - 14 図7.8-7 ニホンアカガエル確認状況(湛水期) 1:10,000

(2) 非湛水期

(1)イタチ・キツネ(上位性)

イタチ・キツネの確認状況を図7.8-9に示す。

てタチは に足跡が、 で糞がそれぞれ確認されており、市街地では生息確認できなかったが、かなり市街地に近い水路でも利用していた。 に多く見られたが、 は砂洲状に足跡が残りやすい環境が多くみられたこともあり、特に を利用しているかは判断できない。しかし、水田内は稲刈り後に足跡が多く残される環境があったが、全く足跡が確認されていないことから、 を中心に利用しているものと思われる。 のイタチの餌としては、アメリカザリガニとカエル類が考えられる。このうち調査地内水路で実施した底生動物調査 (p.VII-7-6~9 参照) で確認されたアメリカザリガニの調査地内水路の地点平均個体数の推移をみると、夏季 9.9±8.07、秋季 5.7±8.20、冬季 0.4±0.54(平均個体数±標準偏差)であり、湛水期から非湛水期にかけて急激に減少している。以上のことから、非湛水期は餌状況が悪化し、イタチの利用頻度は低くなることが予想される。カエル類の個体数を考えても、非湛水期のおおくが冬眠期間中であることから、非湛水期の餌事情はかなり厳しくなっているといえる。

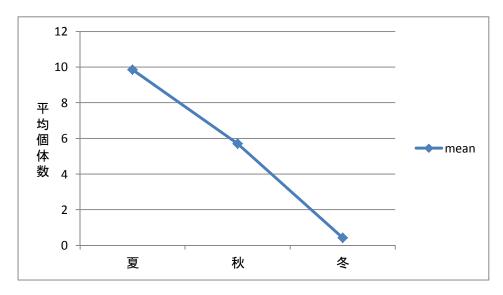


図 7.8-8 アメリカザリガニ地点平均個体数の推移

キツネは2か所で糞が確認されたのみであり、イタチに比べあまり調査地を利用していないものと考えられる。農耕地でのキツネの主要な餌としては、モグラ類とネズミ類及び昆虫類である。このうち、ネズミ類は捕獲確認されていない。モグラ類はアズマモグラが水田を中心に広く分布している。

注目すべき種保護のためマスキング 凡例 事業区域 生態系調査範囲 イタチ(足跡) イタチ(糞) キツネ(糞) 図7.8-9 イタチ・キツネ確認状況(非湛水期) 1:10,000

②ワシタカ類(上位性)

ワシタカ類の確認状況を図 7.8-10 に示す。

非湛水期に確認されたワシタカ類は、湛水期より確認種数が多く、確認例数も多かった。 ワシタカ類にとって、湛水期と非湛水期で変動する餌としては、鳥類、両生類及び爬虫類、 昆虫類が考えられる。特に鳥類は、つがいで生息する繁殖期と湛水期が、群れで生息するこ との多い非繁殖期と非湛水期がそれぞれ対応している。したがって、日本に分布するオオタ カといった主として鳥類食のワシタカ類の餌密度は、湛水期には低くなる。チョウゲンボウ については、両生類及び爬虫類やアブラコウモリなどをえさにすることが可能であり、これ らの動物が冬眠する非湛水期よりも湛水期の方が餌密度は高まると考えられるが、チョウゲ ンボウも湛水期に確認されていないのは、営巣環境が遠いなどの理由が考えられる。

ハイタカ、コチョウゲンボウについては、冬鳥であり、湛水期には見られない種である。

注目すべき種保護のためマスキング 凡例 事業区域 オオタカ 生態系調査範囲 ハイタカ ノスリ ハヤブサ コチョウゲンボウ チョウゲンボウ 図7.8-10 ワシタカ類状況(非湛水期) 1:10,000

③アズマモグラ(典型性)

坑道の分布から複数の個体の行動圏の利用分布について、カーネル密度推定法を用いて図示した(図 7.8-11)。これによると、農耕地を一様に利用しておらず、調査地東側の区域などに利用されない区域がみられる。利用区域はいくつかの島状に利用頻度の高い区域がある。アズマモグラはミミズ類、昆虫のケラなどの土壌動物を餌とするため、その分布は餌の分布に関係すると考える。

注目すべき種保護のためマスキング 凡例 事業区域 25%カーネル密度 生態系調查範囲 アズマモグラ確認位置 75% 90% 95% 99% 図7.8-11 アズマモグラ確認状況(非湛水期) 1:10,000

④ヒバリ(典型性)

ヒバリの確認状況を図 7.8-12 に示す。

本種にとって、非湛水期は移動期あるいは越冬期にあたり、群れで生息する。このため、繁殖期にあたり単独で縄張りを持って営巣する湛水期に比べ、非湛水期の方が確認個体数が多くなる傾向がある。本調査でも湛水期の確認個体数の平均±標準偏差は 1.0±0.00 (範囲1-1、n=9)、非湛水期の確認個体数の平均±標準偏差は 4.3±6.09 (範囲1-23,n=45) であり、上記の傾向を反映した結果となった。また、非湛水期の分布をみると調査範囲のに広く生息していた。

注目すべき種保護のためマスキング 凡例 事業区域 生態系調査範囲 個体数 1-2 // 3 - 5 11 6-8 11 9-17 *n* 18 – 23 図7.8-12 ヒバリ確認状況(非湛水期) 1:10,000

7.8.2 予 測

1)工事による影響(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)及び存在による影響 (改変後の地形)

(1)予測内容

資材等の運搬、重機の稼動、切土・盛土・掘削等の実施及び改変後の地形による生態系構成種等の変化の程度とした。

(2)予測地域及び予測地点

予測地域は、生態系に対する影響が想定される地域とし、調査地域と同様に、事業区域及 び周辺 200m の範囲とした。

予測地点は、予測地域全域とした。

(3)予測時期

予測時期は、工事の期間中(平成 24 年度~平成 28 年度)及び工事完了後(平成 29 年度) とした。

(4) 予測方法

調査結果により得られた生態系を特徴づける種(群)等に関する情報と事業計画の内容を照らし合わせて、定性的な予測を行った。

(5)予測結果

事業の実施に伴い、水田を中心とした農耕地の環境から市街地の環境へと変化する。これ に伴い、生息する種は都市に適応した限られたものになるものと考えられる。

生態系を特徴付ける種(群)として、典型種として挙げたニホンアカガエル・アズマモグラ・ヒバリは事業区域内の生息場所が消失するため、事業区域内に生息する個体を考えると影響がある。したがってヒバリについては営巣時期、ニホンアカガエルについては冬眠時期を避け、またアズマモグラに対しては段階的な施工を行い、自発的な移動を促す等の環境保全対策が必要である。

上位種として挙げたイタチ・キツネ、ワシタカ類、サギ類は、事業区域を主に採餌場として利用しており、その消失の影響はあるが、移動能力が高く、これらの種の生息及び繁殖に与える影響は小さいと予測される。

表 7.8-3 生態系を特徴付ける種(群)の予測結果

種名	イタチ・キツネ	
工事によ る影響	資材等の運搬	主に夜行性であることから、日中の資材の運搬の与える影響は少ない。
	重機の稼働	主に夜行性であることから、日中の重機の稼働の与える影響は少ない。
	切土・盛土・発	土地の改変による水場など採餌場所の減少及び餌となるアメリカザリガ
	破・掘削等	ニ・カエル類・小型哺乳類の減少に伴い、利用頻度が減少する。
存在によ る影響		主にを移動経路とし採餌場として利用しており、その消失の影響はあ
	改変後の地形	るが、移動能力が高く、これらの種の生息及び繁殖に与える影響は小さい
		と予測される。

種名	ワシタカ類 (オオタカ・ハイタカ・コチョウゲンボウ・チョウゲンボウ・ノスリ)		
工事による影響	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響 ほとんどないと考えらえる。	
	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、 れた場所では採餌に利用することが予想され影響は少ないと考えられる	
	切土・盛土・発 破・掘削等	主に採餌場として利用しており、現況で営巣地は事業区域内にないため直接的な影響はない。採餌環境については影響を受けるが、移動能力が高く、 これらの種の生息及び繁殖に与える影響は小さいと予測される。	
存在によ 改変後の地形 接的な影響はない。採餌環境については影響を受けるが、移動		主に採餌場として利用しており、現況で営巣地は事業区域内にないため直接的な影響はない。採餌環境については影響を受けるが、移動能力が高く、 これらの種の生息及び繁殖に与える影響は小さいと予測される。	

1			
種名	サギ類 (アオサギ・アカガシラサギ・ササゴイ・ダイサギ・コサギ)		
工事による影響	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響は ほとんどないと考えらえる。	
	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、腐れた場所では採餌に利用することが予想され影響は少ないと考えられる。	
	切土・盛土・発破・掘削等	採餌環境としての水場が消失することから影響を受けるが、移動能力が高く、これらの種の生息及び繁殖に与える影響は小さいと予測される。 なお事業区域内の は残存するため、休息環境としては引き続き利用されるものと推察される。	
存在による影響	改変後の地形	採餌環境としての水場が消失することから、影響を受けるが、移動能力が高く、これらの種の生息及び繁殖に与える影響は小さいと予測される。 なお事業区域内の は残存するため、休息環境としては引き続き利用されるものと推察される。	

種名	ニホンアカガエル			
工事による影響	資材等の運搬	雨天に資材の運搬を実施した場合、道路で轢死する個体があると予想されるが、活動時間の夜間の資材運搬でなければ、影響は小さいと予測される。		
	重機の稼働	生息域を重機が通行する場合、圧死する可能性があり、冬季に実施した場合は冬眠個体が一部死滅ため、冬眠時期を避けた工事着工が必要である。		
	切土・盛土・発破・掘削等	段階的な施工により、周辺環境への自発的な移動を促すことにより影響は小さいと予測される。 冬眠時期に工事が行われた場合、生息地の攪乱及びそれに伴う土壌の乾燥化により、ほとんどの個体は死滅するため、冬眠時期を避けた施工が必要である。		
存在によ る影響	改変後の地形	恒常的な産卵場所の消失、冬眠場所の消失により、影響を受けるため、工事中の段階的な施工により自発的な移動を促す必要がある。		

種名	アズマモグラ			
工事による影響	資材等の運搬	既存の舗装道路を使用しての運搬時には影響はない。		
	重機の稼働	生息域を重機が通行する場合、圧死する可能性があるが、振動により餌となる昆虫類やミミズ類が消失し、それとともに周辺へ移動することで死滅は最小限に抑えられると考えられ、影響は小さいと予測される。		
	切土・盛土・発 破・掘削等	表土の攪乱により採餌場所や餌が消失するが、それとともに周辺へ移動して死滅は最小限に抑えられると考えられ、影響は小さいと予測される。		
		公園等に生息環境が新たに作られるが、舗装道路などにより隔離されており、人為的に再導入しない限り、回復することは困難である。したがって 工事中の段階的な施工により自発的な移動を促す必要がある。		

種名	ヒバリ		
工事による影響	資材等の運搬	現状でも事業区域内の交通量はあることから、資材等の運搬による影響は ほとんどないと考えらえる。	
	重機の稼働	重機の稼働による騒音・振動により、重機の近くを利用しなくなるが、離れた場所では採餌に利用することが予想され影響は少ないと考えられる。	
	切土・盛土・発 破・掘削等	農耕地の地面に営巣する本種にとって、営巣期に切土・盛土が実施される場合に影響はあるが、営巣期を避けて工事に着手することにより、影響は小さくなると予測される。	
存在によ る影響	改変後の地形	現状で存在する営巣環境はすべて消失してしまうため、工事中の営巣期を 避けた施工により自発的な移動を促す必要がある。	

7.8.3 環境の保全及び創造のための措置

1)工事による影響(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)及び存在による影響 (改変後の地形)

資材等の運搬、重機の稼動、切土・盛土・掘削等の実施及び改変後の地形により、生態系構成種等の変化の程度を予測した結果、影響を受けると予測された生態系を特徴づける種(群)を対象に、本事業の実施にあたって、以下の環境保全措置を講ずることとする。

(1)環境保全措置の検討方針

①生態系構成種等の変化

事業区域内に生息する生態系を特徴づける種(群)を対象とし、本事業の実施による影響を 最小限度にすることを保全方針とした。

(2)環境保全措置の検討結果

①生態系構成種等の変化

生態系を特徴づける種(群)の変化に係る環境保全措置の検討結果を表 7.8-4 に示す。

表 7.8-4 環境保全措置検討結果の整理

環境保全措置の	低減	低減	低減	低減
<u>種</u> 実施。容	 気・水質・服子 高・水質・になり になり は、から は、なり ですり ですり ですり では、のいい できる できる<!--</td--><td>特に配慮が必要な必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必</td><td>事業区域内に位置する梅ノ木地区 の居久根について、区画道路の、現状 を維持する。また、換地設計は現状 の土地利用を考慮し、減歩等のあり、同 を行い、保全に努める予定現状の を行い、保全に努めるでは現本の を行れの存続について、 居久根の存続について 居久根の有者の土地利用計画へ 向にゆだねる。 また、例えば杜の都の環境をついて はにのがに対して がに見てなどの手法を関係で を活用するなどの手法を関いて保 を活用するなどの手法を関いて を活用するなどの手法を関いて を当該居久根の をで当該居人根の をより確実なものにしていく。</td><td>梅ノ木地区の居久 根の隣接地に公 園・緑道を配置し、 居久根と一体的に 整備するようしてい 後関と協議してい く。</td>	特に配慮が必要な必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必要が必	事業区域内に位置する梅ノ木地区 の居久根について、区画道路の、現状 を維持する。また、換地設計は現状 の土地利用を考慮し、減歩等のあり、同 を行い、保全に努める予定現状の を行い、保全に努めるでは現本の を行れの存続について、 居久根の存続について 居久根の有者の土地利用計画へ 向にゆだねる。 また、例えば杜の都の環境をついて はにのがに対して がに見てなどの手法を関係で を活用するなどの手法を関いて保 を活用するなどの手法を関いて を活用するなどの手法を関いて を当該居久根の をで当該居人根の をより確実なものにしていく。	梅ノ木地区の居久 根の隣接地に公 園・緑道を配置し、 居久根と一体的に 整備するようしてい 後関と協議してい く。
実 施期 間		工事中	事業計画立案時	事業計画立案時
効果及び変化	周辺の周辺の 生態系を (群) に対する影響 を軽減で る。	事業区域の改変場 所から隣接する残 存環境への自発的 な移動を促すこと で、個体の保全が 出来る。	居久根を生息場にする種を保全することが出来る。	事業実施により一 旦回避した生態系 を特徴づける種(群) の回帰が期待され る。
副次的 な影響 等		他の環境要素に影響を与えることはない。	他の環境要素に影響を与えることはない。	他の環境要素に影響を与えることはない。

7.8.4 評 価

- 1)工事による影響(資材等の運搬、重機の稼動、切土・盛土・発破・掘削等)及び存在による影響 (改変後の地形)
- (1)回避・低減に係る評価

①評価方法

予測結果を踏まえ、生態系構成種等への影響が、工事手法、保全対策等により、実行可能 な範囲で回避・低減が図られているか否かを判断する。

②評価結果

工事の実施及び存在による動物相及び注目すべき種・群集への影響について、環境保全 措置を実施することにより、影響を低減できるものと評価する。

よって事業者の実行可能な範囲内で環境影響を出来る限り回避・低減するものと評価する。

(2)基準や目標との整合性に係る評価

①評価方法

以下の基準、目標との整合が図られているか否かを評価した。

- ・「宮城県環境基本計画」の重点プログラム「豊かな自然環境の保全」: 健全な生態系の保 全及び生態系ネットワークの形成
- ・「杜の都環境プラン(仙台市環境基本計画)」の"市街地地域"の生態系に関連する環境 配慮指針:生態系の連続性を考慮し、緑化の推進や多様な生物の生育の場となるビオト ープ(生物の生息・生育空間)づくりに努める

②評価結果

工事の実施及び存在による生態系構成種等への影響について、工事中の配慮、居久根の保全や公園・緑道を配置等の環境保全措置を実施することにより、生態系を特徴づける種(群)が保全されることから、基準、目標との整合が図られるものと評価する。