事 後 調 査 報 告 書(案) (供用後) ヨドバシ仙台第1ビル計画

令和7年10月

株式会社ヨドバシホールディングス

目 次

1. 対象事業の概要	1
1.1 事業者の氏名及び住所	1
1.2 事業の名称、種類及び目的	1
1.3 事業実施の位置	1
1.4 事業実施の経緯	2
1.5 事業の内容	6
1.6 環境の保全・創造等に係る方針	32
2. 事業計画の変更に伴う環境影響評価の見直し	34
3. 関係地域の範囲	35
4. 環境の保全及び創造のための措置の実施状況	39
5. 事後調査計画	57
5.1 事後調査のスケジュール	57
5.2 今回実施した事後調査の項目、手法、調査地域及び期間	
6. 事後調査の結果及び予測結果の検証	63
6.1 大気質	
6.2 騒音	74
6.3 振動	86
6.4 水象(地下水)	
6.5 地盤沈下	94
6.6 電波障害	98
6.7 日照阻害	
6.8 風害	
6.9 景観	_
6.10 廃棄物等	
6.11 温室効果ガス等	
7. 環境影響評価事後調査の委託を受けた者の名称等	164

1. 対象事業の概要

1.1 事業者の氏名及び住所

事業者:株式会社ヨドバシホールディングス

住 所:東京都新宿区新宿五丁目3番1号

電話番号: 03-6380-1542

代表 者:代表取締役 藤沢昭和

1.2 事業の名称、種類及び目的

1.2.1 事業の名称

ヨドバシ仙台第1ビル計画

1.2.2 事業の種類

大規模建築物の建設

1.2.3 事業の目的

本事業は、JR仙台駅東西自由通路拡幅及び「仙台駅東口開発計画」(現JR仙台イーストゲートビル等)の竣工にあわせて駅東口前に展開するヨドバシホールディングス所有敷地の整備を行うことで、西口地区に比べ活性化が低い東口地区の活性化を図り魅力ある街づくりを進めていく計画である。地域の賑わいづくりに貢献する商業施設等の整備と、来街者が安全で自由に往来できる歩行者ネットワークの整備、平成27年12月に開通した地下鉄東西線宮城野通駅と仙台駅をつなぐ賑わいの街路の整備に加え、駅前周辺の道路の渋滞緩和を図る交通計画(自動車動線)をたてることで東口地区の活性化と賑わいづくりに貢献することを目的とする。

1.3 事業実施の位置

計画地は仙台市宮城野区榴岡一丁目にあり、図1-1及び写真1-1に示すとおり、JR仙台駅東口に近接した地区に位置し、敷地面積15,430㎡の区域である。

計画地周辺は、計画地北側に都市計画道路仙台駅宮城野原線が通っており、土地利用状況は、 JR仙台駅東口に面した地域である。

計画地の位置は、以下のとおりである。

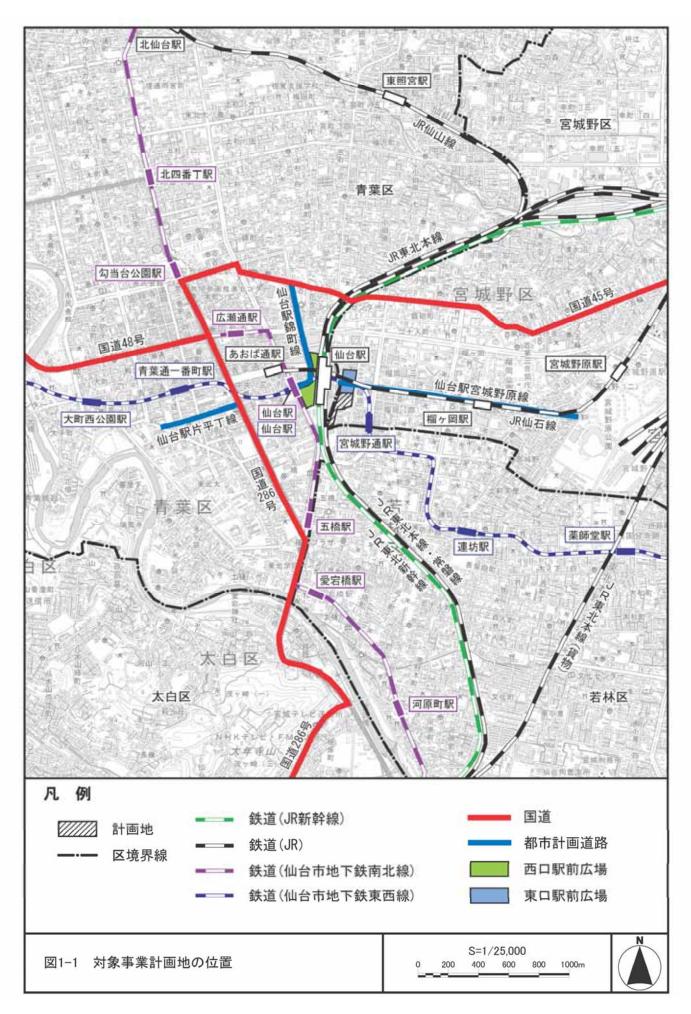
計画地位置:宮城県仙台市宮城野区榴岡一丁目3-1他

1.4 事業実施の経緯

仙台市では平成23年3月に「仙台市基本構想」を策定し、仙台が目指す都市像として、「公共交通を中心とした利便性の高い交通体系のもと、郊外の良好な生活環境を維持しながら都心や拠点に高度な機能を集約した、誰もが快適に暮らし活動できるまち」「活力に満ちた産業活動が展開され、多様な雇用の機会を創り出すまち」などを掲げている。

さらに、基本構想に基づく長期計画である「仙台市基本計画」(平成23年3月策定)では、都市像の実現に向け、重点的に取り組む施策の方向性として、「地下鉄東西線の整備に合わせて、仙台駅周辺の交通機能を再構築し都心の交通環境を改善する」、「都心部の賑わいや活力を創出し、集客力の強化を図る」などとしている。

また、平成27年12月に開業した地下鉄東西線の沿線におけるまちづくりの方向性を示した「東西線沿線まちづくりの基本方針」(平成25年7月)では、計画地近傍の宮城野通駅周辺における取組施策として、「都心の東の玄関口にふさわしい高度利用と都市機能の強化」、「仙台駅東口の賑わいや魅力の創出と回遊性を高める交通環境の形成」を掲げている。


本事業は、これら仙台市の計画等と整合を図りながら、「仙台市東西線沿線都市計画提案募集^{**}」を活用することとし、平成26年10月に仙台市に対し提案書を提出した。その後、平成28年10月に環境影響評価書(以下、「評価書」という。)を提出した。

評価書提出以降は、早い段階で事業を進める予定であったが、その後の経済の動向や、仙台市都市計画マスタープランにおける「高次な業務機能や商業機能が集積した利便性を確保する」などの方針と整合を図ることから、計画を再検討していた。また、令和2年9月に計画地が特定都市再生緊急整備地域として国の指定を受けたことや、仙台駅都心におけるオフィス空間の整備の必要性などから、近年の社会の現状を踏まえて検討し、令和3年3月に計画を再策定した。

その後、令和3年8月から令和5年5月までの工事期間を経て、令和5年6月に竣工・供用開始となった。

制度

[※] 仙台市東西線沿線都市計画提案募集:土地所有者、開発事業者、まちづくりNPO法人が、地域の特性を踏まえた建物の建築を行うため、都市計画の制限を一部変更するよう、仙台市に提案を行うことができる

No.1 仙台駅東口ペデストリアンデッキ上 (撮影日:令和7年4月21日)

No. 2 仙台駅東口駅前ロータリー北側から南方面 (撮影日:令和7年4月21日)

No.3 仙台駅東口駅前交差点北側から南西方面 (撮影日:令和7年4月21日)

No.4 計画地南東角地から北方面 (撮影日:令和7年4月21日)

No.5 東七番丁通り辻標52番対角付近から北西方面 (撮影日:令和7年4月21日)

No.6 計画地南西側平面駐車場入口付近から北東方面 (撮影日:令和7年4月21日)

※ No.は、写真1-1に対応する。

写真1-2 計画地周辺の状況

1.5 事業の内容

1.5.1 評価書からの変更内容

本事業の評価書は、平成28年10月19日に提出し、同月21日に公告されたが、事業の具体化 や関係機関との協議により、各種計画が変更となった。

変更は、評価書の公告以降に2回行っており、1回目は令和3年4月の令和3年度第1回仙台市環境影響評価審査会にて、2回目は令和4年9月の令和4年度第2回仙台市環境影響評価審査会にて報告済みである。

なお、工事完了以降に変更は行われていない。

変更内容の概要については、以下のとおりである。また、第1回変更及び第2回変更を経た 最終計画内容の詳細は、次頁以降に示すとおりである。

(1)第1回変更

本事業は、表1-1に示すとおり評価書では1期工事と2期工事を行う計画であったが、2期工事が白紙(第1回変更時)となった。また、主要用途として音楽ホールがなくなり、オフィスが追加となった。階数は地上9階から地上12階となり、建物高さは約10m高くなったが、延べ面積は約4,590㎡の縮小となり、駐車場台数も626台から598台と28台減少となった。

工事は、評価書では平成28年10月工事開始の予定であったが、令和3年8月からの工事開始 となり、約5年着工が遅れた。また、工事期間は評価書より5ヶ月短縮され、20ヶ月となった。

(2)第2回変更

計画建築物南東部の一部の6階から8階にかけて、新たに工作物(目隠し壁)の設置を計画 した。それにより、店舗・オフィス・駐車場の高さは、目隠し壁を含め約56mとなった。

表1-1 本事業の概要

項			目					概	要				
事	業	名	称	ヨドバシ仙っ	ヨドバシ仙台第1ビル計画								
種			類	大規模建築物	大規模建築物の建設の事業								
位			置	仙台市宮城野	仙台市宮城野区榴岡一丁目3-1 他								
敷	地	面	積	15, 430 m²	15, 430 m²								
主	要	用	途	評価書 最終計画									
	4) I1	X1.			施設、音楽オ	ドール、駐車	場				ィス、駐車場	
				1期工事	事(既存駐車場	景含む)		2期工事		1期工事(既存駐車場含む)			2期工事
建金	年 面	積(r	n²)	A棟 店舗・	既存	小計	店舗・	東 音楽	小計	店舗・ オフィス	既存	小計	
× 9	КШ	7只(1	,	駐車場	駐車場	\1.EI	駐車場	ホール		・駐車場	駐車場	·	
				約9,150	約2,030	約11,180			約2,420	約8, 190 ^{※1}	約2,030	約10,220 ^{※1}	
延~	ヾ面	積(r	n²)	約81,050	約15,830	約96,880	約6,140	約6,420	約12,560	約74,600	約15,830	約90,430	
建築	物の	高さ(m)	約45	約28	_	約33	約28	_	約56 ^{※2}	約28	_	
階			数	地上9階 地下2階	地上8階	_	地上7階	地上5階	_	地上12階 地下1階	地上8階	_	未定
構			造	鉄骨造一部領	鉄筋コンクリ	ート造				鉄骨造一部	鉄筋コンクリ	ート造	
駐	耳	Į.	場	計画建築物内626台(内、荷捌き車両用7台)、既存駐車場717台、 第2ビル駐車場147台(内、荷捌き車両用12台) 第2ビル駐車場147台(内、荷捌き車両用12台) 第2ビル駐車場147台(内、荷捌き車両用12台)									
工	事	期	間	平成28年10	月~平成30年	10月				令和3年8月	~令和5年5月		

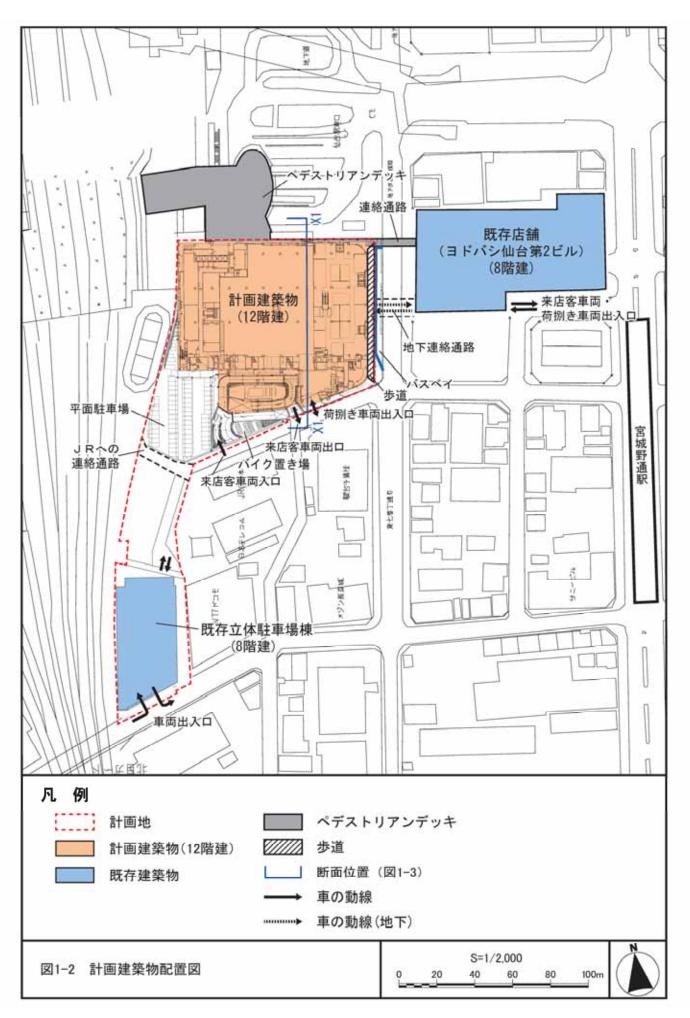
^{※1} 最終的に改めて竣工図を確認したところ、「事後調査報告書(工事中その2)ヨドバシ仙台第1ビル計画」(令和6年3月、株式会社ヨドバシホールディングス)p.7に記載の面積より約140㎡減少していた。

^{※2} 建物の高さは約54mであり、その屋上に目隠し壁(高さ約2m)が設置されていることから約56mとした。

1.5.2 建築計画等

計画建築物の配置図は図1-2に、断面図は図1-3に、各階平面図は図1-4(1) \sim (13)に示すとおりである。

本事業は表1-1に示したとおり、評価書時点で計画していた2期工事がいったんは白紙となったが、令和7年8月時点では構想中である。1期工事としては、既存駐車場を含めた敷地面積15,430㎡に店舗、オフィス、駐車場を建設し、建物高さ(目隠し壁含む)は約56m(地上12階)、延べ面積は約90,430㎡である。


また、以前はエスカレーターと東七番丁通り上空のデッキにより、計画地と東七番丁通りを挟んで東側のヨドバシ仙台第2ビル(以下、「既存店舗」という。)を行き来していたが、本事業によりエスカレーターを撤去し、図1-2に示すとおり、新たな連絡通路で仙台駅東口のペデストリアンデッキと接続することで、仙台駅、計画建築物、既存店舗を地上に下りずに行き来することができるようになり、地下鉄東西線宮城野通駅とのアクセスも向上した。

また、既存店舗と計画建築物を新たに地下通路で連結し、既存店舗東側の東八番丁通り側から来退店車両が駐車場へ入出庫できることとなった。

さらに、東七番丁通り沿いには、公共交通機能として長距離バス乗り場のバスベイを整備 するとともに、計画地内に歩道を整備した。

第2回変更及びその後には、南東部の外壁のデザイン的な統一性や連続性を持たせるため、 南側に面する6階から8階にかけて新たに工作物(目隠し壁)を設置することとした。

また、南から駐車場に進入する入口をやや西側に移動し、1階平面駐車場の形状等を変更することとなった。

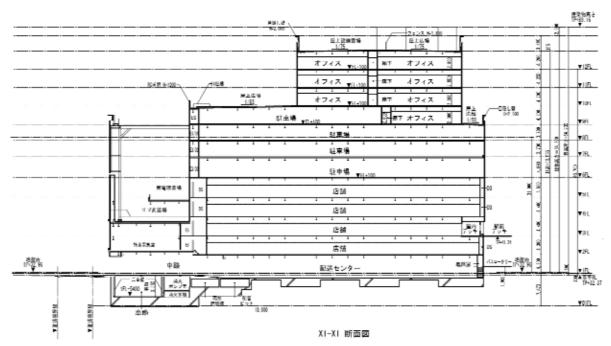


図1-3 計画建築物断面図

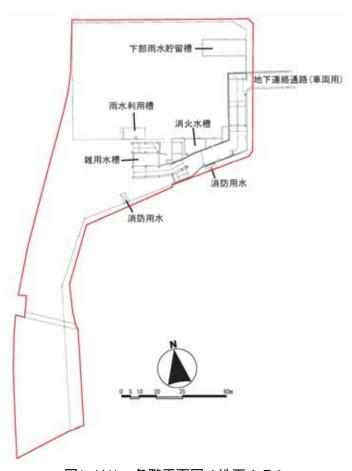


図1-4(1) 各階平面図(地下1F)

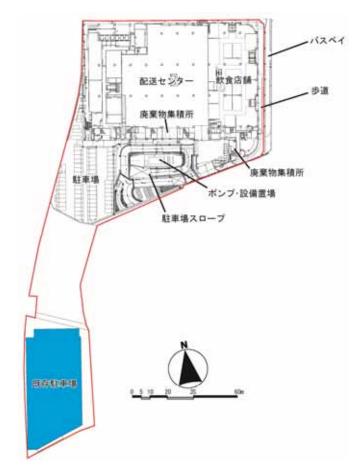


図1-4(2) 各階平面図(1F)

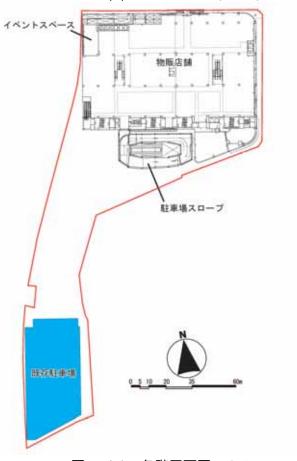


図1-4(3) 各階平面図(2F)

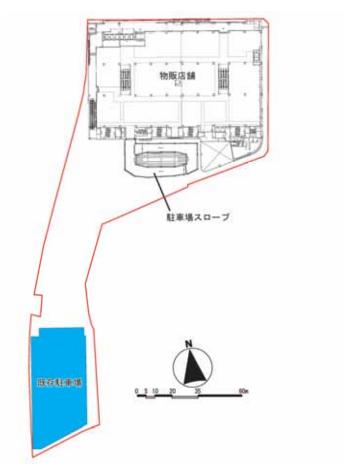


図1-4(4) 各階平面図(3F)

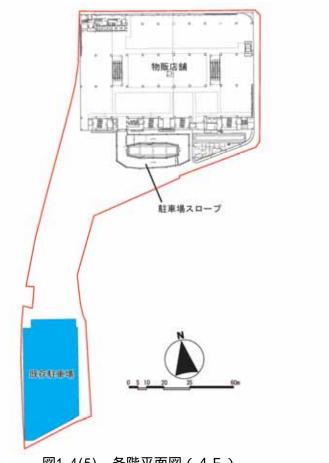


図1-4(5) 各階平面図(4F)

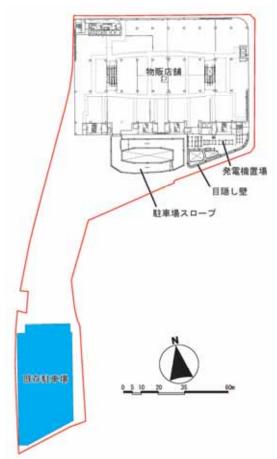


図1-4(6) 各階平面図 (5F)

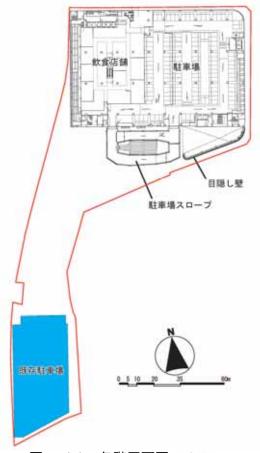


図1-4(7) 各階平面図(6F)

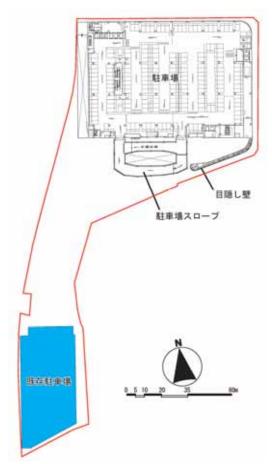


図1-4(8) 各階平面図(7F)

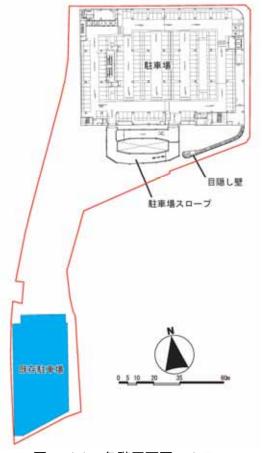


図1-4(9) 各階平面図(8F)

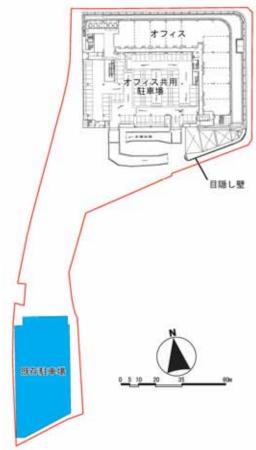


図1-4(10) 各階平面図(9F)

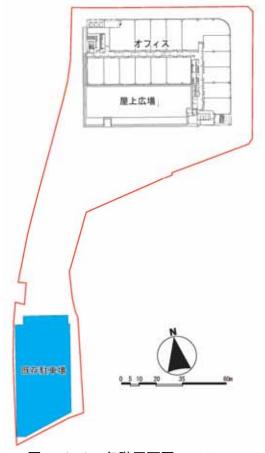


図1-4(11) 各階平面図(10F)

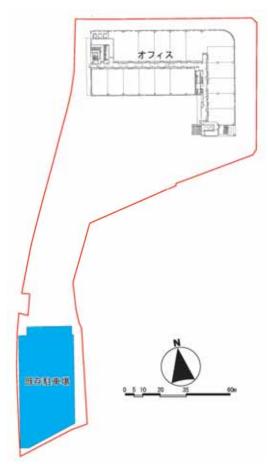


図1-4(12) 各階平面図(11~12F)

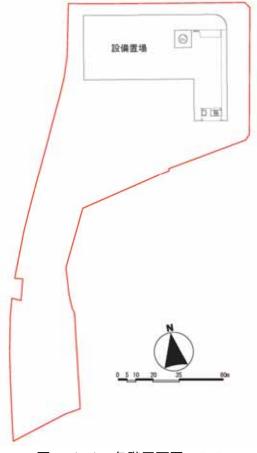
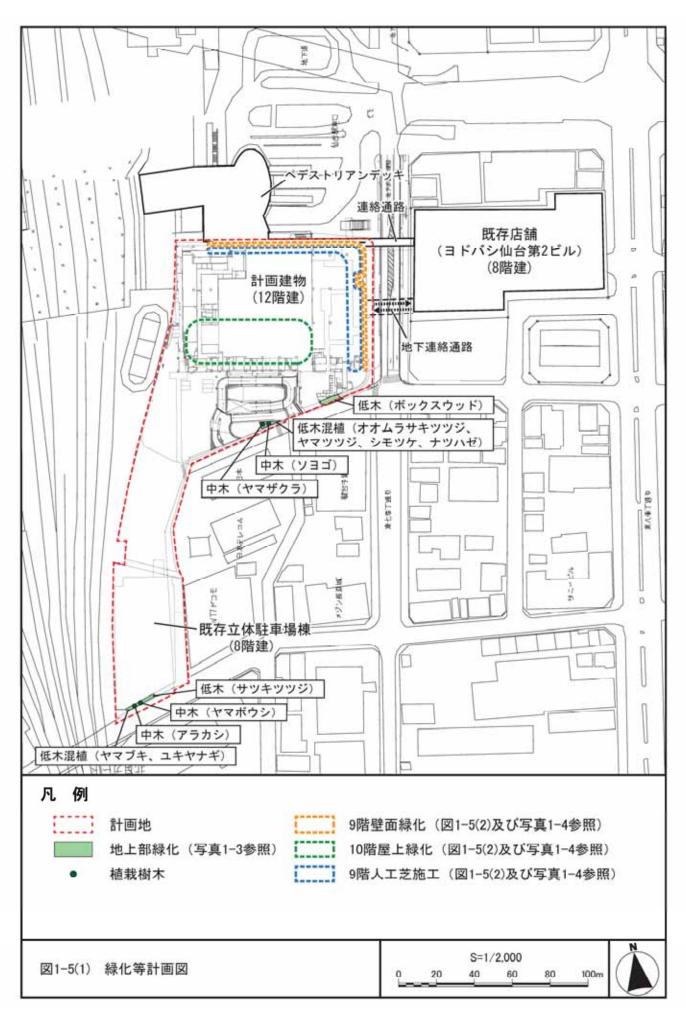


図1-4(13) 各階平面図(RF)

1.5.3 緑化等計画

本事業の緑化等計画は、図1-5(1)に示すとおりである。


1階地上部(写真1-3参照)のほか、9階の屋上の一部で、ヘデラによる壁面緑化を行うとともに10階屋上の一部に常緑キリンソウを用いた薄層緑化トレイによる屋上緑化を行った(図1-5(2)及び写真1-4参照)。

緑化にあたっては、「杜の都の環境をつくる条例」に基づき、屋上緑化や壁面緑化、接道部緑化により、緑化面積1,280㎡を確保した。なお、オフィスからの視認性に配慮して9階屋上に人工芝を施工したが、(写真1-4参照)、緑化面積には算入していない。

植栽樹種は、地上部では郷土種のヤマザクラ、ソョゴ、アラカシ、ヤマボウシ等の中木、ヤマツツジ、シモツケ、ナツハゼ、ヤマブキ、ユキヤナギ等の低木のほか、サツキツツジやオオムラサキツツジを選定した。

表1-2 緑化面積の比較

	緑化面積(㎡)
評価書	648 m²
工事完了時	1, 280 m²

地上部緑化(計画建築物南東側)

地上部緑化(立体駐車場南側)

地上部緑化(既存立体駐車場棟南側)

撮影日:令和7年5月26日

写真1-3 緑化の状況(1階地上部)

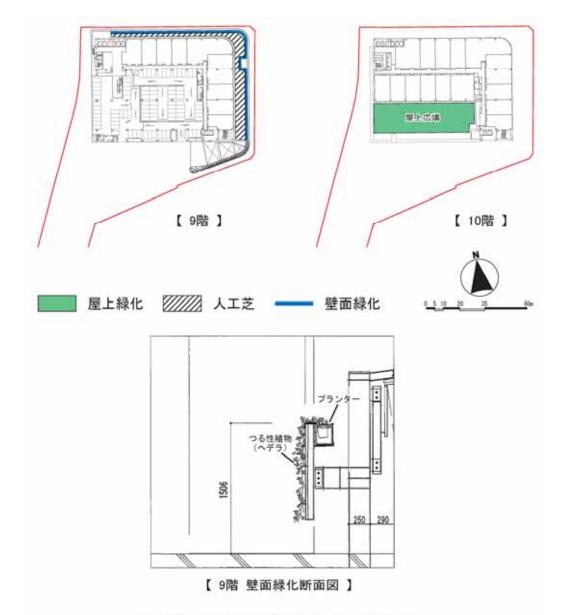


図1-5(2) 緑化等計画図 (9階屋上, 10階屋上)

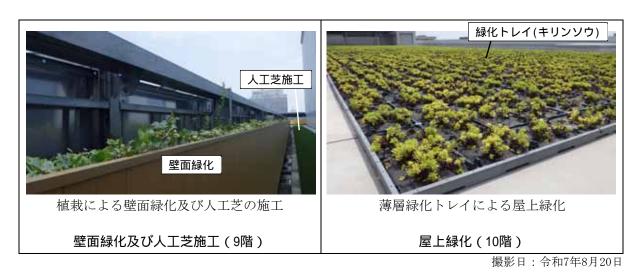


写真1-4 緑化等の状況 (9階屋上,10階屋上)

1.5.4 景観計画

計画地は、杜の都仙台の玄関口であるJR仙台駅の東口に面し、計画地の一部は景観法に基づき指定された「宮城野通景観地区」に含まれている。

本事業の建築物は、計画地周辺の建築物との形態・意匠の調和や連続性に配慮して、高さを約56mに抑え、外壁については、色彩に配慮して自然石を多用するとともに、3階部分はピロティ形式のファサードとした。また、南側の壁面についても外壁のデザイン的な統一性や連続性を持たせるため、下部まで揃えるように変更した。

設備機器については、その配置や外壁の仕様等を工夫し、周辺から直接視認されないよう に設置し、駐車場についても外壁により視認されないよう配置した。外壁の広告物について は、景観に配慮した色彩のものとした。

外観の状況は、写真1-5(1)~(2)に示すとおりである。

撮影日:令和7年4月21日

写真1-5(1) 外観の状況(北東側からの眺望)

撮影日:令和7年5月26日

写真1-5(2) 外観の状況(南東側からの眺望)

1.5.5 交通計画

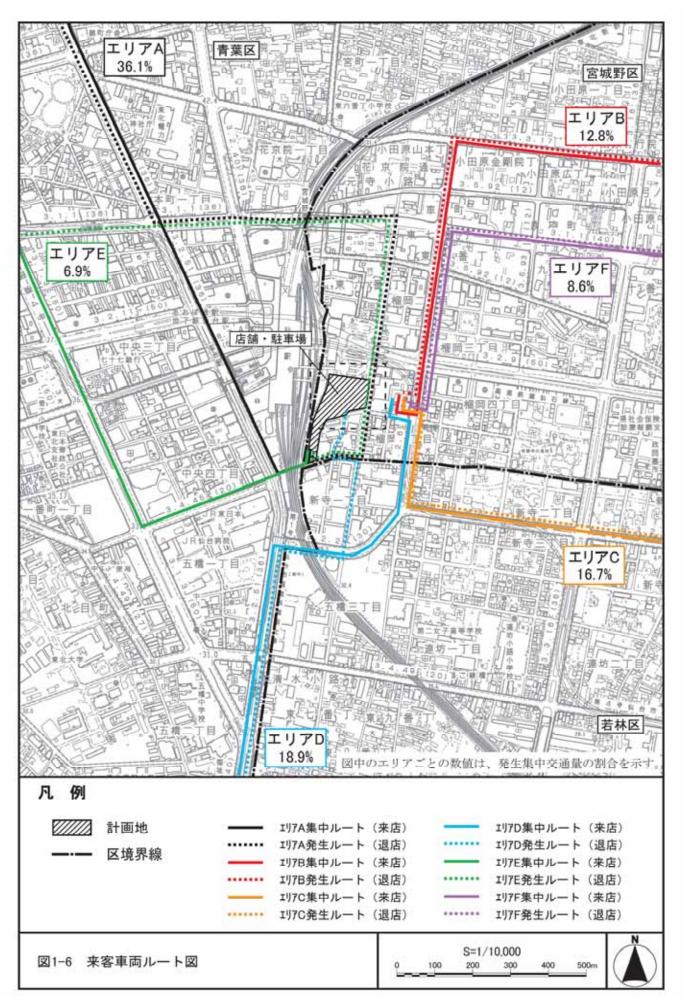
来店客車両台数は、「大規模開発地区関連交通計画マニュアル」(平成26年6月改訂)による指針に基づいて算出し、表1-3に示すとおり平日約4,720台/日、休日約6,620台/日を計画している。評価書と比較し、平日約1,180台/日、休日約1,730台/日の減少となった。

なお、算出条件となる延べ面積は、商業施設部分とオフィス部分を対象とし、オフィス部分は全て商業施設とみなして74,600㎡とした。

計画地内の駐車場は598台(内、荷捌き車両用9台)、駐輪場は251台を設置しており、既存 駐車場並びに既存店舗の駐車場及び駐輪場と併せて利用されている。

なお、来店客車両は、図1-6に示す既存店舗東側、計画建築物内駐車場に繋がる計画建築物 南側の来店客車両出入口及び計画建築物南側の平面駐車場並びに既存駐車場から来退店して いる。

表1-3 来店客車両台数


	面積(m²)	交通量(台/日)
平日	74 600	約4,720
休日	74, 800	約6,620

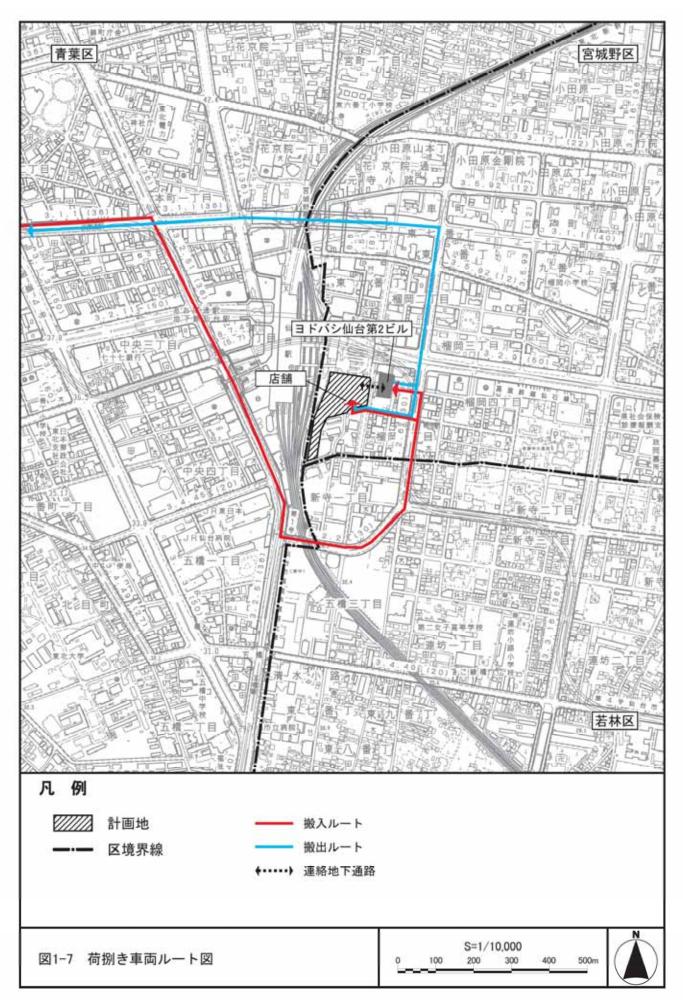

荷捌き車両台数は、表1-4に示すとおり、1日(24時間)に51台が計画され評価書より74台減少する。荷捌き車両は、図1-7に示す仙台第2ビル東側及び計画建築物南側の荷捌き車両出入口から入出庫している。

表1-4 荷捌き車両計画

単位:台

時間帯	2t車 以下	4t車	10t車	廃棄物 収集車	合計
6:00~7:00	0	2	2	1	5
7:00~8:00	0	0	0	0	0
8:00~9:00	1	1	1	0	3
9:00~10:00	4	1	0	1	6
10:00~11:00	4	0	0	2	6
11:00~12:00	3	2	0	0	5
12:00~13:00	3	0	0	0	3
13:00~14:00	3	0	0	0	3
14:00~15:00	2	2	0	0	4
15:00~16:00	2	0	1	0	3
16:00~17:00	2	2	0	2	6
17:00~18:00	0	0	0	0	0
18:00~19:00	2	2	0		4
19:00~20:00	1	0	0		1
20:00~21:00	1	1	0		2
21:00~22:00	0	0	0		0
22:00~23:00	0	0	0		0
23:00~24:00	0	0	0		0
0:00~1:00	0	0	0		0
1:00~2:00	0	1	0		1
2:00~3:00	1	1	0		2
3:00~4:00	1	0	0		1
4:00~5:00	0	1	0		1
5:00~6:00	0	0	0		0

1.5.6 給水計画

給水計画の概要は、表1-5に示すとおりである。給水系統は、上水及び雑用水の2系統として計画し、上水系統は市水を、雑用水系統は地下水及び雨水処理水を水源とした。雑用水の水源として、地下水の井戸(井戸深さGL-120m)を新たにさく井した。

用途は、上水は飲料水、洗面、空調用加湿給水、消火用補給水及び各所散水とし、雑用水は便所洗浄水としている。

なお、評価書時点では、ガス焚き吸収式冷温水機の補機として冷却塔を設置する計画であったが、空冷ヒートポンプモジュールチラーに変更となり、冷却塔は設置しないこととなった(「1.5.8 熱源・空調設備計画」参照)。そのため、冷却水は不要となり、計画使用量は、評価書と比較し、上水は $15,622\,\text{m}$ /年、雑用水は $4,581\,\text{m}$ /年、冷却水は $23,258\,\text{m}$ /年の減少となった。

本事業では、雨水を雑用水として使用することで、地下水使用量の削減に努めている。

系 統	水源	用途	計画使用量
上水	市水	・飲料水・洗面・空調用加湿給水・消火用補給水・各所散水	27,193 m³/年 (=149.0 m³/日×365日×負荷率*(0.5))
雑用水	地下水(83.8%) 雨水処理水(16.2%)	・便所洗浄水	13,578㎡/年 (=74.4㎡/日×365日×負荷率 [*] (0.5))

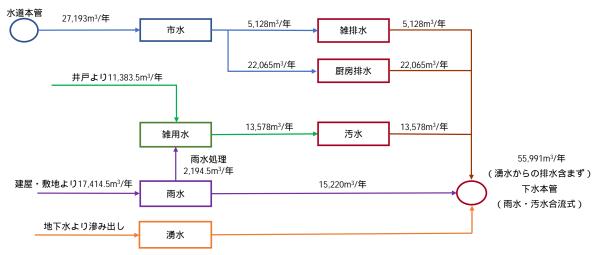
表1-5 給水計画の概要

1.5.7 排水計画

排水計画の概要は表1-6に、排水フロー図は図1-8に示すとおりである。排水は汚水・雑排水、厨房排水、雨水、湧水の4系統として計画し、すべて南面・東面道路に敷設された公共下水道へ放流する。

計画排水量は、評価書と比較し、汚水は4,581 m³/年、雑排水は822 m³/年、厨房排水は14,800 m³/年の減少となった。雨水・湧水ともに変更はなかった。

厨房排水系統については、汚水・雑排水と同系統で公共下水道に放流する。雨水も公共下水道へ放流するが、計画地は合流式下水道処理区域であるため、一部の雨水は雨水貯留槽 (有効容量310㎡程度) に貯留し、雑用水として利用するとともに、透水性舗装をできる限り計画し、現況以上に雨水を下水道に放流しないように配慮する。地下水の滲み出しによる湧水は、湧水排水槽に貯留後、ポンプアップ方式により公共下水道へ放流している。


なお、評価書時点では、流出抑制のため排水を貯留する可能性があったため、排水の腐敗 防止措置としてばっ気攪拌装置を設置することとしていたが、行政協議の結果、貯留せず随 時排水することとなった。そのため、ばっ気攪拌装置は設置しないこととなった。

[※] 負荷率は類似施設(ヨドバシカメラマルチメディア仙台(既存店舗)、マルチメディア京都等)の実績から推定した。

表1-6 計画排水量

系 統	種類	排水量
汚 水	• 便所排水	13,578㎡/年 (74.4㎡/日×365日×負荷率 ^{※1} (0.5))
雑排水	・洗面排水・空調ドレン	5,128㎡/年 (28.1㎡/日×365日×負荷率 ^{※1} (0.5))
厨房排水	_	22,065㎡/年 (120.9㎡/日×365日×負荷率 ^{※1} (0.5))
雨水	_	15.220㎡/年(変更なし)
湧水	_	_

- ※1 負荷率は類似施設(ヨドバシカメラマルチメディア仙台(既存店舗)、マルチメディア 京都等)の実績から推定した。
- ※2 雨水利用量=雨水集水面積2,500㎡×年間降水量1,254mm×利用率 (0.7) =2,194.5㎡
- ※3 年間降水量:仙台管区気象台における1981~2010年の平均値

湧水については、地下水より滲み出しのため、排水量の想定は困難である。

図1-8 排水フロー図

1.5.8 熱源・空調設備計画

電気の使用量は表1-7に、空調計画の概要は表1-8に示すとおりである。評価書時点ではガ スの使用を計画していたが、使用しないこととなり、空調の熱源の一つとしていたガス焚き 吸収式冷温水機は、より環境負荷の少ない電気熱源の空冷ヒートポンプ(HP)モジュールチ ラーに変更となった。評価書と比較し、電気使用量は8,350,700kWh/年、ガス使用量は 508,363㎡/年の減少となった。

1階の配送センターは、外気処理エアコン(天吊型)、大型ファンコイルユニットのほか、 大型天井扇を併用している。また、2~5階のヨドバシカメラ店舗は、外気処理空調機(天吊 型)と大型ファンコイルユニット(FCU)方式とし、外気冷房可能な期間は外気を熱処理せず に取り入れランニングコストの低減を図っている。

1階及び6階は飲食店舗になっており、換気量の大きい厨房では空調と外気冷房を併用して

9~12階はオフィスになっており、直膨コイル付全熱交換器と空冷式ヒートポンプビル用マ ルチエアコンによる空調方式としている。

使用量 電気使用量(kWh/年) 18, 106, 500

表1-7 電気使用量

表1-8 空調計画の概要

フロマ	用。途	熱源	空調方式	
フロア	用。途	種 類	設置位置	全 調力式
1階	飲食店舗	空冷IPモジュールチラー	4階	中央熱源方式、 個別熱源方式の併用
2~5階	ヨドバシカメラ店舗	空冷HPモジュールチラー	4階	中央熱源方式
6階	飲食店舗	空冷田モジュールチラー	6階	中央熱源方式、 個別熱源方式の併用
9~12階	オフィス	空冷HPビル用マルチ	10~12階、R階	個別熱源方式

1.5.9 廃棄物処理計画

各フロアの廃棄物は、1階の廃棄物集積所で分別保管し、処理は仙台市許可業者に外部委託 している。

厨房排水を活性汚泥法により生物処理した際に生じる余剰汚泥は、定期的に清掃業者によ り搬出し、産業廃棄物として最終処分している。

また、余剰汚泥発生の抑制に努めるため、テナント業者に対して、賃貸契約条件に排水処 理設備の管理徹底を付している。

1.5.10 省エネルギー対策方針

本事業では、二重壁や開口割合の小さい外壁とする等、建物の断熱性能を高めることに加 え、熱源の高効率機器、自動水栓等節水型衛生器具を採用するなど省エネルギーに努めてい る。

本事業の建築物の環境性能を「CASBEE」(建築環境総合性能評価システム)で自主評価した結果は、図1-9(1)~(3)に示すとおり、A評価となった。

1.5.11 事業工程計画

本事業は、平成28年10月の評価書提出後に事業計画の見直し等が検討されたため、改めて 令和3年から進めることになった。令和3年1月からの工程は表1-9に示すとおりであり、令和3 年8月に準備工に着手し、令和5年6月1日に竣工した。

| 令和3年 | 令和4年 | 令和5年 | 1~3月 | 4~6月 | 7~9月 | 10~12月 | 1~3月 | 4~6月 | 7~9月 | 10~12月 | 1~3月 | 4~6月 | 基本計画 | 日本計画 | 日

表1-9 本事業の工程

評価結果

■使用評価マニュアル: CASREE-推整(新築)2021年SDGs対応数 使用評価ソフト: CASREE-RD_NC_2021SDGs(v1.0)

- ■CASBEE: Comprehensive Assessment System for Built Environment Efficiency (建築環境総合性能評価システム)
- Q: Quality (建築物の環境品質)、L: Load (建築物の環境角荷)、LR: Load Reduction (建築物の環境角荷)、BEE: Built Environment Efficiency (建築物の環境効率)
 ■「ライフサイクルCO₂」とは、建築物の部材生産・建設から適用、改修、解体廃棄に至る一生の間の二酸化炭素排出量を、建築物の寿命年数で除した年間二酸化炭素排出量のこと
 ■評価対象のライフサイクルCO₂排出量は、Q2、LR1、LR2中の建築物の寿命、省エネルギー、省資源などの項目の評価結果から自動的に算出される

図1-9(1) CASBEE評価結果

=	SBEE-建築(新築)2021年SDGs対応版 バシ仙台	■使用 ■評価	評価マニュア ソフト:		-建築(新築 E-BD_NC		
ス=	アシート 竣工段階		N/S		ja:	- 2	2
Rd	 東	環境配慮設計の概要記入欄	群価点	重み係数	評価点	重み係数	全体
	建築物の環境品質						3.6
Q1	室内環境		3.0	0.37		-	3.2
100	音環境 1.1 室内騒音レベル	_	3.0	0.15	3.0		3.0
	1.2 直音		3.2	0.40	3.0		l .
	1 関口部遮音性能	4	3.0	0.78	3.0		
	2 界壁遮音性能	-	4.0	0.22	3.0		
	3 界床遮音性能(軽量衝撃源)	<u> </u>	1.0	3.2	3.0		
	4 界床遮音性能(重量衝撃源)	7	3.0	34	3.0	- 3	
	1.3 吸音	-	3.0	0.20	3.0		- India
2	温熱環境		3.0	0.35	14-20-3	-	3.0
	2.1 室温制御		3.0	0.50	3.0		
	2 外皮性能	<u> </u>	3.0	0.44	3.0	8	
	3 ゾーン別制御性	_	3.0	0.35	3.0		
	2.2 湿度制御	-	3.0	0.20	3.0	-	
	2.3 空調方式	-	3.0	0.30	3.0	54	
1	光・視環境		3.0	0.25		1 - 1	3.0
	3.1 星光利用		3.0	0.43	4-41-3	112	100
	1 星光率	-	3.0	0.29	3.0	2	
	2 方位別開口	<u>-</u>		motion.	3.0		
	3 昼光利用設備	_	3.0	0.71	3.0		
	3.2 グレア対策		3,0	0.15		1.5	
	3.3 頻度	店舗冊度:1800k	3.0	0.07	3.0		
	3.4 照明制御	-	3.0	0.35	3.0	-57	
	空気質環境		3.7	0.25	ninianus.		3.7
257	4.1 発生源対策		4.0	0.50	40.0	-	
	1 化学污染物質	-	4.0	1.00	3.0	· 😘	
	4.2 換気	Solver to what states in the construct of any states of the same o	3.8	0.30	0.00	7.00	
	1 換気量	30ml/hを満たす換気量を供給する計画とした。	4.0	0.42	3.0	-	
	2 自然換気性能	7	3.0	0.16	3.0	- 12	
	3 取り入れ外気への配慮	-	4.0	0.42	3.0	- 5.5	
	4.3 運用管理		3.0	0.20	22		
	1 CO ₂ の監視 2 喫煙の制御	-	3.0	0.50			
22	サービス性能		0.0	W/WW			
				0.30	200	24	3.6
		-	3.8	0.30		24	3.6
	機能性 1.1 機能性・使いやすさ	4	3.8	-	-		-
	機能性	-		0.40	-	2.0	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応		3.1 4.0 3.0	0.40 0.40 0.16 0.16		7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画		3.1 4.0 3.0 3.0	0.40 0.40 0.16 0.16 0.68	3.0	7	-
in the second	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性		3.1 4.0 3.0 3.0 3.6	0.40 0.40 0.16 0.16 0.68 0.30	3.0	7	-
360	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ郎・景観		3.1 4.0 3.0 3.0 3.6 4.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34	3.0	7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース		3.1 4.0 3.0 3.0 3.6	0.40 0.40 0.16 0.16 0.68 0.30	3.0	7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画		3.1 4.0 3.0 3.0 3.6 4.0 3.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32	3.0	7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース		3,1 4.0 3.0 3.0 3.6 4.0 3.0 4.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34	3.0	7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30	3.0	7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理「配慮した設計 2 維持管理「規格の確保 耐用性・信頼性		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50	3.0	7	-
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理用機能の確保 動用性・信頼性 2.1 耐震・免震・制震・制振		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50	3.0 3.0 3.0 1.0		3.8
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理用機能の確保 對用性・債頼性 2.1 耐震・免震・制震・制振		3.1 4.0 3.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 3.3 3.4 3.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.32 0.34 0.30 0.50 0.50 0.60	3.0 3.0 3.0		3.8
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理に配慮した設計 2 維持管理に関係を確保 耐用性・信頼性 2.1 耐震性(建物のこわれにくさ) 2 免震・制震・制振性能		3.1 4.0 3.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50 0.80 0.20	3.0 3.0 3.0 1.0		3.8
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアブリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理用機能の確保 耐性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性(建物のこわれにくさ) 2 免震・制震・制振性能 2.2 部品・部材の耐用年数		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0 3.1	0.40 0.40 0.16 0.16 0.30 0.34 0.30 0.50 0.50 0.50 0.50 0.80 0.20 0.30	3.0 3.0 3.0		3.8
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理用機能の確保 耐用性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性・健物のこわれにくさ) 2 免震・制震・制振性能 2.2 部品・部材の耐用年数 1 躯体材料の耐用年数		3.1 4.0 3.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50 0.80 0.20	3.0 3.0 3.0		3.8
	機能性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアブリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理用機能の確保 耐性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性(建物のこわれにくさ) 2 免震・制震・制振性能 2.2 部品・部材の耐用年数		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 5.0 3.3 3.4 3.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50 0.50 0.20 0.30	3.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		3.8
	##性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理用機能の確保 耐用性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性・健物のこわれにくさ) 2 免震・制震・制振性能 2.2 部品・部材の耐用年数 1 駆体材料の耐用年数 2 外壁仕上げ材の補修必要間隔		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0 3.0 3.3 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.40 0.40 0.16 0.16 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50 0.80 0.20 0.20	3.0 3.0 3.0 - 1.0		3.8
	##性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理に配慮した設計 2 維持管理用機能の確保		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0 5.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.80 0.20 0.20 0.20 0.20 0.10	3.0 3.0 3.0 - 1.0		3.8
	##性 ##性・使いやすさ 1.1 機能性・使いやすさ 1.2 (3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 5.0 3.3 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.40 0.40 0.16 0.16 0.68 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20	3.0 3.0 3.0 - 1.0		3.8
	##性 ##性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 整体を変化を変化を変化を変化を変化を変化を変化を変化を変化を変化を変化を変化を変化を		3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.40 0.40 0.16 0.16 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.50 0.20 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20	3.0 3.0 3.0 - 1.0		3.8
	##性 ##性・使いやすさ 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理「配慮した設計 2 維持管理用機能の確保 割用性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性・健物のこわれにくさ) 2 免震・制震・制振性能 2 免震・制震・制振性能 1 解放性・維持の耐用年数 1 躯体材料の耐用年数 2 外壁仕上げ材の補修必要間隔 3 主要内装仕上げ材の更新必要間隔 4 空調換気ダクトの更新必要間隔 5 空調・給抹水配管の更新必要間隔 5 空調・給抹水配管の更新必要間隔 6 主要設備機器の更新必要間隔 2.4 信頼性 1 空調・換気設備	歴外露出ダクトにガルパリウム鋼板を採用 - - -	3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 5.0 3.3 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.40 0.40 0.16 0.16 0.16 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.30 0.50 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.2	3.0 3.0 3.0 1.0		3.8
	##性 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理用機能の確保 耐用性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性・健物のこわれにくさ) 2 免震・制震・制振性能 2 免震・制震・制振性能 4 回線を対すの耐用年数 2 外壁性上げ材の補修必要間隔 3 主要内装仕上げ材の更新必要間隔 4 空調換気ダクトの更新必要間隔 5 空調・給排水配管の更新必要間隔 5 空調・給排水配管の更新必要間隔 6 主要設備機器の更新必要間隔 6 主要設備機器の更新必要間隔 7 と4 信頼性 1 空調・換気設備 2 給排水・衛生設備	歴外露出ダクトにガルパリウム鋼板を採用 - - - - - - - - - - - - - - - - - - -	3.1 4.0 3.0 3.0 3.0 4.0 5.0 5.0 5.0 3.3 3.4 3.0 5.0 3.1 3.0 3.0 4.0 3.0 5.0 5.0 3.3 3.4 3.0 5.0 5.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.40 0.40 0.16 0.16 0.16 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.30 0.50 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.2	3.0		3.8
	##性 ##性・使いやすさ 1.1 機能性・使いやすさ 1 広さ・収納性 2 高度情報通信設備対応 3 パリアフリー計画 1.2 心理性・快適性 1 広さ感・景観 2 リフレッシュスペース 3 内装計画 1.3 維持管理 1 維持管理「配慮した設計 2 維持管理用機能の確保 割用性・信頼性 2.1 耐震・免震・制震・制振 1 耐震性・健物のこわれにくさ) 2 免震・制震・制振性能 2 免震・制震・制振性能 1 解放性・維持の耐用年数 1 躯体材料の耐用年数 2 外壁仕上げ材の補修必要間隔 3 主要内装仕上げ材の更新必要間隔 4 空調換気ダクトの更新必要間隔 5 空調・給抹水配管の更新必要間隔 5 空調・給抹水配管の更新必要間隔 6 主要設備機器の更新必要間隔 2.4 信頼性 1 空調・換気設備	歴外露出ダクトにガルパリウム鋼板を採用 - - -	3.1 4.0 3.0 3.6 4.0 3.0 4.0 5.0 5.0 5.0 5.0 3.3 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.40 0.40 0.16 0.16 0.16 0.30 0.34 0.32 0.34 0.30 0.50 0.50 0.30 0.50 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.2	3.0		3.8

図1-9(2) CASBEE評価結果

3				-			
1000	対応性・更新性		3.7	0.30	11000	- 1	3.7
	3.1 空間のゆとり		5.0	0.30	120423		
	1 階高のゆとり	階高さH=4.3m以上	5.0	0.60	3.0	1	
	2 空間の形状・自由さ	受長さ比率=0.05	10.275.24	0.40	5900161	- 3	
	The Part of the Control of the Contr	至灰色化牛-0.03	5.0	722227	3.0		
	3.2 荷重のゆとり	-	3.0	0.30	3.0	-	
	3.3 設備の更新性		3.4	0.40	(*)		
	1 空調配管の更新性	-	3.0	0.20	112311		
	The state of the s		4.0	0.20	Total Control of		
	2 給排水管の更新性	C. Maria Same	13 13 5		(4)		
	3 電気配線の更新性	ケーブルラックを敷設	5.0	0.10	196		
	4 通信配線の更新性	ケーブルラックを敷設	3.0	0.10	B451 0		
	5 設備機器の更新性	機器更新ルートを確保	3.0	0.20	1010		
		パックアップスペース無し	190000	1000000	min'i B		
_	6 バックアップスペースの確保	ハックアックスペース無し	3.0	0.20	HIND SHOW	-	_
Q3	室外環境(敷地内)		-	0.33	158.5		4.2
1	生物環境の保全と創出	-	3.0	0.30	1000		3.0
2	まちなみ・景観への配慮	宮城野通街並み形成ガイドラインに基づき計画	5.0	0.40	1000		5.0
		the treatment of the control of the	4.5	0.30	1000		4.5
3	地域性・アメニティへの配慮				100	-	4,5
	3.1 地域性への配慮、快適性の向上	駅広デッキに対しビロティを設置	5.0	0.50	199	10.0	
	3.2 敷地内温熱環境の向上	接道面に、壁面線化を設置	4.0	0.50	381		
I B	建築物の環境負荷低減性						3.6
LR1	エネルギー		-	0.40	100		3.4
1	建物外皮の熱負荷抑制	-	5.0	0.20	11/48		5.0
2	自然エネルギー利用	-	4.0	0.10	1945		4.0
	The state of the s					_	
3	設備システムの高効率化	-	2.7	0.50		-	2.7
4	効率的運用		3.5	0.20	(0)	1	3.5
	集合住宅以外の評価		3.5	1.00	106911		
	4.1 モニタリング	BEMSの採用	4.0	0.50	220		
	The second secon		1643-4	F 10 149 1			
	4.2 運用管理体制		3.0	0.50	370	15	
	集合住宅の評価				100011		
	4.1 モニタリング	-	3.0		1000		
	42 運用管理体制		3.0	03	1023	3 93	
-			3.0	-			
LR2	資源・マテリアル		-	0.30			4.1
1	水資源保護		4.2	0.20	100		4.2
	1.1 節水	擬音装置、節水型便器の採用	4.0	0.40	1253		
	1.2 雨水利用・雑排水等の利用		4.4	0.60			
		THE RESIDENCE AND PARTY AND PARTY.					
	1 雨水利用システム導入の有無	雨水を処理し雑用水として利用	5.0	0.70	500	8 18	
	2 雑排水等利用システム導入の有無	π	3.0	0.30	199		
2	非再生性資源の使用量削減	7	4.1	0.60	1720		4.1
-						_	.4.1
	2.1 材料使用量の削減		3.0	0.10	550		
	2.2 既存建築躯体等の継続使用	_	3.0	0.20	122811		
	2.3 躯体材料におけるリサイクル材の使用	電炉鋼	5.0	0.20	243		
	2.4 躯体材料以外におけるリサイクル材の使用		5.0	0.20	1720		
			2.0	0.10			
	2.5 持続可能な森林から産出された木材		177770				
	2.6 部材の再利用可能性向上への取組み	÷	5.0	0.20	150		
3	汚染物質含有材料の使用回避		4.3	0.20	1565	. (2)	4.3
- 21	3.1 有害物質を含まない材料の使用	-	5.0	0.30			
	The second of th		4.0	0.70			
	3.2 フロン・ハロンの回避				12.00		
	1 消火剤	7	4.0	0.33	323	1.5	
	2 発泡剤(断熱材等)	-	5.0	0.33	174	-	
	3 冷媒	-	3.0	0.33	Harry 1		
	敷地外環境		2.9	0.30			3.5
I Do		地域交通インフラへの負荷低減		ACCUPATION	-	-	-
LR3	地球温暖化への配慮						3.4
1		OWART PY TO A TO BE	3.4	0.33	Her I		
LR3 1 2	地域環境への配慮	- CWARTER TO A TO	3.4	0.33	196	-	3.9
1	地域環境への配慮	= -	3.9	0.33	The Second Laboratory	-	
1	地域環境への配慮 2.1 大気汚染防止	-	3.9 4.0	0.33	F86	-	
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善		3.9 4.0 4.0	0.33 0.25 0.50		-	
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制		3.9 4.0 4.0 3.7	0.33 0.25 0.50 0.25	F86	-	
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善		3.9 4.0 4.0	0.33 0.25 0.50			
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減		3.9 4.0 4.0 3.7 3.0	0.33 0.25 0.50 0.25 0.25			
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制		3.9 4.0 4.0 3.7 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25		-	
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制	ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー	3.9 4.0 4.0 3.7 3.0 3.0 5.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25			
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25		-	3.9
1	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制		3.9 4.0 4.0 3.7 3.0 3.0 5.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25		-	
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷仮域 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25	* * * * * * * * * * * * * * * * * * * *	-	3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 商水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音・振動・悪臭の防止		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 商水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 商水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音・振動・悪臭の防止		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 庚棄物処理負荷抑制 脚辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動 3 悪臭		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動 3 悪臭 3.2 風害、砂塵、日照阻害の抑制		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷収減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動・悪臭の防止 1 騒音 2 振動・悪臭の防止 1 風音 1 風音の抑制		3.9 4.0 4.0 3.7 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 1 雨水排水負荷収減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 B辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動・悪臭 3.2 風害、砂塵、日照阻害の抑制 1 風害の抑制 2 砂塵の抑制		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 2.3 地域インフラへの負荷抑制 1 雨水排水負荷収減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 周辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動・悪臭の防止 1 騒音 2 振動・悪臭の防止 1 風音 1 風音の抑制		3.9 4.0 4.0 3.7 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 1 商水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 B辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動 3 悪臭 3.2 風害、砂塵、日照阻害の抑制 1 風害の抑制 2 砂塵の抑制 3 日照阻害の抑制		3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33 0.33			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 1 商水抹水負荷征減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 B辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動 3 悪臭 3.2 風害、砂磨、日照阻害の抑制 1 風害の抑制 2 砂磨の抑制 3 日照阻害の抑制 3 日照阻害の抑制 3 日照阻害の抑制 3 日照阻害の抑制	ー ー ー 地下連絡通路による駅周辺の交通負荷低減 ー	3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.70 0.30 0.20			3.9
2	地域環境への配慮 2.1 大気汚染防止 2.2 温熱環境悪化の改善 1 商水排水負荷低減 2 汚水処理負荷抑制 3 交通負荷抑制 4 廃棄物処理負荷抑制 B辺環境への配慮 3.1 騒音・振動・悪臭の防止 1 騒音 2 振動 3 悪臭 3.2 風害、砂塵、日照阻害の抑制 1 風害の抑制 2 砂塵の抑制 3 日照阻害の抑制	ー 一 一 地下連続通路による駅周辺の交通負荷低減 ー	3.9 4.0 4.0 3.7 3.0 3.0 5.0 4.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.33 0.25 0.50 0.25 0.25 0.25 0.25 0.25 0.33 0.40 0.33 0.33 0.40 0.70 			3.9

図1-9(3) CASBEE評価結果

1.6 環境の保全・創造等に係る方針

本事業における環境保全・創造等に係る方針は表1-10(1) \sim (2)に示すとおりである。

表1-10(1) 本事業における環境保全・創造等に係る方針

車業の内容	豊倍の保入・創生堂に接て土料
事業の内容	環境の保全・創造等に係る方針
緑化計画	・個性的で魅力的な街づくりに資するため、建物南東の壁面緑化や駐輪場、バイク置き場や駐車場周辺の地上部の緑化及び10階の屋上緑化を行うことにより、「杜の都の環境をつくる条例」に基づく1,280㎡の緑化を計画する。植栽樹種は在来種から選定することを基本とする。
景観計画	・建物の形態・意匠については、自然石を多用したピロティ形式のファサード計画とするなど、計画地周辺における既存建築物や仙台駅東口開発計画(現JR仙台イーストゲートビル等)の計画建築物との連続性に配慮する。・屋外設備機器は、なるべく駅前広場側ではなく線路側に配置するとともに、ルーバー等により外部から見えないようにする。
交通計画	 ・周辺の交通渋滞緩和のため、既存店舗の荷捌き車両用出入口を活用し、計画地駐車場への出入口とする。 ・利用者等に対し、駐車時におけるアイドリングや急発進・急加速・空ぶかしを行わない等、エコドライブへの取組み、排出ガス低減への協力を促す。 ・社用車は、可能な限り、次世代自動車や騒音が少ない自動車の導入・更新に努める。 ・通勤や業務の移動に際しては、可能な限り公共交通機関を活用するとともに、近距
	離移動に際し、徒歩や自転車での移動に努める。 ・荷捌き車両などの駐車スペースを適切に確保する。 ・駐車場出入口には、満空車表示設備及び出庫警報設備を設置し、歩行者等の安全確保に努める。
	・来店客者に対しホームページ等により鉄道等の公共交通機関の利用を促すとともに、来店客車両がスムーズに来店できるよう駐車場への案内経路の周知をホームページ、売り出しチラシ等で行う。また、駐車場出入口には、交通整理員を適切に配置することにより、歩行者等の安全確保に努めるとともに、繁忙時には周辺交差点にも誘導員を配置することで、渋滞発生の防止を図る。 ・仙台駅東口バスプールを含む計画建築物周辺の歩道部分においては、歩行者の安全性に配慮し、冬季の堆雪や凍結に対して融雪等の対策を実施する。
給水計画	・屋根の一部に降った雨を貯留し、雑用水(便所洗浄水等)として再利用を図ることで、地下水の利用量の削減を図る。 ・自動水栓・節水型便器等節水型衛生器具を設置する。 ・給水方式は受水槽+加圧給水方式とし、給水ポンプは使用水量に応じて回転数制御を行うインバータ付とする。 ・従業員及び利用者等に対する水利用量削減・節水の啓発を行い、水利用量の削減に努める。
排水計画	・厨房排水については、油分や残渣を適切に除去した上で、公共下水道に放流する。 ・雨水は公共下水道へ放流するが、計画地は合流式下水道処理区域であるため、一部 の雨水は雨水貯留槽(有効容量310㎡程度)に貯留し、雑用水として利用するととも に、透水性舗装をできる限り計画し、現況以上に雨水を下水道に放流しないよう配 慮する。また、雨水浸透枡の採用に努め、地下水涵養を図る。
熱源·空調設備 計画	・熱源には高効率機器を採用する。 ・外気処理空調機と空冷式ヒートポンプビル用マルチエアコンによる空調方式とする。 ・外気処理空調機と大型ファンコイルユニット方式とし、外気冷房可能な期間は外気を熱処理せずに取り入れる。 ・駐車場においてCO濃度による換気量制御を行う。 ・設備機器の点検・整備を定期的に行う。
廃棄物処理計画	・1階に廃棄物集積所を設置し、保管場所の工夫や分かりやすい掲示などにより、分別回収の徹底を図る。 ・テナント業者に対して、賃貸契約条件に排水処理設備の管理徹底を付し、余剰汚泥発生の抑制に努める。

表1-10(2) 本事業における環境保全・創造等に係る方針

事業の内容	環境の保全・創造等に係る方針
省エネルギー対策方針	・二重壁や開口割合の小さい外壁とし、気温変化等の外乱の影響の小さい建築計画とする。 ・開口部にルーバーを設置し、外部熱負荷の軽減に努める。 ・建物の南側にコアや設備置場の干渉帯を設け、外部熱負荷の軽減に努める。 ・BEMS等の有効活用により運用上の無駄の低減を図る。 ・今後進めていく詳細設計においては、評価書に示した環境配慮事項に確実に取り組み、建築環境総合性能評価システム(CASBEE)による評価結果がA評価以上となるよう努める。 ・熱源には高効率機器を採用し、省エネルギー化を図る。 ・熱源には高効率機器を採用し、省エネルギー化を図る。 ・冷水・温水は大温度差及び変流量制御を行い、搬送エネルギーの低減を図る。 ・CO2濃度による外気導入量制御を行い、外気負荷の低減を図る。 ・可能な限り外気冷房を行い、冷房負荷の低減を図る。 ・駐車場においてCO濃度による換気量制御を行い、ファン動力の低減を図る。 ・自動水栓等節水型衛生器具を採用し、水消費量の低減を図る。 ・自動水栓等節水型衛生器具を採用し、水消費量の低減を図る。 ・給水ポンプはインバータ付とし、ポンプ動力の低減を図る。 ・建物全体は原則、高効率照明器具の導入を図る。

2. 事業計画の変更に伴う環境影響評価の見直し

本事業においては、評価書の公告以降に事業計画の変更を2回行っており、その内容は以下に示すとおりである。

・第1回変更

評価書から建築物の延べ面積を縮小したことに伴い工事規模が縮小し、資材等の運搬車両の延べ台数も減少するが、工事期間が短縮されたことから、重機の稼働台数が最大になる1年間では評価書より増加することとなった。また、供用時の関連車両の日台数も減少することとなった。さらに、建築物の形状や高さが変更になったことから、供用後の大気環境に関する発生源である駐車場の位置が変更となるとともに、主要な用途としてオフィスが計画された。以上のことから、再予測・評価が必要となる項目として、大気質、騒音、電波障害、日照阻害、風害、景観、廃棄物等を選定し予測を行った。この変更については、令和3年4月の第1回仙台市環境影響評価審査会にて報告済みである。

・第2回変更

建物の一部に工作物(目隠し壁)の設置を行う変更が計画され、それに伴い再度予測・評価が必要になる項目として、日照阻害と風害を選定し予測を行った。この変更については、令和4年9月の第2回仙台市環境影響評価審査会にて報告済みである。

なお、第2回変更以降に変更は行ってないことから、再予測・評価は行っていない。

3. 関係地域の範囲

関係地域の範囲は、環境影響評価項目として選定した項目のうち、最も広い範囲に影響が及ぶと考えられる景観の調査・予測範囲(1,500m)を参考に、計画地から1.5kmと設定した。なお、各選定項目の調査・予測範囲は表3-1に示すとおりである。

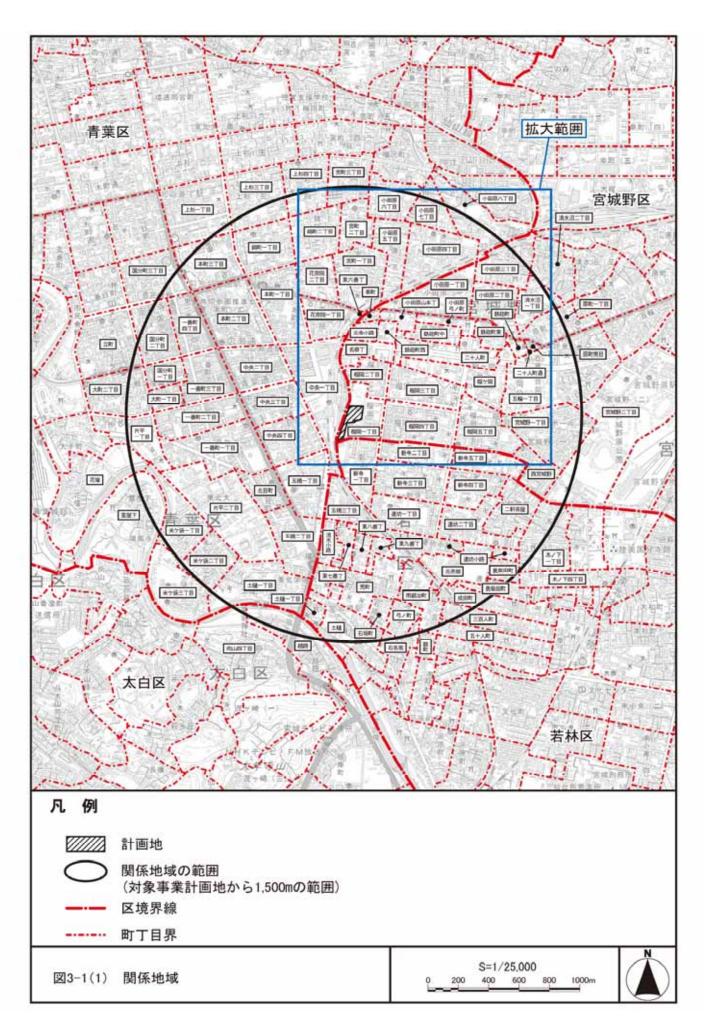

また、関係地域の範囲及び該当する町丁目は、表3-2及び図3-1(1) \sim (2)に示すとおりである。

表3-1 調査・予測範囲等の考え方

項目	調査・予測範囲等の考え方	敷地境界 からの距離
大気質	本事業により大気質の変化が想定される地域とし、工事中の 重機の稼働及び資材等の運搬車両の走行、供用後の施設関連車 両の走行及び施設の稼働(商業施設、立体駐車場)による排出ガ スの影響が考えられるため、それらによる排出ガスの最大濃度 着地点を踏まえた範囲とする。	約500m
騒音	本事業により騒音の影響が想定される地域とし、工事中の重機の稼働及び工資材等の運搬車両の走行、供用後の施設関連車両の走行及び施設の稼働(商業施設、立体駐車場)による騒音の影響が考えられる範囲とする。	約200m
振動	本事業により振動の影響が想定される地域とし、工事中の重機の稼働及び資材等の運搬車両の走行、供用後の施設関連車両の走行による振動の影響が考えられる範囲とする。	約200m
水象	本事業により水象(地下水)への影響が想定される範囲とし、 工事中の掘削、工作物等の出現による地下水への影響が考えら れる範囲とする。	約400m
地盤沈下	本事業により地盤沈下の影響が想定される範囲とし、工事中の掘削工事及び工作物等の出現による地盤沈下の影響が考えられる範囲とする。	約400m
電波障害	電波障害については、本事業における設計を踏まえて電波障害の机上検討を行い、電波障害が想定される範囲とする。	約50m
日照阻害	本事業により日影の影響が想定される範囲とし、供用後の建築物の存在による日影(冬至日)の影響が考えられる範囲とする。	約300m
風害	本事業により風害が想定される範囲とし、建築物の存在により風環境に影響を及ぼすと想定される範囲(建築物高さの約2~3倍)とする。	約200m
景観	本事業により景観に対する影響が想定される範囲とし、事業の実施により、眺望地点からの眺望の変化を及ぼすと想定される範囲(中景域)とする。	約1,500m
廃棄物等	本事業により計画地からの廃棄物等の発生が考えられる地域 とする。	計画地内
温室効果ガス等	本事業により計画地からの温室効果ガスの発生が考えられる 地域とする。	計画地内

表3-2 関係地域町名一覧

- 17/10 C W 1 H 20			
区名	町名		
青葉区	宮町一丁目、宮町二丁目、宮町三丁目、花京院一丁目、花京院二丁目、		
13710	本町一丁目、本町二丁目、本町三丁目、中央一丁目、中央二丁目、中央三丁目、		
	中央四丁目、五橋一丁目、五橋二丁目、一番町一丁目、一番町二丁目、		
	一番町三丁目、一番町四丁目、北目町、小田原四丁目、小田原五丁目、		
	小田原六丁目、小田原七丁目、小田原八丁目、錦町一丁目、錦町二丁目、		
	国分町一丁目、国分町二丁目、国分町三丁目、大町一丁目、大町二丁目、		
	片平一丁目、片平二丁目、米ケ袋一丁目、米ケ袋二丁目、米ケ袋三丁目、		
	土樋一丁目、上杉一丁目、上杉三丁目、上杉四丁目、立町、花壇、霊屋下		
宮城野区 榴岡一丁目、榴岡二丁目、榴岡三丁目、榴岡四丁目、榴岡五丁目、名			
	元寺小路、車町、東六番丁、二十人町、鉄砲町、鉄砲町東、鉄砲町中、鉄砲町西、		
	小田原一丁目、小田原二丁目、小田原三丁目、小田原弓ノ町、小田原山本丁、		
	榴ケ岡、五輪一丁目、宮城野一丁目、宮城野二丁目、清水沼一丁目、		
	清水沼二丁目、原町一丁目、西宮城野、二十人町通、原町南目		
若林区	新寺一丁目、新寺二丁目、新寺三丁目、新寺四丁目、新寺五丁目、五橋三丁目、		
	連坊一丁目、連坊二丁目、清水小路、連坊小路、元茶畑、東七番丁、東八番丁、		
	東九番丁、荒町、土樋、南鍛冶町、木ノ下一丁目、木ノ下四丁目、裏柴田町、		
	表柴田町、成田町、三百人町、五十人町、弓ノ町、穀町、石名坂、土樋一丁目、		
	石垣町、二軒茶屋		
太白区	向山四丁目、越路		

4. 環境の保全及び創造のための措置の実施状況

評価書に記載の環境の保全及び創造のための措置のうち、令和5年6月から令和7年5月までの実施状況は、表 $4-1\sim9$ に示すとおりである。

表4-1(1) 事業計画に係る環境保全措置の実施状況(1)

評価書で検討した保全措置 景 建物の形態・意匠については、自然石を多用したピロティ形式のファサード計画とするなど、計画地周辺における既存建築物や「仙台駅東口開発計画」の計画建築物との連続性に配慮する。 なる。 まる。 おいては、 ないで揃える からなる

実施状況

計画地周辺の建築物との形態・意匠の調和や連続性に配慮して、高さを約56mに抑え、外壁については、色彩に配慮して自然石を多用するとともに、3階部分はピロティ形式のファサードとした。また、南側の壁面についても外壁のデザイン的な統一性や連続性を持たせるため、下部まで揃えるようにした。

外壁の広告物については、景観に配慮した色彩 のものとした。

撮影日:令和7年4月21日

写真4-1 北側壁面

撮影日:令和7年5月26日

写真4-2 南側壁面

	表4-1(2) 事業計画に係る環境保全措置の実施状況(2)			
	評価書で検討した保全措置	実施状況		
景観計画	(前ページに同じ)	撮影日:令和7年5月26日 写真4-3 南側・西側壁面		
	屋外設備機器は、なるべく駅前広場側ではなく 線路側に配置するとともに、ルーバー等により 外部から見えないようにする。	設備機器については、その配置や外壁の仕様等を工夫し、周辺から直接視認されないように線路側に配置するなどした。また、計画建築物内の駐車場についても、外壁により周辺から視認されないよう配置した。 外壁の広告物については、景観に配慮した色彩のものとした。		
		撮影日:令和7年4月21日 写真4-4 西側(線路側)壁面		
交通計画	周辺の交通渋滞緩和のため、既存店舗の荷捌き 車両用出入口を活用し、計画地駐車場への出入 口とする。	周辺の交通渋滞緩和のため、既存店舗の荷捌き車両用出入口を活用し、計画地南側駐車場への出入口とした。また、南側駐車場への接続は、地下連絡通路により、東七番丁通りを地下で横断する形とした。		
		撮影日:令和7年5月26日		

写真4-5 計画地南側駐車場への出入口

表4-1(3) 事業計画に係る環境保全措置の実施状況(3) 評価書で検討した保全措置 実施状況 昨今、エコドライブは一般的になっていること 来店者等に対し、駐車時におけるアイドリング 交通 や急発進・急加速・空ぶかしを行わない等、エ から、改めて来店者に協力を促すようなことは 計 コドライブへの取組み、排出ガス低減への協力 行っていないが、駐車場に電気自動車の充電設 を促す。 備を設置し、排出ガス低減を図っている。 撮影日:令和7年7月1日 写真4-6 電気自動車充電設備 社用車は、可能な限り、次世代自動車や騒音が 商品搬入車両はグリーンエコプロジェクト※に 少ない自動車の導入・更新に努める。 参加しており、低速での発進・停止等、エコド ライブにより、騒音の低減を図っている。 社用車は、現時点では次世代自動車等ではない が、次回更新の際には採用を検討する。 ※ 東京都と一般社団法人東京都トラック協会が連 携するプロジェクトであり、車両ごとに収集し た燃費からデータベースを構築し、継続的なエ コドライブ活動を推進・支援、CO₂排出量の削減 や燃費向上に伴うコスト削減、事故防止等に向 けた取り組みを展開している。他県からも参加 可能である。 撮影日:令和7年5月27日

通勤や業務における人の移動に際しては、可能 な限り公共交通機関を活用するとともに、近距 離移動に際し、徒歩や自転車での移動に努め る。 写真4-7 グリーン・エコプロジェクト参加車両 ヨドバシカメラ店舗・事務所の従業員は、公共 交通機関以外による通勤は禁止している。 また、テナント及びオフィスとの入居時契約に おいては、従業員の通勤に公共交通機関を使用 するよう条件付けしている。

表4-1(4) 事業計画に係る環境保全措置の実施状況(4)

評価書で検討した保全措置 実施状況 荷捌き車両などの駐車スペースを適切に確保す 荷捌き車両などの駐車スペースを適切に確保し 交通計 る。 ている。 撮影日:令和7年5月27日 写真4-8 荷捌き場 駐車場出入口には、満空車表示設備及び出庫警 駐車場出入口には、満空車表示設備を設置して 報設備を設置し、歩行者等の安全確保に努め いる。また、既存店舗南側来店客用駐車場、地 下連絡通路出入口及び荷捌き車両出入口には、 る。 歩行者等の安全確保のため、出庫警報設備を設 置している。 撮影日:令和7年7月1日 写真4-9 満空車表示設備の設置 撮影日:令和7年5月26日 写真4-10 出庫警報設備の設置

表4-1(5) 事業計画に係る環境保全措置の実施状況(5)

	表4-1(5) 事業計画に係る環境保全措置の実施状況(5)			
	評価書で検討した保全措置	実施状況		
交通計画	来店者に対しホームページ等により鉄道等の公共交通機関の利用を促すとともに、来店者車両がスムーズに来店できるよう駐車場への案内経路の周知をホームページ、売り出しチラシ等で行う。また、駐車場出入口には、交通整理員を適切に配置することにより、歩行者等の安全確保に努めるとともに、繁忙時には周辺交差点にも誘導員を配置することで、渋滞発生の防止を図る。	ホームページには、鉄道等の公共交通機関によるアクセス方法、来店者用駐車場への案内経路について掲載しており、公共交通機関の利用促進、駐車場へのスムーズな入庫を図っている。また、荷捌き車両出入口に警備員を配置しているほか、来店客の多い土曜・日曜・祝日の午前10時から午後8時まで、来店客用駐車場等に交通誘導員を配置し、歩行者等の安全確保に努めている。		
		撮影日: 令和7年5月26日 写真4-11 荷捌き車両出入口		
	仙台駅東口バスプールを含む計画建築物周辺の 歩道部分においては、歩行者の安全性に配慮 し、冬季の堆雪や凍結に対して融雪等の対策を 実施する。	歩行者の安全対策として、ペデストリアンデッキ上のヨドバシカメラ店舗前部分にロードヒーティング設備を設置している。また、計画建築物南側の平面駐車場及びそこから既存店舗方面への地下連絡通路入口スロープに、車両のスリ		
		ップ防止のためのロードヒーティング設備を設置している。		
給水計画	屋根の一部に降った雨を貯留し、雑用水 (便所 洗浄水等)として再利用を図ることで、地下水 の利用量の削減を図る。	雨水及び井水は貯留槽に貯留し、処理設備でろ 過等の処理した上で、ビル内のトイレ洗浄水と して利用しており、洗浄水は全てを雨水及び井 水で賄っている。		
	自動水栓・節水型便器等、節水型衛生器具を設置する。 給水方式は受水槽+加圧給水方式とし、給水ポンプは使用水量に応じて回転数制御を行うインバータ付とする。 従業員及び利用者等に対する水利用量削減・節	自動水栓・節水型便器等、節水型衛生器具を設置している。 給水方式は受水槽+加圧給水方式とし、可変速容量制御の給水ポンプにより使用水量に応じて効率的な給水を行っている。 自動水栓・節水型便器等、節水型衛生器具を設		
	水の啓発を行い、水利用量の削減に努める。	目動水性・即水型便器等、即水型衛生器具を設置していることから啓発までは行っていないが、過剰な水の使用は抑えられ、利用量の削減につながっている。		

表4-1(7) 事業計画に係る環境保全措置の実施状況(7)

	表4-1(7) 事業計画に係る境境保全措置の実施状况(7) 			
	評価書で検討した保全措置	実施状況		
排水計画	厨房排水については、油分や残渣を適切に除去した上で、公共下水道に放流する。	廃食用油等は公共下水道に放流することのないよう分別を徹底している。また、厨房排水については、油分や残渣を適切に除去した上で、公共下水道に放流できるよう、従業員食堂及び飲食店テナントの厨房にはグリストラップ(油脂分離阻集器)を設置している。さらに、グリストラップには、スカムセーブネット(ごみを回収する目の細かいネット)及び油吸着材の取り付け、定期的な清掃を実施するよう指示しており、細かいごみや油を確実に回収しすることにより、余剰汚泥発生の抑制を図っている。なお、ビル管理の一環として、ビル内のグリス		
		トラップを一括して定期的に清掃している。 撮影日: 令和7年5月27日 写真4-12 廃食用油の分別(テナント用ごみ集積所)		
	雨水は公共下水道へ放流するが、計画地は合流 式下水道処理区域であるため、一部の雨水は雨 水貯留槽(有効容量310㎡程度)に貯留し、雑用 水として利用するとともに、透水性舗装をでき る限り計画し、現況以上に雨水を下水道に放流 しないよう配慮する。また、雨水浸透枡の採用 に努め、地下水涵養を図る。	一部の雨水は雨水貯留槽(実容量319㎡)に貯留し、ビル内のトイレ洗浄水として利用している。 バスベイをはじめ、本事業の計画建築物周囲の歩道には透水性舗装を行った。 なお、計画地内は、本事業実施前も既に全面アスファルト舗装されていたことから、本事業の実施による雨水浸透状況の変化はないと考え、雨水浸透枡は採用しなかった。		
熱源	熱源には高効率機器を採用する。	熱源には高効率機器を採用している。		
空調 設	冷水・温水は往返温度差を大きく、流量を小さくする大温度差送水に加え、負荷に応じて流量を変動させる変流量制御を採用する。	冷水・温水は往返温度差を大きく、流量を小さくする大温度差送水に加え、負荷に応じて流量を変動させる変流量制御を採用している。		
備計画	物販店舗においてCO₂濃度による外気導入量制御を行う。	物販店舗及びオフィスの空調においてCO₂濃度による外気導入量制御を行っている。		

表4-1(8) 事業計画に係る環境保全措置の実施状況(8)

	· ·	覚保全措置の実施状況(8)
	評価書で検討した保全措置	実施状況
熱 源 •	内部発熱の大きな店舗において外気冷房を積極的に採用する。	内部発熱の大きな店舗やオフィスにおいて外気 冷房を採用している。
空調設備計画		撮影日: 令和7年5月27日
		写真4-13 外気取り入れ口
	物販店舗においてナイトパージを行う。	物販店舗及びオフィスの空調においてナイトパ ージを行っている。
	駐車場においてCO濃度による換気量制御を行う。	各階駐車場にCO濃度検出器を設置し、検出した 濃度により換気ファンの換気量制御を行うこと で、駐車場内のCO濃度が一定の濃度以上になら ないようにしている。
		撮影日:令和7年7月1日 写真4-14 CO濃度検出器の設置

表4-1(9) 事業計画に係る環境保全措置の実施状況(9)

	表4-1(9) 事業計画に係る壊壊	
	評価書で検討した保全措置	実施状況
熱 源 •	設備機器の点検・整備を定期的に行う。	設備機器の点検・整備を定期的に行っている。
空調設備計		
画		
		撮影日:令和7年5月27日
		写真4-15 点検・整備チェックリスト
廃	地下1階に廃棄物集積所を設置し、保管場所の工	1階に廃棄物集積所を設置し、保管場所の工夫や
廃棄物処	夫や分かりやすい掲示などにより、分別回収の	分かりやすい掲示などにより、分別回収の徹底
処理	徹底を図る。	を図っている。
理計画		撮影日:令和7年5月27日
		「
		・事務所用ごみ集積所
		撮影日:令和7年5月27日
		写真4-17 テナント用ごみ集積所

表4-1(10) 事業計画に係る環境保全措置の実施状況(10)

	評価書で検討した保全措置	実施状況
廃棄物処理計画	テナント業者に対して、賃貸契約条件に排水処 理設備の管理徹底を付し、余剰汚泥発生の抑制 に努める。	廃食用油等は公共下水道に放流することのないよう分別を徹底している。また、厨房排水については、油分や残渣を適切に除去した上で、公共下水道に放流できるよう、従業員食堂及び飲食店テナントの厨房にはグリストラップ(油脂分離阻集器)を設置している。さらに、グリストラップには、スカムセーブネット(ごみを回収する目の細かいネット)及び油吸着材の取り付け、定期的な清掃を実施するよう指示しており、細かいごみや油を確実に回収しすることにより、余剰汚泥発生の抑制を図っている。なお、ビル管理の一環として、ビル内のグリストラップを一括して定期的に清掃している。

表4-1(11) 事業計画に係る環境保全措置の実施状況(11)

		表4-1(11) 事業計画に係る壊現例	(王佰直の夫虺仏沈(二)
		評価書で検討した保全措置	実施状況
省	建	二重壁や開口割合の小さい外壁とし、気温変	二重壁や開口割合の小さい外壁とし、気温変
エ	物	化等の外乱の影響の小さい建築計画とする。	化等の外乱の影響の小さい建築計画とした。
ネルギー対策方針	全体		撮影日:令和7年5月27日
			写真4-18 二重壁
		開口部にルーバーを設置し、外部熱負荷の軽	開口部にルーバーを設置し、外部熱負荷の軽
		減に努める。	減に努めている。
			撮影日: 令和7年5月26日 写真4-19 開口部ルーバー
		建物の南側にコアや設備置場の干渉帯を設	建物の南側にコアや設備置場の干渉帯を設
		け、外部熱負荷の軽減に努める。	け、外部熱負荷の軽減に努めている。

表4-1(12) 事業計画に係る環境保全措置の実施状況(12)

		評価書で検討した保全措置	実施状況
省エネ・	建物全体	BEMS等の有効活用により運用上の無駄の低減を図る。	BEMSにより、電気及び水道の使用量等のデータを一括で収集しており、日・曜日・月・年単位での使用量の把握や比較等を行い無駄の
ルギー	144		低減を図っている。
対対		今後進めていく詳細設計においては、評価書	詳細設計においては、評価書に示した環境配
対策方針		に示した環境配慮事項に確実に取り組み、建築環境総合性能評価システム(CASBEE)による	慮事項を確実に実施し、評価結果はA評価で あった。
針		評価結果がA評価以上となるよう努める。	w) 5/C ₀
	空	熱源には高効率機器を採用し、省エネルギー	熱源には高効率機器を採用し、省エネルギー
	調設	化を図る。	化を図っている。
	備	冷水・温水は大温度差及び変流量制御を行	冷水・温水は大温度差及び変流量制御を行
		い、搬送エネルギーの低減を図る。	い、搬送エネルギーの低減を図っている。
		CO ₂ 濃度による外気導入量制御を行い、外気 負荷の低減を図る。	CO ₂ 濃度による外気導入量制御を行い、外気 負荷の低減を図っている。
		可能な限り外気冷房を行い、冷房負荷の低減	可能な限り外気冷房を行い、冷房負荷の低減
		を図る。	を図っている。
		ナイトパージを行い、冷房負荷の低減を図	ナイトパージを行い、冷房負荷の低減を図っ
		る。	ている。
		駐車場においてCO濃度による換気量制御を行	各階駐車場にCO濃度検出器を設置し、検出し
		い、ファン動力の低減を図る。	た濃度により換気ファンの換気量制御を行う
			ことで、ファン動力の低減を図っている。
		方型 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(写真4-14参照)
	衛生	自動水栓等、節水型衛生器具を採用し、水消 費量の低減を図る。	自動水栓・節水型便器等、節水型衛生器具を 設置により、水消費量の低減を図っている。
	生設	給水ポンプはインバータ付とし、ポンプ動力	可変速容量制御の給水ポンプにより使用水量
	備	の低減を図る。	に応じて効率的な給水を行っている。
	高	二重壁や開口割合の小さい外壁とし、気温変	二重壁や開口割合の小さい外壁とし、気温変
	断	化等の外乱の影響の小さい建築計画とする。	化等の外乱の影響の小さい建築計画とした。
	熱 •		(写真4-18参照)
	日射		
	遮		
	蔽		

表4-1(13) 事業計画に係る環境保全措置の実施状況(13)

		評価書で検討した保全措置	実施状況
省エネルギー対策方針	高効率照明	建物全体は原則、高効率照明器具の導入を図る。	原則として、建物全体に高効率照明器具の導入を図っている。 また、荷捌き場での照明の点灯50%以下、従業員食堂でのエアコンの適温設定等を促しているほか、オフィスフロアの共用部等は、人が少なくなる20時頃から一部照明を消灯している。
] TR	電気設備	使用する変圧器は「トップランナー制度」に より計画する。	撮影日: 令和7年5月27日 写真4-20 荷捌き場の照明スイッチ 電動機等の電気設備には、可能な限りトップ ランナー制度適合品を採用した。

表4-2(1) 大気質に係る環境保全措置の実施状況(1)

	, , , , , , , , , , , , , , , , , , , ,	FI-2342 -> > COS > COS
	評価書で検討した保全措置	実施状況
資材・製品・人等の運搬・輸送	来店者等に対し、駐車時におけるアイドリングや、急発進・急加速・空ぶかしを行わない等、エコドライブへの取組み、排出ガス低減への協力を促す。 社用車には、可能な限り、低排出ガス認定自動車の導入・更新に努める。	昨今、エコドライブは一般的になっていることから、改めて来店者に協力を促すようなことは行っていないが、駐車場に電気自動車の充電設備を設置し、排出ガス低減を図っている。(写真4-6参照) 商品搬入車両はグリーンエコプロジェクトに参加しており、エコドライブにより、CO ₂ 排出量の削減や燃費向上等を図っている。 社用車は、現時点では低排出ガス認定自動車ではないが、次回更新の際には採用を検討する。(写真4-7参照)
	来店者等に対し、駐車時におけるアイドリングや、急発進・急加速・空ぶかしを行わない等、エコドライブへの取組み、排出ガス低減への協力を促す。	昨今、エコドライブは一般的になっていることから、改めて来店者に協力を促すようなことは行っていないが、駐車場に電気自動車の充電設備を設置し、排出ガス低減を図っている。 (写真4-6参照)

表4-2(2) 大気質に係る環境保全措置の実施状況(2)

	評価書で検討した保全措置	実施状況						
資材・製品・人等の運搬・輸	社用車には、可能な限り、低排出ガス認定自動車の導入・更新に努める。 通勤や業務の移動に際しては、可能な限り公共交通機関を活用するとともに、近距離移動に際し、徒歩や自転車での移動に努める。	交通機関以外による通勤は禁止している。 また、テナント及びオフィスとの入居時契約に						
送	荷捌き場などの適切な駐車スペースを確保する。 来店者に対しホームページ等により鉄道等の公	おいては、従業員の通勤に公共交通機関を使用するよう条件付けしている。 荷捌き車両などの駐車スペースを適切に確保している。 (写真4-8参照) ホームページには、鉄道等の公共交通機関によ						
	共交通機関の利用を促すとともに、来店客車両がスムーズに来店できるよう駐車場への案内経路の周知をホームページ、売り出しチラシ等で行う。また、駐車場出入口には、交通整理員を適切に配置することにより、歩行者等の安全確保に努めるとともに、繁忙時には、周辺交差点にも誘導員を配置することで、渋滞発生の防止を図る。	るアクセス方法、来店者用駐車場への案内経路について掲載しており、公共交通機関の利用促進、駐車場へのスムーズな入庫を図っている。また、荷捌き車両出入口に警備員を配置しているほか、来店客の多い土曜・日曜・祝日の午前10時から午後8時まで、来店客用駐車場等に交通誘導員を配置し、歩行者等の安全確保に努めている。 (写真4-11参照)						
施設の稼働(商業施設等)	設備機器の点検・整備を定期的に行う。	設備機器の点検・整備を定期的に行っている。 (写真4-15参照)						
施設の稼働(駐車場)	設備機器の点検・整備を定期的に行う。	設備機器の点検・整備を定期的に行っている。 (写真4-15参照)						

表4-3 騒音に係る環境保全措置の実施状況

		保生措直の美施状况					
<u> </u>	評価書で検討した保全措置	実施状況					
資材·製品·人符	来店者等に対し、駐車時におけるアイドリング や急発進・急加速・空ぶかしを行わない、制限 速度を遵守する等、エコドライブへの取組み、 騒音低減への協力を促す。	昨今、エコドライブは一般的になっていることから、改めて来店者に協力を促すようなことは行っていないが、駐車場に電気自動車の充電設備を設置し、走行音の低減を図っている。 (写真4-6参照)					
等の運搬・輸送	社用車には、可能な限り、騒音が少ない自動車 の導入・更新に努める。	商品搬入車両はグリーンエコプロジェクトに参加しており、低速での発進・停止等、エコドライブにより、騒音の低減を図っている。 社用車は、現時点では低騒音自動車ではないが、次回更新の際には採用を検討する。 (写真4-7参照)					
	通勤や業務の移動に際しては、できるだけ公共 交通機関を活用するとともに、近距離移動に際 し、徒歩や自転車での移動に努める。	ョドバシカメラ店舗・事務所の従業員は、公共 交通機関以外による通勤は禁止している。 また、テナント及びオフィスとの入居時契約に おいては、従業員の通勤に公共交通機関を使用 するよう条件付けしている。					
	荷捌き場などの適切な駐車スペースを確保する。	荷捌き車両などの駐車スペースを適切に確保している。 (写真4-8参照)					
	来店者に対しホームページ等により鉄道等の公共交通機関の利用を促すとともに、来店客車両がスムーズに来店できるよう駐車場への案内経路の周知をホームページ、売り出しチラシ等で行う。また、駐車場出入口には、交通整理員を適切に配置することにより、歩行者等の安全確保に努めるとともに、繁忙時には、周辺交差点にも誘導員を配置することで、渋滞発生の防止を図る。	ホームページには、鉄道等の公共交通機関によるアクセス方法、来店者用駐車場への案内経路について掲載しており、公共交通機関の利用促進、駐車場へのスムーズな入庫を図っている。また、荷捌き車両出入口に警備員を配置しているほか、来店客の多い土曜・日曜・祝日の午前10時から午後8時まで、来店客用駐車場等に交通誘導員を配置し、歩行者等の安全確保に努めている。 (写真4-11参照)					
施設の稼働(商	室内CO ₂ 濃度での外気量制御による冷房負荷の削減、空調の変風量装置の適宜設置、飲食店舗の個別熱源方式の採用等の省エネルギー化対策を計画することにより、設備機器の稼働の低減を図る。	物販店舗及びオフィスの空調において室内CO ₂ 濃度での外気量制御による冷房負荷の削減、熱源に高効率機器の採用、外気冷房の採用等による省エネルギー化対策を行い、設備機器の稼働の低減を図っている。					
(商業施設等)	指向性のあるスピーカーを採用し、広く拡散しないように効果的に放送することとし、スピーカーの利用には放送内容を含め十分に配慮する。また、その使用方法等は、仙台市公害防止条例に規定の基準を遵守する。	スピーカーの利用には十分配慮し、条例に規定の基準を遵守している。 一度、計画地南端の既存立体駐車場近隣の住民よりスピーカーの音量に関する苦情が寄せられたため、音量を下げている。現在も音量は下げたままであり、下げた後に苦情は寄せられていない。					
	_	供用開始後は3階店舗出入口付近で2台のスピーカーを使用しており、供用開始約1年後の調査時点においても2台のスピーカーを使用していたが、騒音への影響に配慮し、ペデストリアンデッキ寄りの1台は現在、ほぼ聞こえない程度にまで音量を下げている。また、3階店舗出入口付近で使用中のもう1台のほか、計画建築物周囲や計画建築物南側の平面駐車場のスピーカーも、事後調査時点より音量を下げて使用している。					

表4-4 振動に係る環境保全措置の実施状況

	評価書で検討した保全措置	実施状況
資	来店者等に対し、駐車時におけるアイドリング	昨今、エコドライブは一般的になっていること
材	や急発進・急加速・空ぶかしを行わない等、エ	から、改めて来店者に協力を促すようなことは
製	コドライブへの取組み、可能な限り振動低減へ	行っていないが、駐車場に電気自動車の充電設
品:	の協力を促す。	備を設置し、振動の低減を図っている。
人等		(写真4-6参照)
\mathcal{O}	通勤や事業活動における人の移動に際しては、	ヨドバシカメラ店舗・事務所の従業員は、公共
運	できるだけ公共交通機関を活用するとともに、	交通機関以外による通勤は禁止している。
搬	近距離移動に際し、徒歩や自転車での移動に努	また、テナント及びオフィスとの入居時契約に
輸送	める。	おいては、従業員の通勤に公共交通機関を使用
~		するよう条件付けしている。
	荷捌き場などの適切な駐車スペースを確保す	荷捌き車両などの駐車スペースを適切に確保し
	る。	ている。
		(写真4-8参照)
	来店者に対しホームページ等により鉄道等の公	ホームページには、鉄道等の公共交通機関によ
	共交通機関の利用を促すとともに、来店客車両	るアクセス方法、来店者用駐車場への案内経路
	がスムーズに来店できるよう駐車場への案内経	について掲載しており、公共交通機関の利用促
	路の周知をホームページ、売り出しチラシ等で	進、駐車場へのスムーズな入庫を図っている。
	行う。また、駐車場出入口には、交通整理員を	また、荷捌き車両出入口に警備員を配置してい
	適切に配置することにより、歩行者等の安全確	るほか、来店客の多い土曜・日曜・祝日の午前
	保に努めるとともに、繁忙時には、周辺交差点	10時から午後8時まで、来店客用駐車場等に交通
	にも誘導員を配置することで、渋滞発生の防止	誘導員を配置し、歩行者等の安全確保に努めて
	を図る。	いる。
		(写真4-11参照)

表4-5 水象に係る環境保全措置の実施状況

	評価書で検討した保全措置	実施状況					
工作物等の	地層の不連続性や地下水の流動による影響等、 何らかの特別な理由で地下水位への影響が生じ た場合は、関係機関との協議を踏まえ、適切な 対策を講ずる。	現時点では、地下水位への影響は生じていない。					
現現	透水性舗装をできる限り計画する。	バスベイをはじめ、本事業の計画建築物周囲の 歩道には透水性舗装を行った。					
	雨水浸透枡の採用に努める。	計画地内は、本事業実施前も既に全面アスファルト舗装されていたことから、本事業の実施による雨水浸透状況の変化はないと考え、雨水浸透枡は採用しなかった。					

表4-6 電波障害に係る環境保全措置の実施状況

	評価書で検討した保全措置	実施状況
工作物等の	電波障害の受信障害は生じないと予測された が、受信設備の違いや何らかの特別な理由で受 信障害が発生した場合は、適切な障害防止対策 を講ずる。	現時点では、電波受信に関する苦情等は寄せられてない。
出現	工事中においては、クレーン等による一時的な 影響が発生する可能性が考えられるが、その影 響は計画建築物に比べて小規模であると考えら れる。なお、工事中のクレーン未使用時におい ては、ブームを電波到来方向に考慮して、電波 障害の起こりにくい方向に向ける等、周辺への 影響を最小限に抑えるよう努める。	工事中において、電波受信に関する苦情等は寄せられなかった。

表4-7 景観に係る環境保全措置の実施状況

	評価書で検討した保全措置	実施状況
工作物等の出現	杜の都仙台の玄関口にふさわしい景観形成を図るため、周辺建築物との連続性を考慮して、建築物の形態、色彩、建築設備、屋外広告物に十分に配慮する計画とする。特に外壁については、自然石を多用した風格と格調高い外観とした。	計画地周辺の建築物との形態・意匠の調和や連続性に配慮して、高さを約56mに抑え、外壁については、色彩に配慮して自然石を多用するとともに、3階部分はピロティ形式のファサードとした。また、南側の壁面についても外壁のデザイン的な統一性や連続性を持たせるため、下部まで揃えるようにした。 外壁の広告物については、景観に配慮した色彩のものとした。 (写真4-1~3参照)
	ペデストリアンデッキがある3階・4階部分は歩行者の通路となることから、アーチ型の外観として商業施設としての賑わいの演出を図る。	アーチ型とはしなかったものの、外壁については、色彩に配慮して自然石を多用するとともに、3階部分はピロティ形式のファサードとした。 (写真4-1参照)
	屋外設備機器は、なるべく駅前広場側ではなく 線路側に配置するとともに、ルーバー等により 外部から見えないようにする。	設備機器については、その配置や外壁の仕様等を工夫し、周辺から直接視認されないように線路側に配置するなどした。また、計画建築物内の駐車場についても、外壁により周辺から視認されないよう配置した。 (写真4-4参照)

表4-8 廃棄物等に係る環境保全措置の実施状況

	表4-8 廃棄物等に係る環境	見保全措置の実施状況						
	評価書で検討した保全措置	実施状況						
施設の稼働(商業施設等)	従業員及び利用者等に対するごみ減量化の啓発 を行い、ごみの分別回収を徹底し、再資源化率 の増大に努める。	従業員食堂において、ごみの分別回収を実施している。また、ヨドバシカメラ事務所においては、事務所内での使用にとどめる範囲内、かつ、個人情報や機密情報の記載がないものに限り、使用済み用紙を裏紙(一度印刷したコピー用紙等の裏面)として使用し、資源の有効活用を図っており、これらにより再資源化率の増大に努めている。						
		撮影日: 令和7年5月27日						
		写真4-21 ごみの分別回収						
	供用後の資材・製品・機械等を調達・使用する 場合には、環境負荷の低減に資する物品等とす るように努める。	供用後の資材・製品・機械等を調達・使用する 場合には、環境負荷の低減に資する物品等とす るように努めている。						
	従業員及び利用者等に対する水利用量削減・節水の啓発を行い、水利用量の削減に努める。	自動水栓・節水型便器等、節水型衛生器具を設置していることから啓発までは行っていないが、過剰な水の使用は抑えられ、利用量の削減につながっている。						
	トイレ、洗面、手洗い用水は節水型衛生器具を 設置する計画とする。	トイレ、洗面、手洗い用水は節水型衛生器具を 設置している。						
	テナント業者に対して、賃貸契約条件に排水処 理設備の管理徹底を付し、余剰汚泥発生の抑制	廃食用油等は公共下水道に放流することのない よう分別を徹底している。						
	に努める。	また、厨房排水については、油分や残渣を適切 に除去した上で、公共下水道に放流できるよ う、従業員食堂及び飲食店テナントの厨房には グリストラップ(油脂分離阻集器)を設置して いる。						
		さらに、グリストラップには、スカムセーブネット(ごみを回収する目の細かいネット)及び油吸着材の取り付け、定期的な清掃を実施するよう指示しており、細かいごみや油を確実に回収しすることにより、余剰汚泥発生の抑制を図						
		っている。 なお、ビル管理の一環として、ビル内のグリストラップを一括して定期的に清掃している。						

表4-9(1) 温室効果ガス等に係る環境保全措置の実施状況(1)

	評価書で検討した保全措置	実施状況						
資材·製品·人等	来店者等に対し、駐車時におけるアイドリング や急発進・急加速・空ぶかしを行わない等、エ コドライブへの取組み、排出ガス低減への協力 を促す。	昨今、エコドライブは一般的になっていることから、改めて来店者に協力を促すようなことは行っていないが、駐車場に電気自動車の充電設備を設置し、排出ガス低減を図っている。 (写真4-6参照)						
ずの運搬・輸送	通勤や事業活動における人の移動に際しては、 できるだけ公共交通機関を活用するとともに、 近距離移動に際し、徒歩や自転車での移動を促 進する。	ョドバシカメラ店舗・事務所の従業員は、公共 交通機関以外による通勤は禁止している。 また、テナント及びオフィスとの入居時契約に おいては、従業員の通勤に公共交通機関を使用 するよう条件付けしている。						
	荷捌き場などの適切な駐車スペースを確保す る。	荷捌き車両などの駐車スペースを適切に確保している。 (写真4-8参照)						
	来店者に対しホームページ等により鉄道等の公共交通機関の利用を促すとともに、来店客車両がスムーズに来店できるよう駐車場への案内経路の周知をホームページ、売り出しチラシ等で行う。また、駐車場出入口には、交通整理員を適切に配置することにより、歩行者等の安全確保に努めるとともに、繁忙時には、周辺交差点にも誘導員を配置することで、渋滞発生の防止を図る。	ホームページには、鉄道等の公共交通機関によるアクセス方法、来店者用駐車場への案内経路について掲載しており、公共交通機関の利用促進、駐車場へのスムーズな入庫を図っている。また、荷捌き車両出入口に警備員を配置しているほか、来店客の多い土曜・日曜・祝日の午前10時から午後8時まで、来店客用駐車場等に交通誘導員を配置し、歩行者等の安全確保に努めている。 (写真4-11参照)						
施設	熱源には高効率機器を採用し、省エネルギー化 を図る。	熱源には高効率機器を採用し、省エネルギー化 を図っている。						
の稼働(商	冷水・温水は大温度差及び変流量制御を行い、 搬送エネルギーの低減を図る。	冷水・温水は往返温度差を大きく、流量を小さくする大温度差送水に加え、負荷に応じて流量を変動させる変流量制御を採用している。						
岡業施設等)	CO ₂ 濃度による外気導入量制御を行い、外気負荷 の低減を図る。	CO ₂ 濃度による外気導入量制御を行い、外気負荷の低減を図っている。						
等)	可能な限り外気冷房を行い、冷房負荷の低減を 図る。	可能な限り外気冷房を行い、冷房負荷の低減を 図っている。						
	ナイトパージを行い、冷房負荷の低減を図る。	ナイトパージを行い、冷房負荷の低減を図っている。						
	駐車場においてCO濃度による換気量制御を行い、ファン動力の低減を図る。	各階駐車場にCO濃度検出器を設置し、検出した 濃度により換気ファンの換気量制御を行うこと で、ファン動力の低減を図っている。 (写真4-14参照)						
	BEMS等の有効活用により、運用上の無駄の低減 を図る。	BEMSにより、電気及び水道の使用量等のデータを一括で収集しており、日・曜日・月・年単位での使用量の把握や比較等を行い無駄の低減を図っている。						
	二重壁や開口割合の小さい外壁とし、気温変化 等の外乱の影響の小さい建築計画とする。	二重壁や開口割合の小さい外壁とし、気温変化等の外乱の影響の小さい建築計画とした。 (写真4-18参照)						

表4-9(2) 温室効果ガス等に係る環境保全措置の実施状況(2)

	評価書で検討した保全措置	実施状況				
施設の稼働(商業施設等)	建物全体は原則、高効率照明器具の導入を図る。 使用する変圧器は省電力トップランナー (2014)で計画する。 温暖化係数の小さい新冷媒を使用する空調機の 導入を検討する。	原則として、建物全体に高効率照明器具の導入を図っている。また、荷捌き場での照明の点灯50%以下、従業員食堂でのエアコンの適温設定等を促しているほか、オフィスフロアの共用部等は、人が少なくなる20時頃から一部照明を消灯している。(写真4-20参照) 電動機等の電気設備には、可能な限りトップランナー制度適合品を採用した。 評価書時点では、冷媒はR410A(地球温暖化係数2,090)を使用した機器を想定していたが、実際				
	来店者等に対し、駐車時におけるアイドリング	2,000) を使用した機器を採用した。 にはR32 (同675) を使用した機器を採用した。 昨今、エコドライブは一般的になっていること				
施設の稼働	や急発進・急加速・空ぶかしを行わない等、エコドライブへの取組み、排出ガス低減への協力 を促す。	から、改めて来店者に協力を促すようなことは 行っていないが、駐車場に電気自動車の充電設 備を設置し、排出ガス低減を図っている。 (写真4-6参照)				
(駐車場)	通勤や事業活動における人の移動に際しては、 できるだけ公共交通機関を活用するとともに、 近距離移動に際し、徒歩や自転車での移動を促 進する。	ヨドバシカメラ店舗・事務所の従業員は、公共 交通機関以外による通勤は禁止している。 また、テナント及びオフィスとの入居時契約に おいては、従業員の通勤に公共交通機関を使用 するよう条件付けしている。				
	荷捌き場などの適切な駐車スペースを確保する。	荷捌き車両などの駐車スペースを適切に確保している。 (写真4-8参照)				
	来店者に対しホームページ等により鉄道等の公 共交通機関の利用を促すとともに、来店客車両 がスムーズに来店できるよう駐車場への案内経 路の周知をホームページ、売り出しチラシ等で 行う。	ホームページには、鉄道等の公共交通機関によるアクセス方法、来店者用駐車場への案内経路について掲載しており、公共交通機関の利用促進、駐車場へのスムーズな入庫を図っている。				

5. 事後調査計画

5.1 事後調査のスケジュール

評価書提出後の事業計画の変更(工事の延長)により、竣工が令和5年6月1日となったため、 供用後の調査期間は、令和5年6月から令和7年5月までとした。

事後調査のスケジュールは、表5.1-1に示すとおりである。

表5.1-1 事後調査(供用時)のスケジュール

工事(23ヶ月) 工事(23ヶ月) 工事(23ヶ月) 大等の運搬・輸送 大きの運搬・輸送 (商業施設等・駐車場) 大等の運搬・輸送 現 (商業施設等・駐車場) 大等の運搬・輸送 現 (商業施設等・駐車場) 大等の運搬・輸送 (本報施設等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								H	₩₩	==											胚	Η̈́.	#(TF 400	(
23ヶ月) 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1	K K	工事完了検証					mt ==			外構工事		横断通路		十一年	<u> </u>	拉篮		振動						景観	廃棄物等	温室効果ガスミ	事後調沓報告
	# E	 	#T	草	準備工事	量工	切梁・桟橋工事	掘削工事	躯体工事	鉄骨工事	仕上工事		試掘・山留工事	掘削・埋戻工事	躯体工事	・人等の運搬・		資材・製品・人等の運搬・輸送	施設の稼働(商業施設等・駐車場)	資材・製品・人等の運搬・輸送	工作物の出現	工作物の出現	工作物の出現	工作物の出現	工作物の出現	工作物の出現	施設の稼働(商業施設等)	施設の稼働(商業施設等・ 資材・製品・人等の運搬・	書の提出(存在・供用後)
≲∖ ¸ ╏▊▍▐▊▎▀▎▕▗▕▗▕▗▎▗▍▐▅▎▀▎▐▗▘▗▕▗▕▗▗▗▗▗▗▗▗▗▗▗▗▗▗	w 小																												
	2 3 4	1																											
4	숙제4(20 <u>.</u> 5 6 7	1							ł						I														
4	6										ı															_			
今 数 4 (2022) 世	11 12	Н							I		ı																		
今 * 14 4 (2022) 注 ・ 2 4 5 6 7 8 9 10 11 1	1 2 3	-									ł																		-
今 数 4 (2022) 世	令和5(2(4) 4 5 6		H	I							I																		
会 数 4 (2022) 年 (2022) 年 (202	6																				I								
○ 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 12 1 12 1 12 1 12 1 12 1 1	10 11 12																				I								
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 2 3	-																			I								
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	学和6(2 4 5 6																												
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 1 2 3 4 5 6 7 8 9 10 11 12 1 12 1 12 1 12 1 12 1 12 1 1	6																										ł		
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7																										ł		
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 7 8 9 10 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3																										ł		
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 2 3 4 5 10 11 12 1 1 1 2 3 4 5 10 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	学和J7(202 4 5 6																										ł		
9 His (2002) ## 9 His (2002) ## 1	7 2	-																											

5.2 今回実施した事後調査の項目、手法、調査地域及び期間

本報告書では、令和5年6月から令和7年5月までの供用後による影響を対象として実施した事 後調査結果を報告する。

今回実施した事後調査の項目、方法、調査地域及び期間は、表5.2-1~11に示すとおりである。

表5.2-1 事後調査(大気質)の内容等

_	1			
	調査項目	調査方法	調査地域等	調査期間・頻度等
	施設関連車両の走 行に係る二酸化窒 素及び交通量	現地調査の方 法に準拠する (簡易法)。	調査地域は予測地域と同様とする。調査地点は施設関連車両による環境負荷が大きいと予測される以下の4地点(測定高さ3m)とする(図6.1-1参照)。 No.1市道東八番丁小田原(その3)線No.3市道新寺通線 No.4市道愛宕上杉2号線 No.5市道榴岡2号線	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 ・二酸化窒素 令和6年6月 8日間連続×1回 ・交通量 休日1回 24時間
	施設関連車両に係 る車両台数	駐車場記録の 確認並びに必 要に応じてヒ アリング調査 を実施する。	NO.317 垣福岡2号線 調査地域は計画地内とする。	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月
供用による影響	施設(駐車場)の稼働に係る以下の項目の把握・二酸化窒素・浮遊粒子状物質・風点・	現地調査の方法に変法のであるである。	調査地域は予測地域と同様とする。調査地域は予測地域と同様とする。調査地点は計画地内、保全対象(民家)及びペデストリアンデッキ上の各1地点とする(図6.1-1参照)。なお、最大着地濃度出現地点で調査を実施する計画であったが、測定機器の設置ができなかったことから、前述の計画地内調査地点に統合した(p.63参照)・公定法:計画地内1地点二酸化窒素(測定高さ1.5m)浮遊粒子状物質(測定高さ3.0m)風向・風速(測定高さ10m)・簡易法:保全対象(民家)1地点、ペデストリアンデッキ上 1地点二酸化窒素(測定高さ3m)	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月 7日間連続×1回(公定法) 8日間連続×1回(簡易法)
	施設関連車両及び 施設の稼働(重ね合わせ)に係る以下の項目の把握	現地調査の方 法に準拠する (簡易法)。	調査地域は予測地域と同様とする。調査地点は保全対象(民家)の1地点(測定高さ3m)とする(図6.1-1参照)。	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月
	・二酸化窒素			8日間連続×1回

評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。

注)評価書時点では、熱源としてガスの使用を計画していたため、「施設(商業施設等)の稼働」の事後調査も実施する計画であったが、事業計画の変更により使用しないこととなったため、施設の稼働に係る事後調査は駐車場のみ実施した。

表5.2-2 事後調査(騒音)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
	施設関連車両の走 行に係る騒音レベ ル及び交通量	現地調査の方 法に準拠する。	調査地域は予測地域と同様とし、調査 地点は施設関連車両による影響を予 測した4地点(測定高さ1.2m)とする (図6.2-1参照)。 No.1市道東八番丁小田原(その2)線 No.3市道新寺通線 No.4市道愛宕上杉2号線 No.5市道榴岡2号線	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月 休日1回 24時間連続測定
	施設関連車両に係る車両台数	駐車場記録の 確認がじてヒ アリング調 を実施する。	調査地域は計画地内とする。	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月 休日(24時間)
供用による影響	施設の稼働(商業施設等・駐車場)に係る騒音レベル	現地調査の方法に準拠する。	調査地域は予測地域と同様とする。調査地点は室外設備機器による騒音レベル最大値出現地点、駐車場の稼働による騒音レベル最大値出現地点1地点、スピーカーによる騒音レベル1地点(直近敷地境界)、保全対象(民家)1地点及びペデストリアンデッキ上1地点とする(図6.2-1参照)。なお、最大値出現地点においては、計画地外の屋外設備機器等が近接していたため、調査地点を移動した(p.74参照)。保全対象(民家)は高さ1.2m及び4.2mで測定し、その他の地点では1.2mのみ測定した。	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月 休日1回 24時間連続測定
	施設関連車両及び 施設の稼働(重ね合わせ)に係る騒	現地調査の方法に準拠する。	調査地域は予測地域と同様とする。調査地点は保全対象(民家)の1地点(測定高さ1.2m及び4.2m)とする(図	調査時期は、計画建築物が定常の稼働状態となる時期とする。
	音レベル		6.2-1参照)。	令和6年6月 休日1回 24時間連続測定

評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。

表5.2-3 事後調査(振動)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
供用による影響	施設関連車両の走 行に係る振動レベ ル及び交通量	現地調査の方 法に準拠する。	調査地域は予測地域と同様とする。調査地点は施設関連車両による影響を予測した4地点とする(図6.2-1参照)。 No.1市道東八番丁小田原(その2)線 No.3市道新寺通線 No.4市道愛宕上杉2号線 No.5市道榴岡2号線	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月 休日1回 24時間連続測定
影響	施設関連車両に係る車両台数	駐車場記録の 確認応じじて アリング調 を実施する。	調査地域は計画地内とする。	調査時期は、計画建築物が定常 の稼働状態となる時期とする。 令和6年6月 休日(24時間)

評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。

表5.2-4 事後調査(水象)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
存在による影響	工作物の出現による地下水位の変化	地下水位観測 及び設計図書 を整理する。	調査地域は計画地内として、調査地点は計画地内の1地点とする(図6.4-1参照)。	調査時期は、工事完了後、一定 期間が経過した時期までとす る 令和5年6月~令和6年5月

表5.2-5 事後調査(地盤沈下)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
存在による影響	工作物の出現による沈下量の変化	水準測量結果 及び設計図書 を整理する。	調査地域は計画地内として、調査地点 は既存建築物の存在を考慮し、6地点 とする(図6.5-1参照)。	調査時期は、工事完了後とする。 令和6年6月

表5.2-6 事後調査(電波障害)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
存在による影響	テレビ電波の受信 状況	電波測定車を用いた現地調査とする。	調査地点は、予測地点と同じ6地点と する(図6.6-2参照)。	調査時期は、工事完了後とする。 令和5年7月

表5.2-7 事後調査(日照阻害)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
存在による影響	冬至日における日 影の状況	施基 基間 日間	調査地域は、冬至日に計画建築物の日 影が及ぶ地域とする。	調査時期は、工事完了後とする。 令和5年12月

表5.2-8 事後調査(風害)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
存在による影響	工作物等の出現に 伴う風向・風速	風向・風速計に よる測定とす る。	調査地域は予測範囲と同様とし、調査地点は供用後の歩行者区間となることが測定される2地点(地上1.5m及びペデストリアンデッキ上)とする(図6.8-1参照)。	調査時期は、本事業及び仙台駅 東口開発計画(現JR仙台イーストゲートビル)の工事完了後から1年間とする。 令和5年7月~令和6年6月

表5.2-9 事後調査(景観)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
存在による影響	工作物等の出現に 伴う眺望の変化の 状況	設計 現地で 要査る。 主要からによ いの ままり ままり いの は ままり に は いる は は は は は は は り は り に り に り に り に り に り	調査地域及び調査地点は、現地調査及び予測地点と同じ10地点とする(図6.9-1参照)。	調査時期は、本事業及び仙台駅 東口開発計画(現沢仙台イーストゲートビル)の工事完了後の 落葉期及び着葉期とする。 落葉期:令和6年1月 着葉期:令和6年8月

表5.2-10 事後調査 (廃棄物等)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
供用による影響	施設の稼働に伴う 以下の項目の把握 ・廃棄物発生量 ・水利用(地下水 利用含む)	年度別廃棄物 発生量、水利用 等の実績集計 を整理する。	調査地域は計画地内とする。	調査時期は、計画建築物の事業 活動が定常になると想定され る時期とする。 令和6年6月~令和7年5月

表5.2-11 事後調査(温室効果ガス等)の内容等

	調査項目	調査方法	調査地域等	調査期間・頻度等
供用による影響	施設関連車では (する) を できない できない できない できない できない できない できない できない	電及リ燃に化のス推た置係理力びン料基炭他の定、実るすが軽等が素の排す境施資るで、といいで、といいでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	調査地域は計画地内とする。	調査時期は、計画建築物の事業 活動が定常になると想定される時期とする。 令和6年6月~令和7年5月

6. 事後調査の結果及び予測結果の検証

6.1 大気質

6.1.1 事後調査の方法等及び結果

(1)調查項目

施設関連車両(来店客車両を含む)の走行及び施設(駐車場)の稼働による大気質への影響を把握するため、計画建築物が定常の稼働状態となる時期(供用開始後1年後)における以下の項目について調査を行った。なお、施設(商業施設等)の稼働による影響は、評価書時点では熱源としてガスの使用を計画していたため予測を行ったが、事業計画の変更により使用しないこととなったため、事後調査は行わないこととした(p.27「1.5.8 熱源・空調設備計画」参照)

- ・二酸化窒素濃度
- · 浮遊粒子状物質濃度
- ・ 気象の状況 (風向・風速、気温・湿度)
- ・交通量

(2)調査期間等

調査期間は、表6.1-1に示すとおりである。

	調査項目	調査期間		
施設関連車両	二酸化窒素濃度 (簡易法)	令和6年6月6日(木)12時~6月14日(金)12時 8日間連続		
の走行	交通量	令和6年6月8日(土)10時~6月9日(日)10時 24時間連続		
施設の稼働 (駐車場)	二酸化窒素濃度 (公定法・簡易法) 浮遊粒子状物質濃度 (公定法) 気象の状況 (風向・風速、気温・湿度)	公定法 令和6年6月7日(金)0時~6月13日(木)24時 7日間連続 簡易法 令和6年6月6日(木)12時~6月14日(金)12時 8日間連続 令和6年6月7日(金)0時~6月13日(木)24時 7日間連続		

表6.1-1 調査期間

(3)調査地点

調査地点は、表6.1-2及び図6.1-1に示すとおりである。調査にあたっては、評価書の予測地点及び第1回変更による再予測地点を前提としつつ、供用後の計画地内、計画地周辺及び保全対象施設の状況を勘案して測定機器の設置が可能な場所で行った。その結果、施設の稼働による影響の調査地点のうち、最大着地濃度出現地点(駐車場の稼働)は、第1回変更による再予測において計画地内南端の既存立体駐車場付近であったが、既存立体駐車場とJR線路の擁壁に挟まれた場所であり、測定機器の設置ができなかったため、北北西側約100mのNo.A地点(計画地内)に統合して調査を実施した。No.A地点は道路の行き止まりであり、通過する車両は隣接するレンタカー店への出入りのみと少ないものの、計画建築物南側の2ヶ所の平面駐車場の間に位置し、平面駐車場及びその南側の既存立体駐車場への車両の出入りがあることから、駐車場の稼働による影響は把握できると考える。また、保全対象(民家)におい

ては、その敷地内及び敷地前の歩道の面積が狭いこと、ペデストリアンデッキ上においては、 仙台駅東口直近であり歩行者等の往来が非常に多いことから、測定機器(1.5m四方ほどの小 屋)を約一週間設置した場合の歩行者等の安全確保が難しく、浮遊粒子状物質の調査は実施 できなかった。

表6.1-2 大気質調査地点及び調査項目

		二酸化窒素		浮遊粒子	気象		
調査項目	調査地点		簡易法	状物質	風向・ 風速	気温・ 湿度	交通量
施設関連車両の走行に よる	No.1 (市道東八番丁小田原(その3)線) ¹	-		-	-	-	
・二酸化窒素濃度	No.3(市道新寺通線)	-		-	-	-	
	No.4(市道愛宕上杉2号線)	-		-	-	-	
	No.5(市道榴岡2号線)	-		-	-	-	
施設(駐車場)の稼働	No.A 計画地内 ²				-		-
による ・二酸化窒素濃度	保全対象(民家) ³	-		-	-	-	-
・浮遊粒子状物質濃度	ペデストリアンデッキ上	-		-		-	-

¹ 評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に 鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。なお、 設置地点の状況が変わり、評価書で設定していた事後調査地点(予測地点と同一)では二酸化窒素の測定機器が設置できなか ったことから、当初より約80m北側の地点で事後調査を実施した。

² 最大着地濃度出現地点(図6.2-1参照)に測定機器の設置ができなかったため、No.A地点に統合することとした。

³ No.5地点と同一地点である。

注) 交通量調査は、騒音・振動調査と併せて行った(図6.2-1参照)。

(4)調査方法

1)大気質

調査方法は表6.1-3に、使用した測定機器は表6.1-4に示すとおりである。

二酸化窒素(窒素酸化物)の測定は「二酸化窒素に係る環境基準について」(昭和53.7.11 環告38)に、浮遊粒子状物質の測定は「大気汚染に係る環境基準について」(昭和48.5.8環告25)に定める方法に準拠した。

調査項目 サンプリング高度 測定方法 オゾンを用いる化学発光法に基づく「大気中の窒素 酸化物自動計測器」(JISB7953)により、一酸化窒 公定法 地上高1.5m 素、二酸化窒素及び窒素酸化物の濃度を1時間単位で 連続測定した。 二酸化窒素 (窒素酸化物) パッシブサンプラーを用いて測定した。ろ紙(捕集 エレメント)は24時間(前日12時から当日12時まで 地上及びペデストリ 簡易法 捕集)ごとに交換し、室内でフローインジェクショ アンデッキ上高1.5m ン分析法により二酸化窒素を分析した。 線吸収法に基づく「大気中の浮遊粒子状物質自動 計測器」(JISB7954)により、浮遊粒子状物質濃度 浮遊粒子状物質 地上高3.0m を1時間単位で連続測定した。また、分粒装置により

表6.1-3 大気質の調査方法

表6.1-4 使用測定機器

粒径10 µ mを超える粒子状物質を除去した。

測定項目	測定機器	メーカー・型式	測定範囲
二酸化窒素 (窒素酸化物)	窒素酸化物自動計測器	紀本電子工業(株) NA-623	0 ~ 10ppm
浮遊粒子状物質	浮遊粒子状物質自動計測器	紀本電子工業(株) SPM-613	0 ~ 5mg/ m³

2)気象の状況

調査方法は表6.1-5に、使用した測定機器は表6.1-6に示すとおりである。 風向及び風速の測定は「地上気象観測指針」(気象庁)に定める方法に準拠した。

表6.1-5 風向・風速の調査方法

測定項目	測定方法	測定高度			
風向及び風速	プロペラ型風向風速計を設置し、10分間の移動平均値を連続測定した。	ペデストリアンデッキ上約1m (地上面から約10m高)			
気温・相対湿度	温湿度計を設置し、瞬時値を連続測定した。	地上面から約1.5m			

表6.1-6 使用測定機器

測定項目	測定機器	メーカー・型式	測定範囲	
風向	20000000000000000000000000000000000000	ノースワン(株)	0 ~ 355 °	
風速	弱風用風向風速計	KDC-S04-05103	$0 \sim 40$ m/s	
気温	海油麻料	(株)ティアンドデイ	-25 ~ 75	
相対湿度	温湿度計	TR-72wb	0~99%	

3)交通量

車種別交通量は、目視またはビデオカメラの録画データを用いて、毎正時から1時間ごと の時間帯別、車種別、方向別に自動車台数を測定した。

車種分類は、表6.1-7に示す3車種分類とし、目視またはビデオカメラの録画データを用い てプレートを確認し、区分した。

表6.1-7 車種別交通量の車種分類

車種分類 細分類		対応するプレート番号			
大型車	普通貨物自動車 特殊用途自動車 乗合自動車	大型番号標(縦220mm×横440mm) 中型番号標(縦165mm×横330mm) 1,10~19及び100~199 8,80~89及び800~899 2,20~29及び200~299			
小型車	軽乗用車 乗用車 軽貨物車 小形貨物車 貨客車 特殊車	中型番号標(縦165mm×横330mm) 3,30~39及び300~399 5,50~59及び500~599 7,70~79及び700~799 4,40~49及び400~499 8,80~89及び800~899			
二輪自動車 「扇動機付自転車		小型番号標(縦125mm×横230mm)			

特殊自動車の中で、改造前の自動車(乗用車、小型貨物車)と同程度の大きさのものは小型車にカウントするものとする。 例:パトカー、小型キャンピングカー等

(5)調査結果

1)施設関連車両の走行

ア.二酸化窒素濃度

施設関連車両の走行による二酸化窒素の調査結果は、表6.1-8に示すとおりである。

二酸化窒素の期間平均値は0.005~0.006ppm、日平均値の最高値は0.008~0.009ppmであ り、測定期間中の日平均値は、全ての地点で環境基準及び仙台市定量目標を達成していた。

表6.1-8 二酸化窒素濃度調査結果(簡易法)

調査地点	有効測定 日数	期間 平均値 (ppm)	日平均値 の最高値 (ppm)	日平均 0.04pp 0.06pp		日平均値が 0.06ppm超		
地黑	(日)			日数 (日)	割合 (%)	日数 (日)	割合 (%)	
No.1	8	0.005	0.008	0	0.0	0	0.0	
No.3	8	0.006	0.009	0	0.0	0	0.0	
No.4	8	0.005	0.008	0	0.0	0	0.0	
No.5	8	0.005	0.008	0	0.0	0	0.0	

【環境基準】

1時間値の1日平均値が0.04ppmから0.06ppmまでのゾーン内又はそれ以下であること。 【仙台市定量目標】

1時間値の1日平均値が0.04ppm以下。

イ.交通量

調査結果は、表6.1-9に示すとおりであり、自動車類の交通量は、5,248~23,743台、大型車混入率は2.5~4.6%であった。

表6.1-9 車種別交通量調査結果

単位:台/24時間(大型車混入率のみ%)

調査地点	大型車	小型車	自動車類合計 = +	二輪車	大型車混入率 /
No.1	447	9,344	9,791	325	4.6
No.3	681	15,188	15,869	529	4.3
No.4	843	22,900	23,743	855	3.6
No.5	133	5,115	5,248	295	2.5

2)施設の稼働(駐車場)

ア.二酸化窒素濃度

二酸化窒素の調査結果は表6.1-10に、風向別平均濃度は図6.1-2に示すとおりである。 公定法の期間平均値は0.005ppm、日平均値の最高値は0.006ppmであり、簡易法の期間平 均値は0.004~0.006ppm、日平均値の最高値は0.007~0.009ppmであった。

測定期間中の日平均値は、全ての地点で環境基準及び仙台市定量目標を達成していた。 また、風向別平均濃度は、風向による明確な関連はみられなかった。

表6.1-10 二酸化窒素濃度調査結果(公定法、簡易法)

地点	測定 日	測定 日数		期間 平均値 (ppm)	日平均値 の最高値 (ppm)	1時間値 の最高値 (ppm)	日平均値が 0.04ppm以上 0.06ppm以下		日平均値が 0.06ppm超	
		(日)					日数 (日)	割合 (%)	日数 (日)	割合 (%)
No . A	公定法	7	168	0.005	0.006	0.013	0	0.0	0	0.0
	簡易法	8	-	0.004	0.007	-	0	0.0	0	0.0
保全対象(民家)	簡易法	8	-	0.005	0.008	-	0	0.0	0	0.0
ペデストリアンデッキ上	簡易法	8	-	0.006	0.009	-	0	0.0	0	0.0

【環境基準】

1時間値の1日平均値が0.04ppmから0.06ppmまでのゾーン内又はそれ以下であること。

【仙台市定量目標】

¹時間値の1日平均値が0.04ppm以下。

注)-は、未測定を示す。

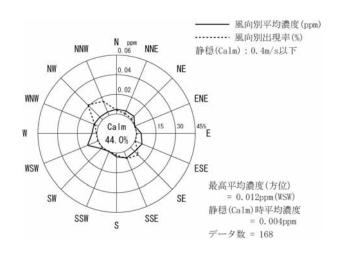


図6.1-2 二酸化窒素の風向別平均濃度(No.A)

イ.浮遊粒子状物質濃度

浮遊粒子状物質の測定結果は表6.1-11に、風向別平均濃度は図6.1-3に示すとおりである。 測定期間中の浮遊粒子状物質の期間平均値は0.017mg/m³、日平均値の最高値は0.021mg/m³、1時間値の最高値は0.030mg/m³であった。

測定期間中の1時間値及び日平均値は、環境基準及び仙台市定量目標を達成していた。 また、風向別平均濃度は、風向による明確な関連はみられなかった。

1時間値が 日平均値が 日平均値の 期間 1時間値の 測定 測定 0.20mg/m³超 0.10mg/㎡超 調査 日数 時間 平均值 最高値 最高値 地点 時間数 割合 時間数 割合 (日) (時間) (mg/m^3) (mg/m^3) (mg/m^3) (時間) (時間) (%) (%) No.A 0.017 0.021 0.030 0.0 168 0.0

表6.1-11 浮遊粒子状物質濃度調査結果

【環境基準及び仙台市定量目標】

1時間値の1日平均値が0.1mg/m³以下であり、かつ、1時間値が0.20mg/m³以下であること。

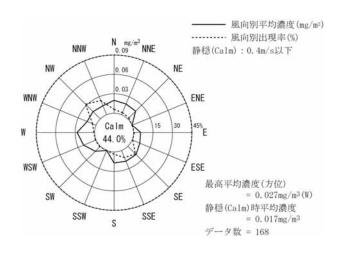


図6.1-3 浮遊粒子状物質の風向別平均濃度(No.A)

ウ.気象の状況

風向・風速の調査結果は、表6.1-12及び図6.1-4に示すとおりであり、平均風速が0.5m/s、最多風向が北西(16.1%) 静穏率が44.0%であった。最大風速は1.4m/sであり、その時の風向は南東であった。

また、気温・湿度の調査結果は、表6.1-13に示すとおりであり、平均気温が21.6 、平均湿度が76%であった。

日平均值 測定 測定 最大風速(m/s)と 最多風向 1時間値(m/s) 調査 静穏率 時間 (m/s)その時の風向 日数 (16方位)と 地点 (%) (時間) 平均 最高 最低 最高 最低 (16方位) 出現率(%) (日) 7 0.5 1.4 0.6 0.4 1.4 (SE) NW (16.1) 44.0 No.A 168 0.0

表6.1-12 風向・風速の測定結果

備考:風速が0.4m/s以下の風向をCalm(静穏)とした。

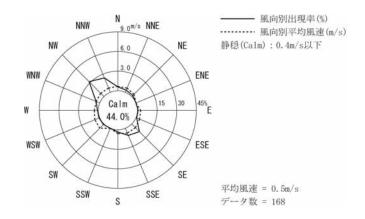


図6.1-4 風配図

気温(湿度(%) 測定 測定 調査 日数 時間 1時間値 日平均值 1時間値 日平均值 地点 (時間) (日) 最高 平均 平均 最高 最低 最高 最低 最高 最低 最低 7 168 21.6 31.3 23.9 19.3 48 No.A 15.1 76 79 72

表6.1-13 気温・湿度の測定結果

3)施設関連車両の走行及び施設の稼働(駐車場)による複合影響

施設関連車両の走行及び施設の稼働(重ね合わせ)による二酸化窒素濃度は、「2)施設の 稼働」の調査結果における保全対象地点の調査結果を用いた。

調査結果は表6.1-14に示すとおりであり、測定期間中の期間平均値は0.005ppm、日平均値の最高値は0.008ppmであり、環境基準及び仙台市定量目標を達成していた。

表6.1-14 二酸化窒素濃度調査結果

地点	抽占 測定 口数 「	測定 時間		日平均値 の最高値	1時間値 の最高値	日平均値が 0.04ppm以上 0.06ppm以下		日平均値が 0.06ppm超		
	方法	(日)	(時間)	(ppm)	(ppm)	(ppm)	日数	割合	日数	割合
							(日)	(%)	(日)	(%)
保全対象(民家)	簡易法	8	-	0.005	0.008	-	0	0.0	0	0.0

【環境基準】

1時間値の1日平均値が0.04ppmから0.06ppmまでのゾーン内又はそれ以下であること。

【仙台市定量目標】

1時間値の1日平均値が0.04ppm以下。

6.1.2 予測結果と事後調査結果の比較

(1)施設関連車両の走行

1)二酸化窒素濃度

予測結果と事後調査結果の比較は、表6.1-15に示すとおりである。

No.1地点は予測地点と事後調査地点が異なることから、No.3~5地点で比較すると、事後調査結果は予測結果を0.0065~0.0078ppm下回っていた。

「2)交通量」に示すとおり、予測条件と比較し、各地点とも自動車類合計台数が少なかったためと考えられる。

表6.1-15 予測結果と事後調査結果の比較

単位:ppm

調査地点	予測結果	事後調査結果
No.1(市道東八番丁小田原(その3)線)	0.0115	0.005
No.3(市道新寺通線)	0.0129	0.006
No.4(市道愛宕上杉2号線)	0.0128	0.005
No.5(市道榴岡2号線)	0.0118	0.005

評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。なお、事後調査地点は、予測地点の北側約80mであることから、比較は参考とする。

2)交通量

予測条件と事後調査結果の比較は、表6.1-16に示すとおりである。

自動車類合計台数は、予測条件と比較し、No.1地点では4,353台、No.3地点では8,009台、No.4地点では11,932台、No.5地点では6,563台減少していた。

自動車類合計台数に占める割合は、予測条件と比較し、No.1地点で大型車が2.2ポイント No.3地点で小型車が2.4ポイント、No.4地点で小型車が0.4ポイント、No.5地点で大型車が1.9 ポイント増加していた。

なお、本事業関連車両のうち、大型車はNo.3~5を走行していない。

注)-は、未測定を示す。

注)予測結果は年平均値、事後調査結果は期間平均値である。

表6.1-16 予測条件及び事後調査時の交通量

単位:台/日

		予測条件		事後調査結果		
調査地点	車種分類					
		()内:本事業関連車	四(内数)	調査結果	予測条件からの増減	
	大型車	335	(125)	447	+112	
No.1	小型車	13,809	(3,574)	9,344	-4,465	
NO. I	自動車類合計	14,144	(3,699)	9,791	-4,353	
	自動二輪車	314	(0)	325	+11	
	大型車	1,599	(0)	681	-918	
No.3	小型車	22,279	(2,788)	15,188	-7,091	
NO.3	自動車類合計	23,878	(2,788)	15,869	-8,009	
	自動二輪車	492	(0)	529	+37	
	大型車	1,415	(0)	843	-572	
No. 4	小型車	34,260	(3,156)	22,900	-11,360	
No.4	自動車類合計	35,675	(3,156)	23,743	-11,932	
	自動二輪車	1,144	(0)	855	-289	
	大型車	74	(0)	133	+59	
No E	小型車	11,737	(1,329)	5,115	-6,622	
No.5	自動車類合計	11,811	(1,329)	5,248	-6,563	
	自動二輪車	340	(0)	295	-45	

大型車は大型車+中型車、小型車は小型貨物車+乗用車とした。また、自動車類合計は、それら全ての合計とした。

(2)施設の稼働(駐車場)

1)二酸化窒素濃度

予測結果と事後調査結果の比較は、表6.1-17に示すとおりであり、参考値(2)との比較を除き、事後調査結果は予測結果を0.005~0.0061ppm下回っていた。

測定高さ 予測結果 1 事後調査結果 調査地点 (m) (ppm) (ppm) 最大着地濃度出現地点 0.005^{-2} 1.5 0.0118 (駐車場の稼働) 保全対象(民家) 1.5 0.0111 0.005 1.5 3 ペデストリアンデッキ上 0.0110 0.006

表6.1-17 予測結果と事後調査結果の比較

- 1 第1回変更による再予測結果を示す(「事後調査報告書(工事中その1)ヨドバシ仙台第1ビル計画」(令和5年4月、株式会社ヨドバシホールディングス)参照)
- 2 No.A地点の結果であり、参考値とする。
- 3 地表面からの高さではなく、ペデストリアンデッキ上における高さである。
- 注) 予測結果は年平均値、調査結果は期間平均値である。

2)浮遊粒子状物質濃度

予測結果と事後調査結果の比較は、表6.1-18に示すとおりである。

予測地点では、浮遊粒子状物質濃度測定のための機器が設置できず(p.63「(3)調査地点」参照)、事後調査が実施できなかった。そのため、予測した3地点とは設置環境が異なるものの、参考値として、No.A地点(図6.1-1参照)の事後調査を併せて示す。No.A地点は道路の行き止まりであり、通過する車両は隣接するレンタカー店への出入りのみと少ないものの、計画建築物南側の2ヶ所の平面駐車場の間に位置し、平面駐車場及びその南側の既存立体駐車場への車両の出入りがあることから、駐車場の稼働による影響は把握できると考える。

調査地点	測定高さ (m)	予測結果 ¹ (ppm)	事後調査結果 (ppm)				
最大着地濃度出現地点 (駐車場の稼働)	1.5	0.0141	0.017 2				
保全対象(民家)	1.5	0.0140	1				
ペデストリアンデッキ上	1.5 ³	0.0140	-				
No.A(計画地内)	1.5	1	0.017				

表6.1-18 予測結果と事後調査結果の比較

(3)施設関連車両の走行及び施設の稼働(駐車場)による複合影響

予測結果と事後調査結果の比較は表6.1-19に示すとおりであり、平均値は、事後調査結果が予測結果を0.0085ppm下回っていた。

	測定	予測結果	₹ (ppm)	事後調査結	課 (ppm)				
	予測・調査地点	高さ	年平均値	日平均値の	期間平均値	日平均値	環境基準		
		(m)	꾸구성	年間98%値	知可士巧匠	の最高値			
	保全対象(民家)	1.5	0.0135	0.0272	0.005	0.008	日平均値が0.04ppm 以上0.06ppm以下		

表6.1-19 合成結果と事後調査結果の比較(二酸化窒素)

6.1.3 追加の環境保全措置の検討

予測地点と同一の地点で事後調査を実施できなかった地点があったものの、その他の事後 調査の結果は予測結果を下回り、環境基準及び仙台市定量目標も達成していることから、本 事業の供用による大気質への影響は、事業者の実行可能な範囲で回避・低減されていると評 価する。そのため、追加の環境保全措置は行わない。

¹ 第1回変更による再予測結果を示す(「事後調査報告書(工事中その1)ヨドバシ仙台第1ビル計画」(令和5年4月、株式会社ヨドバシホールディングス)参照)。

² No.A地点の結果であり、参考値とする。

³ 地表面からの高さではなく、ペデストリアンデッキ上における高さである。

注) 予測結果は年平均値、事後調査結果は期間平均値である。

6.2 騒音

6.2.1 事後調査の方法等及び結果

(1)調査項目

施設関連車両(来店客車両を含む)の走行及び施設(商業施設等及び駐車場)の稼働による騒音への影響を把握するため、計画建築物が定常の稼働状態となる時期(供用開始後1年後)における以下の項目について調査を行った。

- ・騒音レベル(道路交通騒音、施設稼働騒音)
- ・交通量

(2)調査期間等

調査期間は、表6.2-1に示すとおりである。

表6.2-1 調査期間

調査項目		調査期間		
施設関連車両の走行	騒音レベル (道路交通騒音) 交通量	令和6年6月8日(土)10時~6月9日(日)10時 24時間連続		
施設の稼働 (商業施設等及び駐車場)	騒音レベル (施設稼働騒音)	스커뮤니 [미) (포마/)		

(3)調査地点

調査地点は、表6.2-2及び図6.2-1に示すとおりである。また、施設の稼働(商業施設等)による影響の調査にあたり、計画建築物周囲付近、計画建築物南側の平面駐車場及び計画地内南端の既存立体駐車場におけるスピーカーの位置を確認し、その結果は、図6.2-2(1)~(3)に示すとおりである。

調査にあたっては、評価書及び第1回変更による再予測地点での予測地点を前提としつつ、 供用後の計画地内、計画地周辺及び保全対象施設の状況を勘案して測定機器の設置が可能な 場所で行った。その結果、最大値出現地点(商業施設等の稼働)は、第1回変更による再予測 において計画地内西側敷地境界の中央付近であったが、西側にJR駅レンタカーの洗車施設、 JR仙台駅の屋外設備機器やJR仙台駅の屋上駐車場(24時間営業)等が隣接しており、それら の騒音の影響があったことから、調査地点を最大値出現地点の北側約48mの地点に移動して 実施した。

表6.2-2 騒音調査地点

調査項目	調査地点			
	No.1(市道東八番丁小田原(その2)線) ¹			
施設関連車両の走行による ・騒音・振動レベル ・交通量	No.3(市道新寺通線)			
	No.4(市道愛宕上杉2号線)			
	No.5(市道榴岡2号線)			
施設の稼働による	保全対象(民家) 2			
・騒音・振動レベル	最大値出現地点(商業施設等の稼働) ³			
	最大値出現地点 (駐車場の稼働)			
	(商業施設等の稼働及び			
	駐車場の稼働との複合)			
	スピーカー直近の敷地境界			
	ペデストリアンデッキ上			

¹ 評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。

- 2 No.5地点と同一地点である。
- 3 周辺設備等からの騒音の影響があるため、調査地点を移動した。

図6.2-2(1) スピーカー位置 (1階)

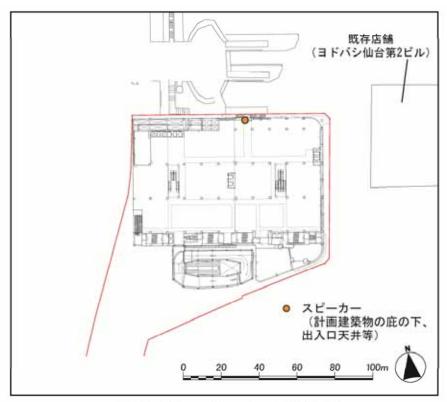


図6.2-2(2) スピーカー位置(2階)

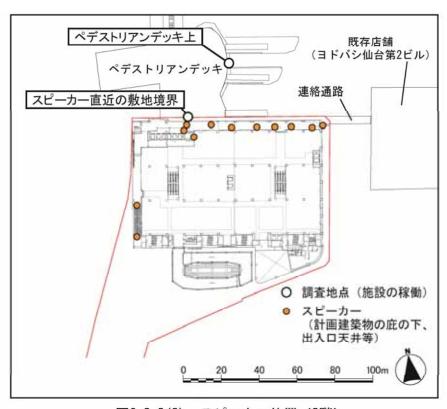


図6.2-2(3) スピーカー位置(3階)

(4)調査方法

1)騒音レベル(道路交通騒音、施設稼働騒音)

調査方法は表6.2-3に、使用した測定機器は表6.2-4に示すとおりである。

騒音レベルの測定は、JIS Z 8731「環境騒音の表示・測定方法」に基づき実施した。

表6.2-3 騒音の調査方法

調査項目	測定方法	マイクロホン高
騒音レベル	調査地点に騒音計を設置し、現況騒音を測定した。測定は、周波数補正がA特性、動特性がFASTで行った。	地上高1.2m , 4.2m

保全対象(民家)は1.2m及び4.2mで測定し、その他の地点では1.2mのみ測定した。なお、ペデストリアンデッキ上は、地表面からではなくデッキ上の歩道から1.2mとした。

表6.2-4 使用測定機器

測定項目	測定機器	メーカー・型式	測定範囲
騒音レベル	普通騒音計	リオン(株)・NL-42、NL-42A	A特性:25~138dB

2)交通量

調査方法は、「6.1 大気質」に示したとおりである(p.67参照)。

(5)調査結果

1)施設関連車両の走行

ア.騒音レベル(道路交通騒音)

調査結果は表6.2-5に示すとおりであり、昼間は60~69dB、夜間は57~66dBであった。No.4 地点の夜間において環境基準を達成していなかったが、同地点の夜間においては、評価書 時点(本事業着工前)の現地調査において既に環境基準を達成していなかった。それ以外 の地点、時間帯は、環境基準を達成していた。

主な騒音源は、車両の走行音であった。

表6.2-5 騒音調査結果 (等価騒音レベル: ∠Aeq)

単位:dB(A)

+ 匝:db(//)							
調査地点	騒音し (時間帯 <i>0</i>	ノベル D平均値)	環境	基準			
	昼間	夜間	昼間	夜間			
No . 1	63	58	65以下	60以下			
No.3	69	63	70以下	65以下			
No.4	68	66	70以下	65以下			
No.5	60	57	65以下	60以下			

[「]騒音に係る環境基準」(平成10年9月30日、環境庁告示第64号)における以下の地域に該当する。

No.1,5:「道路に面する地域の騒音に係る環境基準(B地域のうち2車線以上の車線を有する道路に面する地域及びC地域のうち車線を有する道路に面する地域)」

No.3,4:「幹線交通を担う道路に近接する空間の騒音に係る環境基準」

注1) 昼間:6~22時、夜間:22~6時

注2)網掛けは、環境基準を達成していないことを示す。

イ.交通量

調査結果は、「6.1 大気質」に示したとおりである(p.68参照)。

2)施設の稼働(商業施設等及び駐車場)

ア.騒音レベル(施設稼働騒音)

調査結果は表6.2-6(1)~(2)に示すとおりであり、等価騒音レベルは、昼間は60~70dB、夜間は52~57dBであった。最大値出現地点(商業施設等の稼働)及びペデストリアンデッキ上おいて昼間、夜間ともに環境基準を達成していなかったが、それ以外の地点、時間帯は、環境基準等を達成していた。また、時間率騒音レベルは、スピーカー直近の敷地境界において昼間は73dB、夕方は72dB、夜間は55dBであり、昼間の制限値70dBを超過していた。最大値出現地点(商業施設等の稼働)における昼間は68dB、夕方は62dB、夜間は55dBであり、いずれの時間帯においても規制基準を超過していた。

最大値出現地点(商業施設等の稼働)の昼間においては、調査地点の直近や計画建築物南側の2ヶ所の平面駐車場に予測時点の計画になかったスピーカーを設置しており、そこからの宣伝放送、JR仙台駅の屋外設備機器の稼働、JR仙台駅の屋上駐車場(24時間営業)への車両の走行等の影響があったと考えられる。さらに、本事業においては、景観への影響に配慮し、屋外設備機器を線路側に配置していることから、それによる騒音への影響があった可能性も考えられる。夜間においては、調査時間帯にはヨドバシカメラ店舗は営業しておらず、宣伝放送も休止していることから、JR仙台駅の屋外設備機器の稼働、JR仙台駅の屋上駐車場への車両の走行、鉄道騒音、計画建築物南側の平面駐車場での車両の出入り等の影響が考えられる。また、ペデストリアンデッキ上の昼間においては、歩行者等の往来が非常に多い場所であり、調査地点の北側約150mの他社ビル壁面に設置された大型ビジョンから宣伝放送も流れていることから、それらの影響があったと考えられる。夜間においては、ヨドバシカメラ店舗及び大型ビジョンからの宣伝放送は休止していることから、人の往来や調査日当日に行われていた路上ライブ等による影響と考えられる。

また、計画時点では「騒音レベルが比較的低い設備機器を配置する」としており、それに基づいた予測結果は環境基準等を達成していた。実際にも同等の設備機器を採用したことから、本事業の設備機器単独による騒音については環境基準等を達成しているものと考えられる。

なお、事後調査の実施後に一度、計画地南端の既存立体駐車場近隣の住民よりスピーカーの音量に関する苦情が寄せられたため、音量を下げている。現在も音量は下げたままであり、下げた後に苦情は寄せられていない。また、供用開始後は3階店舗出入口付近で2台のスピーカーを使用しており、供用開始約1年後の調査時点においても2台使用していたが、騒音への影響に配慮し、ペデストリアンデッキ寄りの1台は現在、ほぼ聞こえない程度にまで音量を下げている。また、3階店舗出入口付近で使用中のもう1台のほか、計画建築物周囲や計画建築物南側の平面駐車場のスピーカーも、調査時点より音量を下げて使用している。

表6.2-6(1) 騒音調査結果 (等価騒音レベル: L_{Aeq})

单位:dB(A)

調査地	騒音し (時間帯の	/ベル)平均値)	環境基準等		
		昼間	夜間	昼間	夜間
保全対象(民家)	測定高さ1.2m	60	57	65以下	60以下
	測定高さ4.2m	61	57	65以下	60以下
最大値出現地点(商業施設等の稼働)		63	54	60以下	50以下
最大値出現地点(駐車場の稼働)		62	55	65以下	60以下
スピーカー直近の敷地境界		70	56	70以下	-
ペデストリアンデッキ上		61	52	60以下	50以下

- 以下の基準等及び地域に該当する。
- ・保全対象(民家),最大値出現地点(駐車場の稼働):
 - 「騒音に係る環境基準」(平成10年9月30日、環境庁告示第64号)における「道路に面する地域の騒音に係る環境基準(B地域のうち2車線以上の車線を有する道路に面する地域及びC地域のうち車線を有する道路に面する地域)」
- ・最大値出現地点(商業施設等の稼働:昼間、夜間),ペデストリアンデッキ上:
 - 騒音に係る環境基準」(平成10年9月30日、環境庁告示第64号)における「道路に面する地域を除く地域の騒音に係る環境基準」
- ・スピーカー直近の敷地境界:
 - 「仙台市公害防止条例施行規則」(平成8年3月19日、仙台市)における「拡声機使用の制限」
- 注1) 昼間:6~22時、夜間:22~6時
- 注2)網掛けは、環境基準等を達成していないことを示す。

表6.2-6(2) 騒音調査結果 (時間率騒音レベル: ム5)

単位:dB(A)

調査地点	騒音レベル (時間帯の平均値)			規制基準等		
	昼間	夕方	夜間	昼間	夕方	夜間
最大値出現地点(商業施設等の稼働)	68	62	55	60	55	50
スピーカー直近の敷地境界	73	72	55	70	-	-

- 以下の基準等及び地域に該当する。
- ・最大値出現地点(商業施設等の稼働):
 - 「騒音規制法」(昭和43年法律第98号)における「第3種区域」
- ・スピーカー直近の敷地境界:
 - 「仙台市公害防止条例施行規則」(平成8年3月19日、仙台市)における「拡声機使用の制限」
- 注1) 昼間:8~19時、夕方:19~22時、夜間:22~6時
- 注2)網掛けは、規制基準等を達成していないことを示す。なお、拡声器の使用は、8~19時に制限されているため、 それ以外の時間帯に制限値は設定されていない。
- 3)施設関連車両の走行及び施設の稼働による複合影響

施設関連車両の走行及び施設の稼働(重ね合わせ)による騒音は、「2)施設の稼働」の調査結果における保全対象地点の調査結果を用いた。

調査結果は表6.2-7に示すとおりである。昼間は60~61dB、夜間は57dBであり、ともに環境基準を達成していた。

表6.2-7 騒音調査結果

調査地点	測定高さ (m)	騒音レベル (時間帯の平均値) (dB(A))		時間帯の平均値)	
		昼間	夜間	昼間	夜間
保全対象(民家)	1.2	60	57	65以下	60以下
	4.2	61	57	65以下	60以下

[「]騒音に係る環境基準」(平成10年9月30日、環境庁告示第64号)における以下の地域に該当する。 道路に面する地域の騒音に係る環境基準(B地域のうち2車線以上の車線を有する道路に 面する地域及びC地域のうち車線を有する道路に面する地域)」

注)昼間:6~22時、夜間:22~6時

6.2.2 予測結果と事後調査結果の比較

(1)施設関連車両の走行

1)騒音レベル(道路交通騒音)

予測結果と事後調査結果の比較は、表6.2-8に示すとおりであり、全ての地点、時間帯において、事後調査結果は予測結果を1~3dB下回っていた。

「2)交通量」に示すとおり、予測条件と比較し、各地点とも自動車類合計台数が少なかったためと考えられる。

表6.2-8 予測結果と事後調査結果の比較

単位:dB

調査地点	予測	結果	事後調査結果	
神里地思	昼間	夜間	昼間	夜間
No.1(市道東八番丁小田原(その2)線)	64	59	63	58
No.3(市道新寺通線)	70	64	69	63
No.4(市道愛宕上杉2号線)	69	67	68	66
No.5(市道榴岡2号線)	63	59	60	57

評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。

2)交通量

予測条件と事後調査結果の比較は、表6.2-9に示すとおりである。

自動車類合計台数は、予測条件と比較し、No.1地点では4,353台、No.3地点では8,009台、No.4地点では11,932台、No.5地点では6,563台減少していた。

自動車類合計台数に占める割合は、予測条件と比較し、No.1地点で大型車が2.2ポイントNo.3地点で小型車が2.4ポイント、No.4地点で小型車が0.4ポイント、No.5地点で大型車が1.9ポイント増加していた。

なお、本事業関連車両のうち、大型車はNo.3~5を走行していない。

表6.2-9 予測条件及び事後調査時の交通量

単位:台/日

卸本地上	ᆂᄹᄭᄳ	予測条件		事	後調査結果
調査地点 車種分類 		()内:本事業関連車	画(内数)	調査結果	予測条件からの増減
	大型車	335	(125)	447	+112
No. 4	小型車	13,809	(3,574)	9,344	-4,465
No.1	自動車類合計	14,144	(3,699)	9,791	-4,353
	自動二輪車	314	(0)	325	+11
	大型車	1,599	(0)	681	-918
No.3	小型車	22,279	(2,788)	15,188	-7,091
110.3	自動車類合計	23,878	(2,788)	15,869	-8,009
	自動二輪車	492	(0)	529	+37
	大型車	1,415	(0)	843	-572
No.4	小型車	34,260	(3,156)	22,900	-11,360
NO.4	自動車類合計	35,675	(3,156)	23,743	-11,932
	自動二輪車	1,144	(0)	855	-289
	大型車	74	(0)	133	+59
No E	小型車	11,737	(1,329)	5,115	-6,622
No.5	自動車類合計	11,811	(1,329)	5,248	-6,563
	自動二輪車	340	(0)	295	-45

大型車は大型車+中型車、小型車は小型貨物車+乗用車とした。また、自動車類合計は、それら全ての合計とした。

(2)施設の稼働(商業施設等及び駐車場)

1)騒音レベル(施設稼働騒音)

予測結果と事後調査結果の比較は、表6.2-10に示すとおりである。

予測においては、商業施設等の稼働による影響及び駐車場の稼働による影響それぞれ単独での騒音レベルを予測したが、事後調査においては、それぞれ単独での測定はできないことから、商業施設等及び駐車場の稼働による複合的な影響の予測結果との比較を行った。

事後調査結果は予測結果を4~24dB上回っていた。

最大値出現地点(施設の稼働による複合的な影響)及びペデストリアンデッキ上においては、「6.2.1 事後調査の方法及び結果 (5)調査結果 2)施設の稼働(商業施設等及び駐車場)ア.騒音レベル(施設稼働騒音)」(p.80~81参照)に示した事後調査時の状況から、予測結果を上回ったと考える。

保全対象(民家)においては、当該地点は3車線の市道榴岡2号線に面しており、評価書時点(本事業着工前)の現地調査でも、休日の測定高さ1.2mにおいて昼間に63dB、夜間に59dBであったことから、道路交通等、本事業の施設の稼働以外の要因により、予測結果を上回ったと考えられる。

表6.2-10 予測結果と事後調査結果の比較

調査地点	測定高さ	予測結果((dB(A)) 1	事後調査結果(dB(A))	
調旦地思	(m)	昼間	夜間	昼間	夜間
最大値出現地点(施設の稼働 による複合的な影響) ²	1.2	58	42	62	55
保全対象(民家)	1.2	46	33	60	57
床主刘家 (氏家 <i>)</i>	4.2	46	34	61	57
ペデストリアンデッキ上	1.2 3	45	28	61	52

- 1 第1回変更による再予測結果を示す(「事後調査報告書(工事中その1)ヨドバシ仙台第1ビル計画」(令和5年4月、株式会社ヨドバシホールディングス)参照)。
- 2 予測地点:最大値出現地点(施設の稼働による複合的な影響) 事後調査地点:最大値出現地点(駐車場の稼働)とした。事後調査地点は、予測地点の東側約10mの地点である。
- 3 地表面からではなく、ペデストリアンデッキ上の歩道からの高さである。
- 注1) 昼間:6~22時、夜間:22~6時
- 注2)騒音レベルは、予測結果、事後調査結果とも時間帯の平均値を示す。

(3)施設関連車両の走行及び施設の稼働による複合影響

予測結果と事後調査結果の比較は、表6.2-11に示すとおりであり、測定高さ1.2m及び4.2 mにおいて、昼間及び夜間ともに、事後調査結果は予測結果を1~3dB下回っていた。

表6.2-11 予測結果と事後調査結果の比較

調査地点	_{囲本地上} 測定高さ		(dB(A))	事後調査結果(dB(A))		
神 直地思	(m)	昼間	夜間	昼間	夜間	
(P. A. H. A. C.	1.2	63	59	60	57	
保全対象(民家) 	4.2	63	58	61	57	

注1) 昼間:6~22時、夜間:22~6時

注2)騒音レベルは、予測結果、事後調査結果とも時間帯の平均値を示す。

6.2.3 追加の環境保全措置の検討

事後調査の結果、道路交通騒音については、1地点の夜間において環境基準を達成していなかったが、同地点の夜間においては、評価書時点(本事業着工前)の現地調査において既に環境基準を達成していなかった。また、施設稼働騒音については、2地点において昼間、夜間ともに環境基準を達成していなかったが、本事業において設置したスピーカーからの宣伝放送、JR仙台駅の屋外設備機器、近隣の他社ビル壁面の大型ビジョンからの宣伝放送等の影響があったと考えられる。さらに、本事業においては、景観への影響に配慮し、屋外設備機器を線路側に配置していることから、それによる騒音への影響があった可能性も考えられる。

また、計画時点では「騒音レベルが比較的低い設備機器を配置する」としており、それに基づいた予測結果は環境基準等を達成していた。実際にも同等の設備機器を採用したことから、本事業の設備機器単独による騒音については環境基準等を達成しているものと考えられる。

なお、事後調査の実施後に一度、計画地南端の既存立体駐車場近隣の住民よりスピーカーの音量に関する苦情が寄せられたため、音量を下げている。現在も音量は下げたままであり、下げた後に苦情は寄せられていない。また、供用開始後は3階店舗出入口付近で2台のスピーカーを使用しており、供用開始約1年後の調査時点においても2台使用していたが、騒音への影響に配慮し、ペデストリアンデッキ寄りの1台は現在、ほぼ聞こえない程度にまで音量を下げている。また、3階店舗出入口付近で使用中のもう1台のほか、計画建築物周囲や計画建築物南側の平面駐車場のスピーカーも、調査時点より音量を下げて使用している。

予測結果との比較では、道路交通騒音は予測結果を下回っていたが、施設稼働騒音は予測結果を上回っていた。施設稼働騒音については、昼間においては、予測条件には含んでいなかった本事業において設置したスピーカーからの宣伝放送、JR仙台駅の屋外設備機器の稼働、JR仙台駅の屋上駐車場(24時間営業)への車両の走行、近隣の他社ビル壁面の大型ビジョンからの宣伝放送、計画地周辺の道路交通等の影響があったと考えられる。夜間においては、JR仙台駅の屋外設備機器の稼働、JR仙台駅の屋上駐車場(24時間)への車両の走行、鉄道騒音、計画建築物南側の平面駐車場での車両の出入り、路上ライブ、計画地周辺の道路交通等の影響が考えられる。

最大値出現地点(商業施設等の稼働)は、景観への影響に配慮して屋外設備機器を線路側に配置している地点であり、その近辺に保全対象(民家等)は存在していないこと、本事業による施設稼働騒音に対する苦情等への対応策も実施していること、調査後の時点で、本事業において設置したスピーカー全般の音量を下げていること等から、本事業の供用による騒音への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.3 振動

6.3.1 事後調査の方法等及び結果

(1)調查項目

施設関連車両(来店客車両を含む)の走行による振動への影響を把握するため、計画建築物が定常の稼働状態となる時期(供用開始後1年後)における以下の項目について調査を行った。

・振動レベル(道路交通振動)

(2)調査期間等

調査期間は、表6.3-1に示すとおりである。

表6.3-1 調査期間

調査項	ĪΕ	調査期間		
***	振動レベル (道路交通振動)	令和6年6月8日(土)10時~6月9日(日)10時		
	交通量	24時間連続		

(3)調査地点

調査地点は、「6.2 騒音」に示したとおりである(p.74~76参照)。

(4)調査方法

1)振動レベル(道路交通振動)

調査方法は表6.3-2に、使用した測定機器は表6.3-3に示すとおりである。 振動レベルの測定は、JIS Z 8735「振動レベル測定方法」に基づき実施した。

表6.3-2 振動の調査方法

調査項目	測定方法	測定高さ
振動レベル	調査地点に振動レベル計を設置し、現況振動を 測定した。測定は、測定方向が鉛直方向、振動 感覚補正が鉛直振動特性で行った。	地盤高

表6.3-3 使用測定機器

測定項目	測定機器	メーカー・型式	測定範囲
振動レベル	振動レベル計	リオン(株)・VM-55	25 ~ 129dB

2)交通量

調査方法は、「6.1 大気質」に示したとおりである(p.67参照)。

(5)調査結果

1)施設関連車両の走行

ア.振動レベル(道路交通振動)

調査結果は表6.3-4に示すとおりである。時間帯の平均値は、昼間は25未満~36dB、夜間は25未満~29dBであった。また、1時間値の最大値は、昼間は25未満~36dB、夜間は25未満~33dBであった。すべての地点、時間帯において、要請限度を下回っていた。

主な振動源は車両の走行であったが、No.4地点においては、それに加え、地下鉄の走行もあったと考えられる。

表6.3-4 振動調査結果(時間率振動レベル: ᠘ν₁0)

単位: dB(A)

				一世・45(ハ)		
		振動し	要請限度			
調査地点	時間帯の平均値		時間帯の平均値 1 時間値の最大値		女明	(以)支
	昼間	夜間	昼間	夜間	昼間	夜間
No.1	25未満	25未満	25未満	25未満	70	65
No.3	36	29	36	33	70	65
No.4	30	27	31	29	70	65
No.5	29	26	30	30	70	65

[「]振動規制法施行規則」(昭和51年11月10日、総理府令第58号)第12条における道路交通振動の要請限度(第 二種区域)

イ.交通量

調査結果は、「6.1 大気質」に示したとおりである(p.68参照)。

6.3.2 予測結果と事後調査結果の比較

(1)施設関連車両の走行による影響

1)振動レベル(道路交通振動)

予測結果と事後調査結果の比較は、表6.3-5に示すとおりであり、全ての地点、時間帯において、事後調査結果は予測結果と同値か1~9dB以上下回っていた。

「2)交通量」に示すとおり、予測条件と比較し、各地点とも自動車類合計台数が少なかったためと考えられる。

表6.3-5 予測結果と事後調査結果の比較

単位:dB

調査地点	予測	結果	事後調査結果	
<u>調量地</u> 無	昼間	夜間	昼間	夜間
No.1(市道東八番丁小田原(その2)線)	34	31	25未満	25未満
No.3(市道新寺通線)	40	33	36	33
No.4(市道愛宕上杉2号線)	32	31	31	29
No.5(市道榴岡2号線)	37	35	30	30

評価書(平成28年1月提出)で「東八番丁中江(その2)線」と記載していたが、東八番丁中江(その2)線は、平成24年9月に鉄砲町榴ケ岡(その9)線を境に北は東八番丁小田原(その3)線、南は東八番丁小田原(その2)線に分かれていた。

注)昼間:8~19時、夜間:19~8時

注)予測結果、事後調査結果ともに、1時間値の最大値を示す。

2)交通量

予測条件と事後調査結果の比較は、表6.3-6に示すとおりである。

自動車類合計台数は、予測条件と比較し、No.1地点では4,353台、No.3地点では8,009台、No.4地点では11,932台、No.5地点では6,563台減少していた。

自動車類合計台数に占める割合は、予測条件と比較し、No.1地点で大型車が2.2ポイント No.3地点で小型車が2.4ポイント、No.4地点で小型車が0.4ポイント、No.5地点で大型車が1.9 ポイント増加していた。

なお、本事業関連車両のうち、大型車はNo.3~5を走行していない。

表6.3-6 予測条件及び事後調査時の交通量

単位:台/日

調査地点	車種分類	予測条件		事	後調査結果
神鱼地总	半性刀 規	()内:本事業関連車	両(内数)	調査結果	予測条件からの増減
	大型車	335	(125)	447	+112
No. 1	小型車	13,809	(3,574)	9,344	-4,465
No . 1	自動車類合計	14,144	(3,699)	9,791	-4,353
	自動二輪車	314	(0)	325	+11
	大型車	1,599	(0)	681	-918
No.3	小型車	22,279	(2,788)	15,188	-7,091
NO.3	自動車類合計	23,878	(2,788)	15,869	-8,009
	自動二輪車	492	(0)	529	+37
	大型車	1,415	(0)	843	-572
No.4	小型車	34,260	(3,156)	22,900	-11,360
NO.4	自動車類合計	35,675	(3,156)	23,743	-11,932
	自動二輪車	1,144	(0)	855	-289
	大型車	74	(0)	133	+59
No E	小型車	11,737	(1,329)	5,115	-6,622
No.5	自動車類合計	11,811	(1,329)	5,248	-6,563
	自動二輪車	340	(0)	295	-45

大型車は大型車+中型車、小型車は小型貨物車+乗用車とした。また、自動車類合計は、それら全ての合計とした。

6.3.3 追加の環境保全措置の検討

事後調査の結果、全ての地点、時間帯において予測結果と同値か1~9dB以上下回り、要請限度も下回っていることから、本事業の供用による振動への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.4 水象(地下水)

6.4.1 事後調査の方法等及び結果

(1)調査項目

工作物の出現による水象(地下水)への影響を把握するため、地下水位の変化について調査を行った。

(2)調査期間等

調査期間は、工事完了後の令和5年6月から令和6年5月31日までの工事完了後の1年間とした。

(3)調査地点

調査地点は、図6.4-1に示す計画地内1地点とした。

(4)調査方法

調査方法は、地下水位計による連続観測とし、概ねひと月に1度、データ回収を行った。

(5)調査結果

地下水位の調査結果は表6.4-1に、連続観測結果は図6.4-2に示すとおりであり、図には仙台管区気象台の日降雨量を併せて表示した。

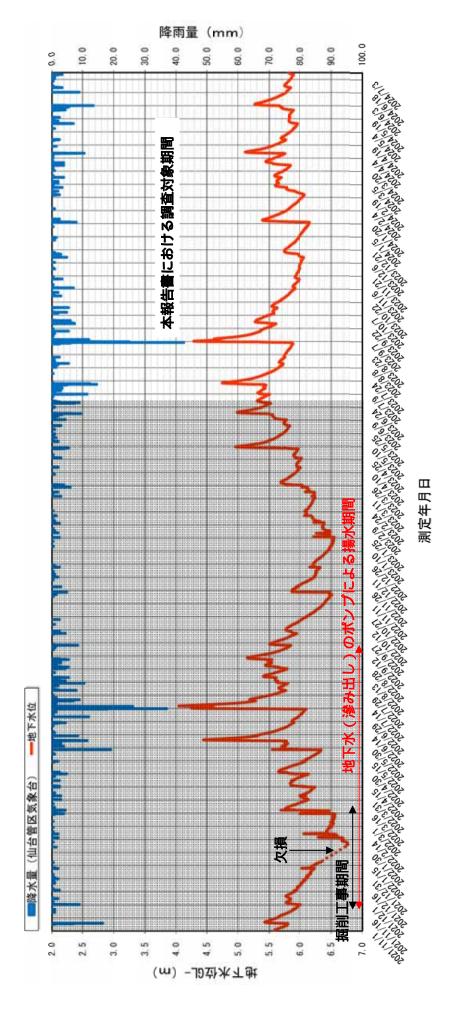

調査期間中の地下水位は、GL-6.15m~-4.29mで推移している。地下水位はほぼ降水量を 反映した変動を示しており、降雨が少ない時期であることを反映し、令和6年1月21日に最低 水位となった。

表6.4-1 地下水位

単位:m

調	查日	水位 GL-	現況からの水位変化	備考
令和3年	11月1日	5.54	-	現況 (測定開始)
令和3年	12月1日	5.92	-0.38	掘削開始
	1月1日	6.12	-0.58	連絡通路部分計画地内掘削
	2月1日			欠損(計画していた測定深度ま
		-	-	で地下水が低下したことから
				測定深度を確保するため再度 調整したことによるもの。)
	3月1日	6.49	-0.95	<u>調定 072 2 2 2 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 </u>
	4月1日	6.11	-0.57	本体棟掘削完了
令和4年	5月1日	5.79	-0.25	
V 18. 1	6月1日	5.73	-0.19	
	7月1日	5.90	-0.36	
	8月1日	5.67	-0.13	
	9月1日	5.44	+0.10	
	10月1日	5.73	-0.19	
	11月1日	6.22	-0.68	
	12月1日	5.97	-0.43	
	1月1日	6.30	-0.76	
	2月1日	6.49	-0.95	
令和5年	3月1日	6.14	-0.60	
Z THO T	4月1日	5.74	-0.20	
	5月1日	5.91	-0.37	
	6月1日	5.82	-0.28	
	7月1日	5.31	+0.23	
	8月1日	5.46	+0.08	
A 10=4	9月1日	5.86	-0.32	日本 1.4
令和5年	9月7日	4.29	+1.25	最高水位
	10月1日	5.29	+0.25	
	11月1日	5.83	-0.29	
	12月1日	5.99	-0.45	
	1月1日 1月21日	5.94 6.15	-0.40 -0.61	最低水位
	2月1日	5.69	-0.15	政队小区
令和6年	3月1日	5.79	-0.15	
₹ 1HUT	4月1日	5.47	+0.07	
	5月1日	5.78	-0.24	
	6月1日	5.70	-0.16	
. /¤+t.l+l-				

:網掛けは、事後調査報告書(工事中その1,2)で報告済みの期間である。

:網掛けは、事後調査報告書(工事中その1,2)で報告済みの期間である。

図6.4-2 地下水位連続観測結果

6.4.2 予測結果と事後調査結果の比較

調査期間中の最低水位は、令和5年1月25日の現況-0.61mであった。調査期間中の地下水位はほぼ降水量を反映した変動を示しており、最低水位の観測も降雨が少ない時期であることを反映していると考えられる。以上のことから、予測結果と同様、工作物の出現による周辺の地下水位への影響は少ないと考えられる。

6.4.3 追加の環境保全措置の検討

事後調査の結果、工作物等の出現による周辺の地下水位への影響は少ないと考えられることから、本事業の供用による水象(地下水位)への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.5 地盤沈下

6.5.1 事後調査の方法等及び結果

(1)調査項目

工作物の出現による地盤の状況を把握するため、地盤の沈下量の変化について調査を行った。

(2)調査期間等

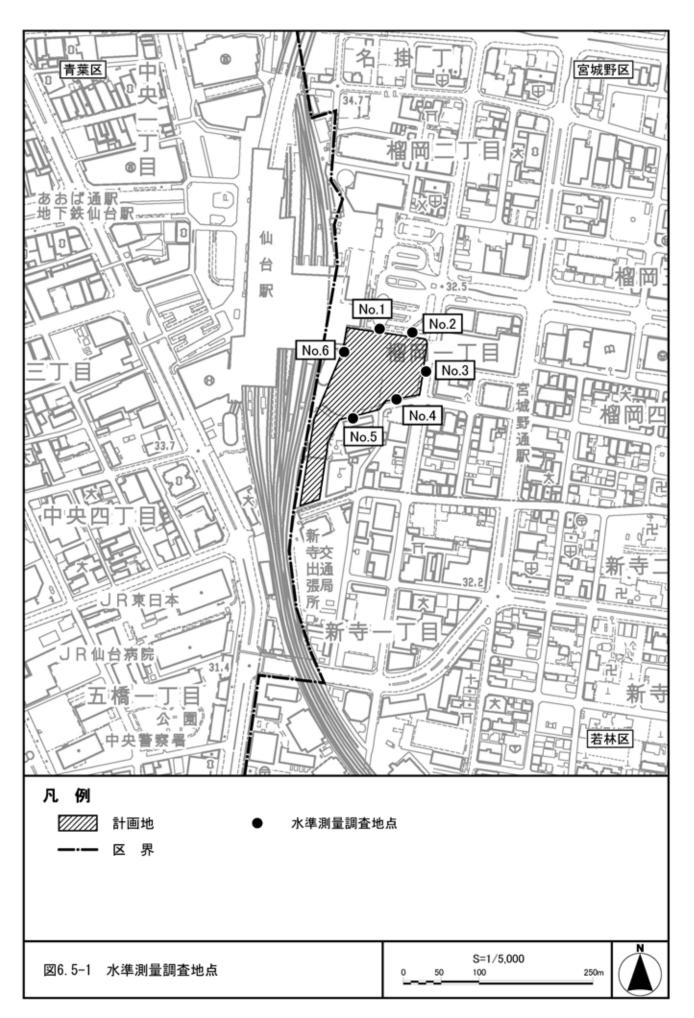
調査日は、工事完了1年後の令和6年6月4日とした。

(3)調査地点

調査地点は、図6.5-1に示す計画地外周の6地点とした。調査地点の状況は、写真6.5-1に示すとおりである。

(4)調査方法

調査方法は、水準測量により行った。


(5)調査結果

水準測量の結果は、表6.5-1に示すとおりであり、掘削工事前の標高は32.08~34.27m、工事完了後(令和5年6月28日)の標高は32.13~34.27m、工事完了1年後の標高は工事完了後と同じ32.13~34.27mであった。

表6.5-1 測量結果

単位:T.P.(m)

地点No.	掘削工事前	工事完了後	工事完了1年後	
1	34.27	34.27	34.27	
2	33.24	33.26	33.26	
3	32.30	32.44	32.44	
4	32.08	32.13	32.13	
5	33.42	33.45	33.45	
6	33.52	33.53	33.53	

注) 地点No.は、図6.5-1に対応する。

写真6.5-1 調査地点の状況(工事完了1年後)

6.5.2 予測結果と事後調査結果の比較

地盤沈下については、計画地及びその周辺の地盤が十分な強度を有する地質であること、また、環境保全措置を実施することから、工作物の出現による影響はないと予測していた。

工事完了後と工事完了1年後との地盤高の比較は、表6.5-2に示すとおりであり、全地点とも標高の変化はなかった。

表6.5-2 予測結果と事後調査結果の比較

単位:T.P.(m)

地点No.	工事完了後	工事完了1年後	標高差
1	34.27	34.27	±0.00
2	33.26	33.26	±0.00
3	32.44	32.44	±0.00
4	32.13	32.13	±0.00
5	33.45	33.45	±0.00
6	33.53	33.53	±0.00

6.5.3 追加の環境保全措置の検討

事後調査の結果、工作物の出現による地盤変状は確認されなかったことから、本事業の供用による地盤への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.6 電波障害

6.6.1 事後調査の方法等及び結果

(1)調査項目

工作物の出現による電波障害の影響を把握するため、計画建築物が建設された時期(工事完了後)における以下の項目について調査を行った。

・テレビ電波の受信状況

(2)調査期間等

調査日は、令和5年7月11日とした。

(3)調査地点

調査地点は図6.6-1に示すとおりであり、評価書で実施した調査・予測地点を前提として、供用後の計画地周辺の状況を勘案して調査が可能な場所で行った。

(4)調査方法

調査方法は、電波測定車により把握した。測定機器は表6.6-1に示すとおりである。

機器名 メーカー 種別 型名 受信アンテナ UHF20素子 AU-20AF 日本アンテナ株式会社 テレビ受信機 15型 シャープ株式会社 LC-15SX7 地上デジタルハイビジョン ユニデン株式会社 DTH110 チューナー 受信特性測定器 スペクトラムアナライザ 株式会社アドバンテスト U3751 増幅器 日本アンテナ株式会社 N-35U

表6.6-1 測定機器

(5)調査結果

受信状況の測定結果は、表6.6-2及び図6.6-2に示すとおりである。

工事完了後におけるデジタル波の受信状況は、調査地点全てにおいて画像評価「 」(正常に受信)であった。

地上デジタル波の障害範囲は、計画地北側にわずかに発生する程度である。計画地北側は駅前広場であり、住居は存在していないことから、計画地周辺の住居への影響は生じていない。

また、衛星放送の障害範囲も計画地北西側から北東側にかけての狭い範囲で発生する程度である。北西側は仙台駅及びホテルメトロポリタンイースト、北側は駅前広場、北東側は東七番丁通りに面する既存店舗からイーストンビルまでの一部の範囲であり、住居は存在していないことから、計画地周辺の住居への影響は生じていない。

仙台局(UHF) NHK NHK 東北 仙台 宮城テレビ 東日本 調査項目 調査地点 総合 教育 放送 放送 放送 放送 17ch 13ch 19ch 21ch 24ch 28ch 画像評価 1 端子電圧 65.9 61.5 62.2 60.3 62.4 62.3 画像評価 2 端子電圧 62.3 61.9 61.3 65.9 62.0 58.1 画像評価 3 端子電圧 72.8 66.2 62.3 66.6 68.1 65.8 画像評価 4 端子電圧 55.1 57.4 57.7 55.2 53.8 62.0 画像評価 5 端子電圧 58.6 59.5 59.2 58.0 63.1 56.4 画像評価 6 端子電圧 61.4 63.2 59.3 57.3 64.8 54.6

表6.6-2 デジタル波画質評価地点数総括表

注)画像評価は、以下に示す3段階評価基準による。

記号	評価基準の内容		
	正常に受信		
	ブロックノイズや画面フリーズあり		
×	受信不能		

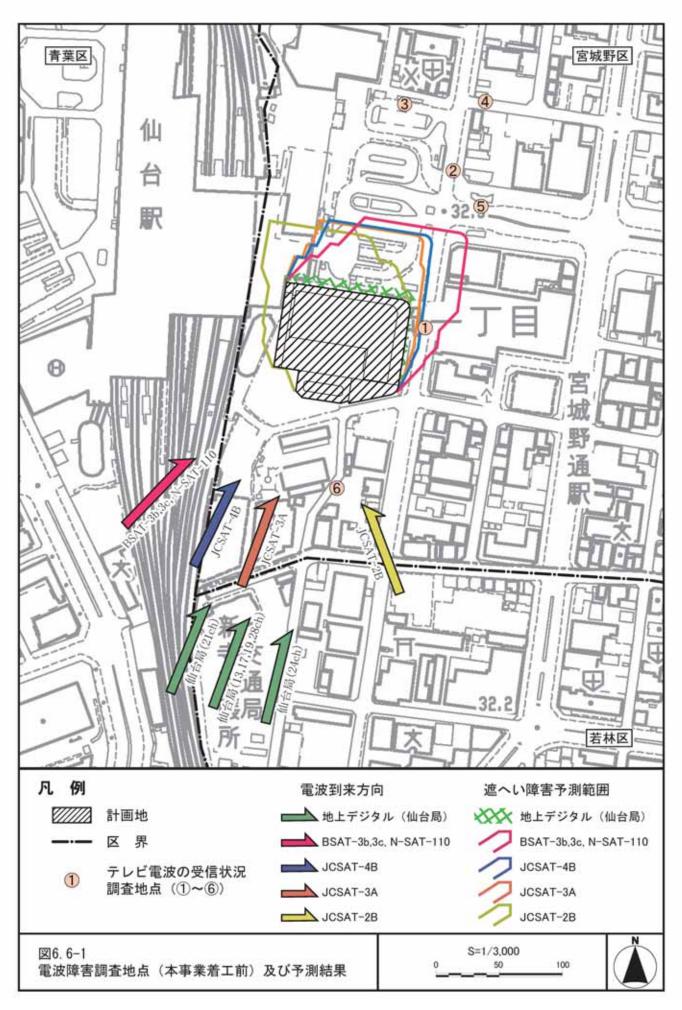
6.6.2 事前調査結果と事後調査結果の比較

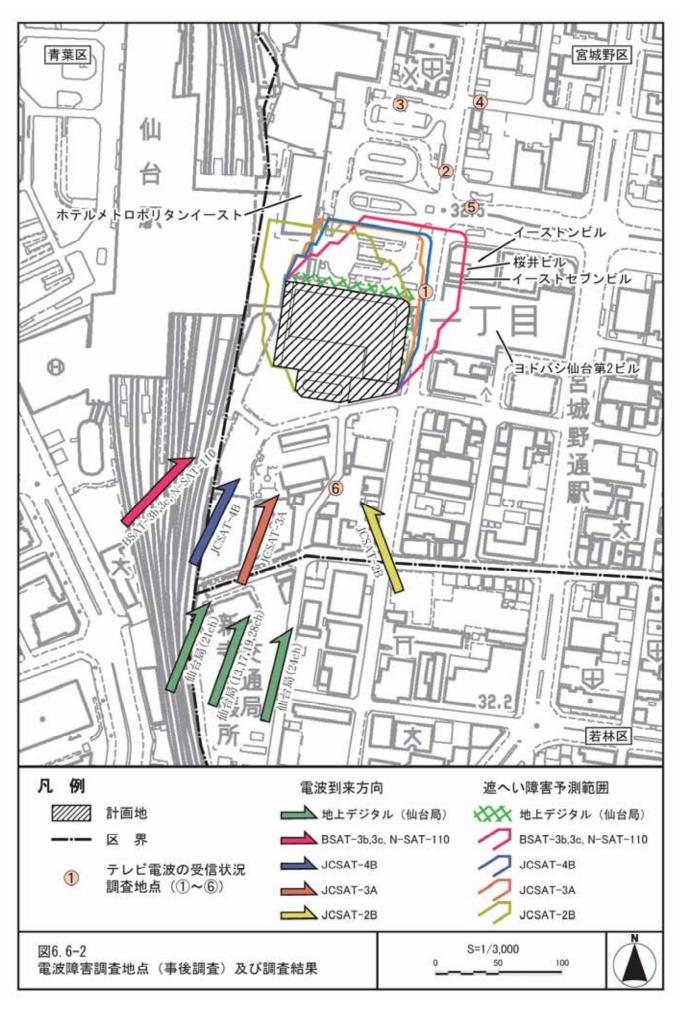
本事業着工前における事前調査結果と事後調査結果の比較は、表6.6-3~4及び図6.6-1~2 に示すとおりである。

電波の受信状況は画像評価「〇」(正常に受信)であり、事前調査結果と同等であった。

表6.6-3 事前調査結果と事後調査結果の比較(デジタル波画質評価)

	調査時期		仙台局(UHF)					
調査 地点		調査項目	NHK 総合	NHK 教育	東北 放送	仙台 放送	宮城テレビ 放送	東日本 放送
			17ch	13ch	19ch	21ch	24ch	28ch
	声兴	画像評価						
4	事前	端子電圧	81.1	80.6	78.4	76.5	70.3	72.9
1	車仫	画像評価						
	事後	端子電圧	65.9	61.5	62.2	60.3	62.4	62.3
	事前	画像評価						
2	尹則	端子電圧	81.0	77.2	72.9	80.9	70.6	71.8
2	事後	画像評価						
	尹仪	端子電圧	61.3	65.9	62.3	62.0	61.9	58.1
	事前	画像評価						
3	尹即	端子電圧	84.0	84.6	80.5	86.5	85.3	79.2
3	事後	画像評価						
		端子電圧	66.6	72.8	68.1	66.2	65.8	62.3
	事前	画像評価						
4	77 111	端子電圧	70.2	71.8	70.2	72.6	64.1	65.8
_	事後	画像評価						
	尹仪	端子電圧	57.4	57.7	55.2	53.8	62.0	55.1
5 -	事前	画像評価						
		端子電圧	72.5	69.9	69.3	69.8	65.2	62.4
	事後	画像評価						
		端子電圧	58.6	59.5	59.2	58.0	63.1	56.4
事前 6 事後	事前	画像評価						
		端子電圧	72.9	73.3	69.0	65.4	72.2	62.2
	事後	画像評価						
	ずる がんし かんし	端子電圧	61.4	63.2	59.3	57.3	64.8	54.6


注) 画像評価は、前ページに示す3段階評価基準による。


表6.6-5 予測結果と事後調査結果の比較 (テレビ電波の受信状況)

調査項目	予測結果	事後調査結果
テレビ電波の受信状況	地上デジタル波の障害範囲は北側に わずかに発生する程度で、北側は駅前広 場であり、電波障害に影響を及ぼす住居 は存在していないことから、影響は生じ ない。衛星放送の障害範囲も北西から北 東に狭い範囲で発生する程度で、北西は 沢仙台東口駅ビル、北側は駅前広場、で 東側は東七番丁通りの道路の範囲で り電波障害に影響を及ぼす住居は存在 していないことから影響は生じない。 したがって、計画建築物の存在によるテレビ電波の住居に及ぼす受信障害の影響はないと予測する。	計画建築物の高さは、評価書時点の約 45mから約54mへと高くなったが、事後 調査の結果、工事完了後におけるデジタル波の受信状況は、正常に受信といるにあった。 地上デジタル波の障害範囲は、計画地 北側にわずかに発生すあり、は同辺のを居は、計画地北側は配合とから、計画地 地北側はことから、計画地 での影響は生じていない。 また、衛星放送の障害範囲も計範囲 である。北東側にから、北東側は外方の影響は生じていない。 また、られ東側にかけれての影響は生があり、北西側は側は東七番であり、北京のである。北方によりによりによりによりにはいる。 である程度である。北西側は川田でのよりにはいまでのがは、北東側は東七番でがは、は、 は駅存らがない。 はいるには、計画建築物の存在にののにないない。 は生じていない。 は生じていない。 は上げてのには、計画建築物の存在にののにないない。 は生じていない。 は生じていない。 は生じていない。 は生じていない。 は生じていない。 は上げって、計画建築物の存在にののにないない。 は生じていない。 は生じていない。 は生じていない。 は上げって、計画建築物の存在にののには、事前調査結果と概ね一致している。

6.6.3 追加の環境保全措置の検討

事後調査の結果、工作物等の出現による周辺の住居への電波障害の影響は生じていないと考えられることから、本事業の供用による電波障害への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.7 日照阻害

6.7.1 事後調査の方法等及び結果

(1)調査項目

工作物の出現による日照阻害の影響を把握するため、計画建築物が建設された時期(工事完了後)における以下の項目について調査を行った。

・冬至日における日影の状況

(2)調査期間等

調査日は、工事完了後の冬至日(令和5年12月22日)一日前の令和5年12月21日とした(以下、この日を「冬至日」と見なす。)。

(3)調査地域等

調査地域は、冬至日頃に計画建築物の日影が及ぶ地域とした。

(4)調査方法

調査方法は、施工図書等を基に時間別日影図及び等時間日影図を作成するとともに計画建築物による日影の状況を踏査により把握した。

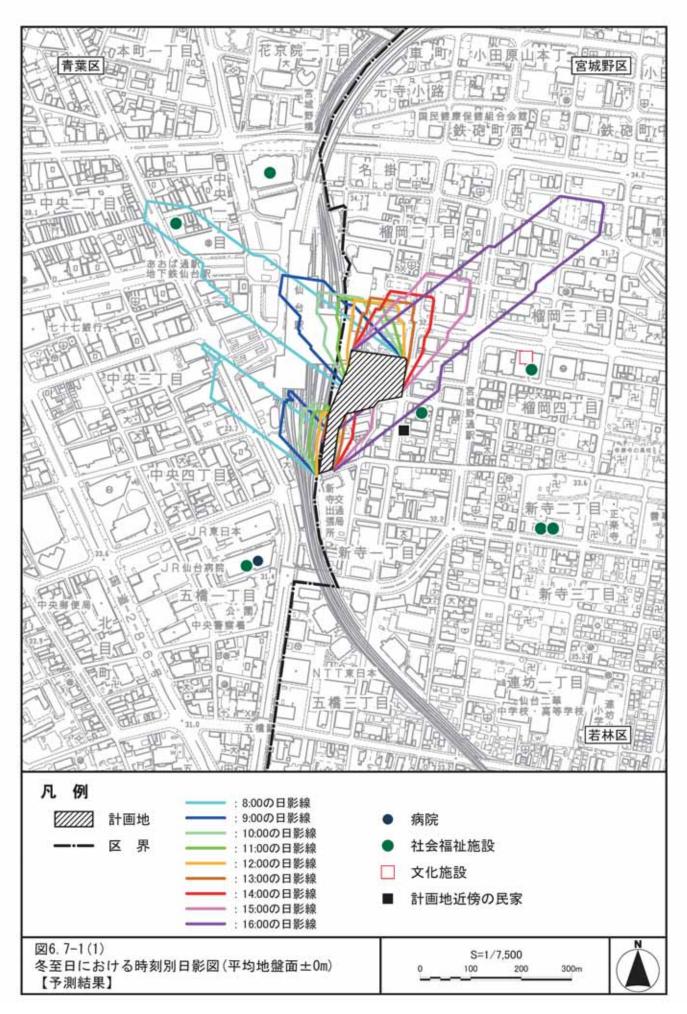
(5)調査結果

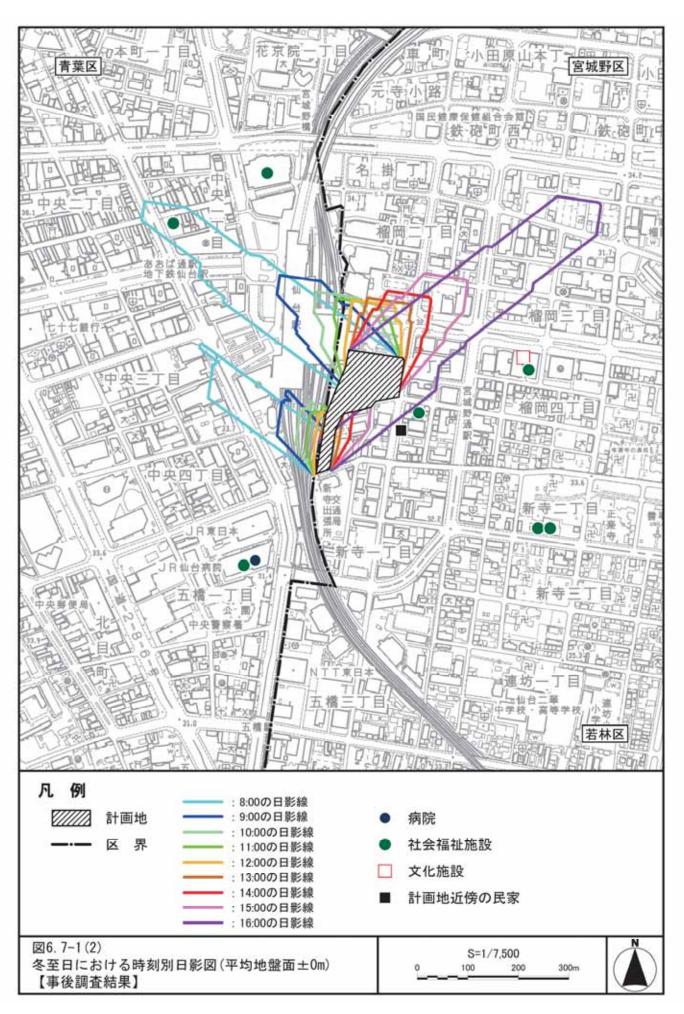
時刻別日影図及び等時間日影図は、図6.7-1~4に示すとおりである。

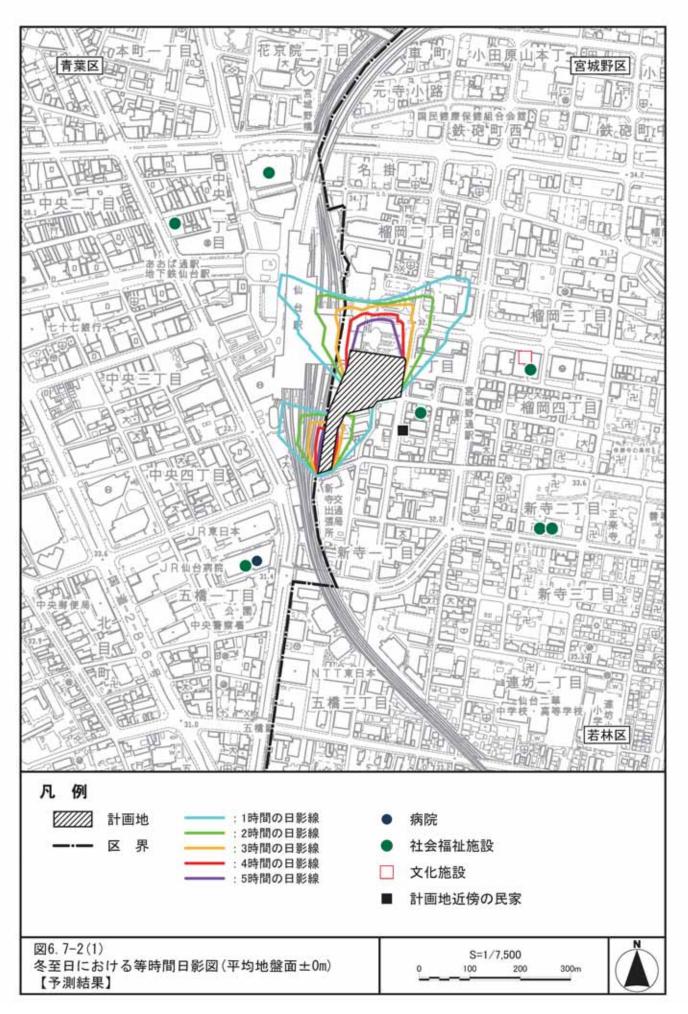
また、現地踏査により計画建築物の日影を確認した結果、冬至日の日影の範囲は日影規制対象地域には及んでいなかったが、配慮を要する施設への影響として、計画地北西側に位置する社会福祉施設に8時の日影が及んでいた。3時間以上の日影の範囲については、仙台駅構内及び仙台駅東口バスプールに及んでいた。計画地直近以遠の地域においては、計画地との間に存在する既存建築物に遮られ、計画建築物による日影の影響はほとんど及んでいない状況であった。

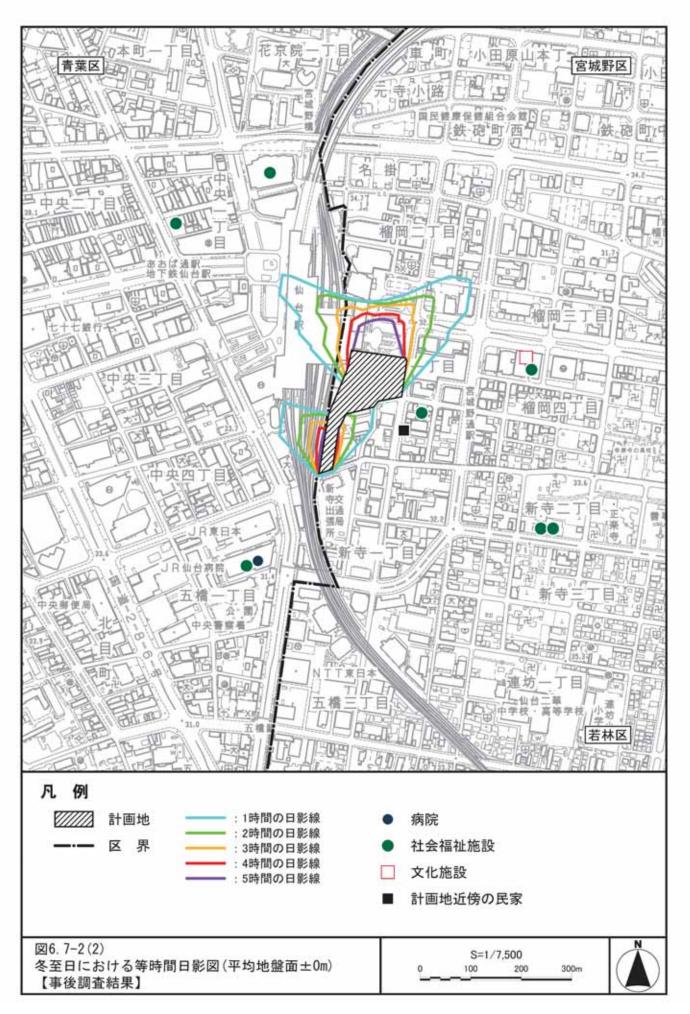
6.7.2 予測結果と事後調査結果の比較

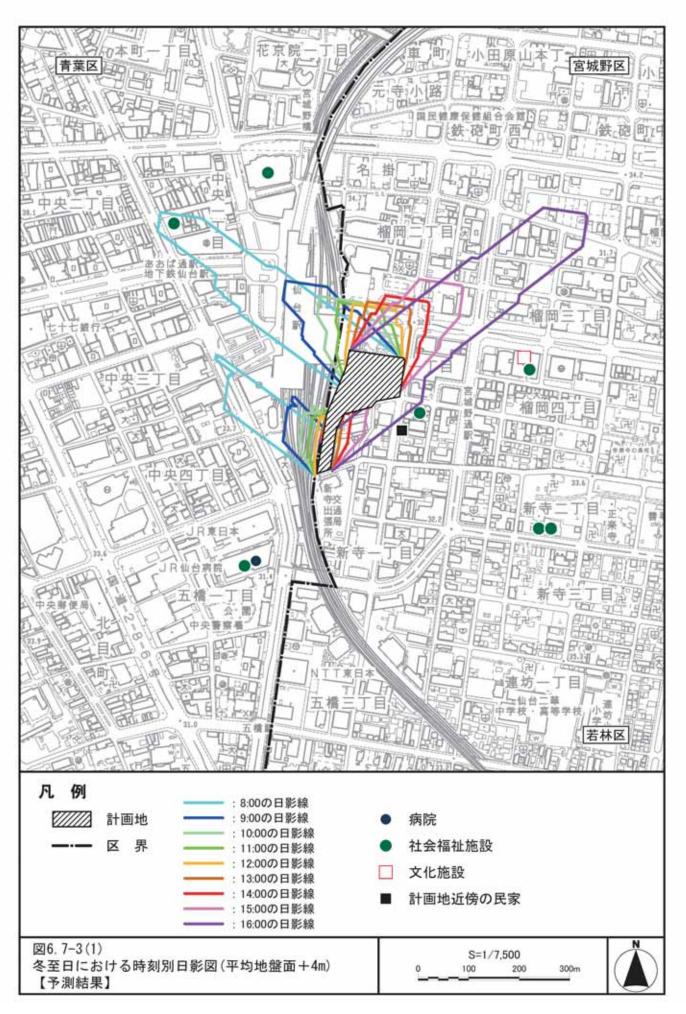
計画建築物による日照阻害の影響は、表6.7-2及び図6.7-1~4に示すとおりである。 計画建築物の日影は、仙台駅東口ロータリーに及ぼすものの、予測結果と同等であった。

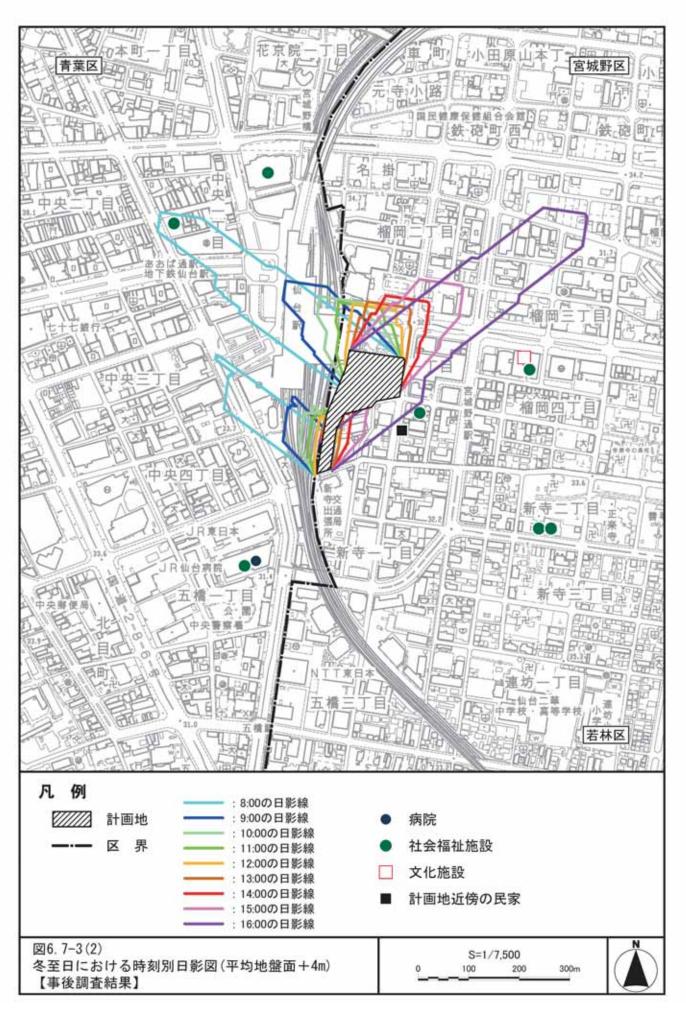

表6.7-2 計画建築物による日照阻害の予測結果

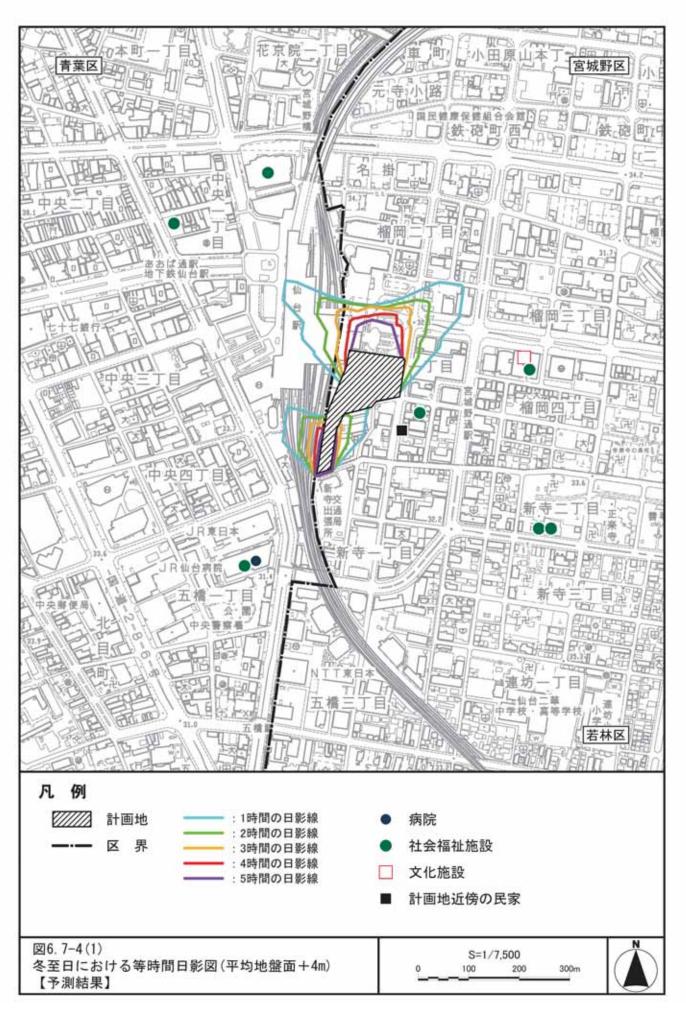

予測結果	事後調査結果
冬至日の日影の範囲は、北西方向が中央1丁目付近、北東方向が二十人町付近まで及ぶが、日影規制対象地域には及ばないと予測される。 配慮を要する施設には、北西に位置する社会福祉施設に8時の日影が及ぶと予測される。 3時間以上の日影の範囲は、仙台駅構内及び仙	冬至日の日影の範囲は、予測結果と同様に日影 規制対象地域には及んでいない。 配慮を要する施設に対する影響についても予 測結果と同様に、北西に位置する社会福祉施設に 8時の日影が及んでいた。 3時間以上の日影の範囲についても予測結果と
台駅東口バスプールに及ぶと予測される。	同様に、仙台駅構内及び仙台駅東口バスプールに 及んでいた。

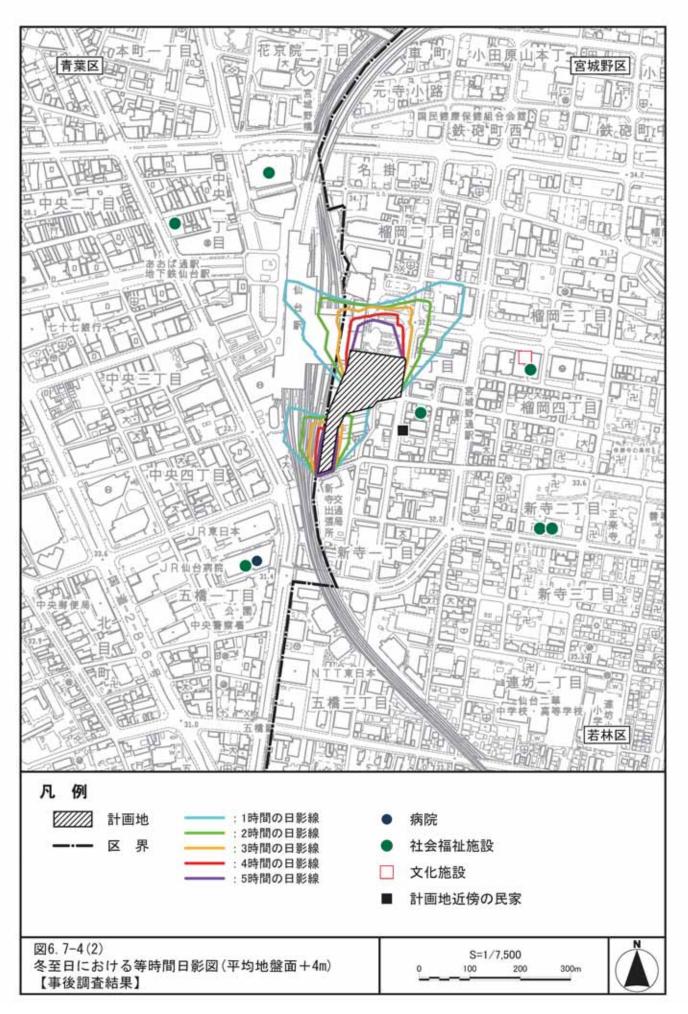

第1回変更による再予測結果を示す(「事後調査報告書(工事中その1)ヨドバシ仙台第1ビル計画」(令和5年4月、株式会社ヨドバシホールディングス)参照)。


6.7.3 追加の環境保全措置の検討


事後調査の結果、工作物等の出現による日照阻害は予測結果と同等であることから、本事業の供用による日照阻害への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。







6.8 風害

6.8.1 事後調査の方法等及び結果

(1)調査項目

工作物等の出現に伴う風環境への影響を把握するため、計画建築物が建設された時期(工事完了後)における以下の項目について調査を行った。

・風向・風速

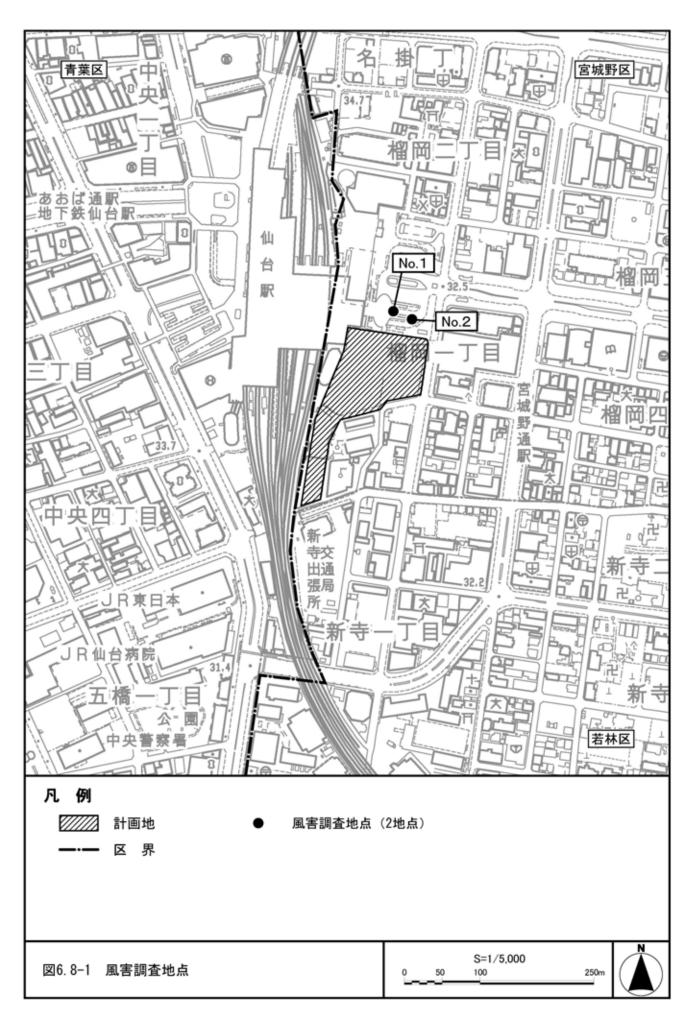
(2)調査期間等

調査期間は、令和5年7月1日から令和6年6月30日までの工事完了後の1年間とした。

(3)調査地点

調査地点は、表6.8-1及び図6.8-1に示すとおり、供用後の計画地周辺の状況を勘案して調査が可能な2地点で行った。

表6.8-1 調査地点


調査地点	調査地点	測定高さ
No.1	仙台駅東口ペデストリアンデッキ植栽帯	地上約8.0m (ペデストリアンデッキ上1.5m)
No.2	仙台駅東口バスプール植栽帯	地上1.5m

(4)調査方法

調査方法は、風車型風向風速計による現地測定とした。測定機器は表6.8-2に示すとおりである。

表6.8-2 測定機器

項目	機器名	メーカー	型名	測定範囲
風向	微風型風向風速計	ノースワン(株)	KDC CO4 05403	0 ~ 355 °
風速	微風空風門風迷計		KDC-S04-05103	0~40m/s

(5)調査結果

風向・風速の調査結果は、表6.8-3(1)~(2)及び図6.8-2に示すとおりである。

最多風向は、No.1が南東(21.5%) No.2が東南東(10.2%)であった。平均風速は、いずれ の地点も0.6m/sであった。日最大平均風速は、No.1が3.0m/s、No.2が2.7m/sであった。

また、表6.8-4に示す風環境評価尺度による風環境評価は、表6.8-5に示すとおり、No.1及 びNo.2ともに領域A(住宅地としての風環境)であった。

表6.8-3(1) 事後調査結果(No.1)

		最多風	向	平均風速	静穏率	日最大	平均風速	日最大	瞬間風速
年	月	風向	出現率	十均風壓 (m/s)	(%)	風速	風向	風速	風向
		(16方位)	(%)	(, 0)	(,,,)	(m/s)	(16方位)	(m/s)	(16方位)
	7月	NW	12.3	0.5	21.3	1.6	SSE,S,SE	8.9	NW
令	8月	NW	22.2	0.6	13.1	1.7	SE	7.0	NW
和	9月	SE	14.7	0.5	18.5	1.9	S	6.2	SW
5	10月	SE	27.7	0.6	16.3	2.2	SE	8.6	SSE
年	11月	SE	23.4	0.6	22.8	2.5	SSE	9.2	SE
	12月	SE	33.8	0.6	19.2	2.5	SW	11.2	SW
	1月	SE	31.5	0.7	16.7	2.3	SSE	10.3	WSW
令	2月	SE	33.4	0.7	18.8	3.0	SSE	13.1	WSW
和	3月	SE	29.8	0.8	16.4	2.4	SE	12.2	W
6	4月	SE	20.2	0.6	19.5	2.4	SE,S	9.7	W
年	5月	SE	15.6	0.6	20.4	2.3	SSE,S	7.8	SE
	6月	NW	13.5	0.5	22.9	2.2	S	8.9	S
	年間	SE	21.5	0.6	18.8	3.0	SSE	13.1	WSW

注1) 調査期間: 令和5年7月1日(土)~令和6年6月30日(日)

表6.8-3(2) 事後調査結果(No.2)

		最多風向	平均風速	静穏率 -	日最大	平均風速	日最大瞬間風速		
年	月	風向	出現率	一巧風 <u></u> (m/s)	ff信 年 (%)	風速	風向	風速	風向
		(16方位)	(%)	(111/3)	(70)	(m/s)	(16方位)	(m/s)	(16方位)
	7月	NE	9.3	0.5	21.5	1.6	SW, NNE	6.8	SSE
今	8月	W	11.6	0.5	10.0	1.8	ENE	5.4	S
令 和	9月	W	6.9	0.5	19.1	1.6	SSW	6.3	SSE
5	10月	E	13.8	0.5	16.4	2.0	ESE	11.5	SSE
年	11月	E	13.4	0.5	21.4	2.2	SSW	10.3	SSE
	12月	E	15.8	0.5	19.1	2.1	S	12.3	S
	1月	E	15.8	0.6	14.0	1.9	E	10.5	SSE
令	2月	E	15.8	0.6	14.7	2.7	E	12.1	SW
和	3月	E	15.7	0.7	10.4	2.3	S	12.1	S
6	4月	ESE	10.3	0.6	12.0	2.1	SE	9.5	ENE
年	5月	NE	10.0	0.6	11.8	2.1	S	9.1	SSW
	6月	NE	10.6	0.5	13.6	2.1	SW	7.5	SSW
	年間	ESE	10.2	0.6	15.3	2.7	E	12.3	S
33.4	· +m + +n	DD 4 10 - 1		A 100 - 00					

注1) 調査期間: 令和5年7月1日(土)~令和6年6月30日(日)

注2) 静穏率は、風速0.2m/s以下の割合を示す。

注2) 静穏率は、風速0.2m/s以下の割合を示す。

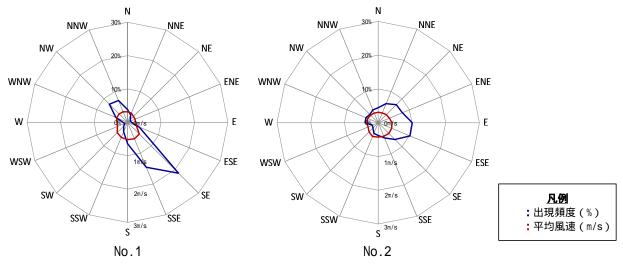


図6.8-2 風配図

表6.8-4 風環境評価尺度

	風速評価における領域区分	累積頻度55%の風速	累積頻度95%の風速
領域 A	住宅地としての風環境	1.2m/s	2.9m/s
領域 B	住宅地・市街地としての風環境	1.8m/s	4.3m/s
領域C	事務所街としての風環境	2.3m/s	5.6m/s
領域 D	超高層建物の下でみられる風環境	>2.3m/s	>5.6m/s

注) 風環境評価尺度とは、都内における地表付近の約100地点での長期間における風観測結果により、風速の類型頻度曲線から、住宅地、市街地、事務所にそれぞれの風環境の累積頻度として、55%の風速 (平均風速) 95%の風速(日最大平均風速)の境界を示す曲線から定められている。

表6.8-5 風環境評価結果

調査地点	風速評価における 領域区分	累積頻度55%の風速	累積頻度95%の風速
No.1	領域A	0.6m/s	2.2m/s
No.2	領域 A	0.6m/s	1.9m/s

注) 55%の風速は年間平均風速、95%の風速は日最大平均風速の年間平均を示す。

6.8.2 予測結果と事後調査結果の比較

予測結果と事後調査結果の比較は、表6.8-6に示すとおりである。事後調査結果は、ペデストリアンデッキ上及び地上のいずれの地点においても風速評価における領域区分は領域Aであり、予測結果と同等の風環境となっていた。

表6.8-6 予測結果と事後調査結果の比較

調査地点	予測結果	事後調査結果
No.1	領域 A	領域A
No.2	領域 A	領域 A

6.8.3 追加の環境保全措置の検討

事後調査の結果、工作物等の出現による周辺の風環境への影響は予測結果と同等の領域Aであることから、本事業の供用による風環境への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.9 景観

6.9.1 事後調査の方法等及び結果

(1)調査項目

工作物等の出現に伴う景観への影響を把握するため、計画建築物が建設された時期(工事 完了後)における以下の項目について調査を行った。

・眺望の変化の状況

(2)調査期間等

調査期間は、表6.9-1に示すとおり、本事業及び仙台駅東口開発計画(現JR仙台イーストゲートビル等)の工事完了後の落葉期及び着葉期とした。

表6.9-1 調査期間

調査項目	調査期間
眺望の変化の状況	落葉期:令和6年1月26日 着葉期:令和6年8月8日

(3)調査地域等

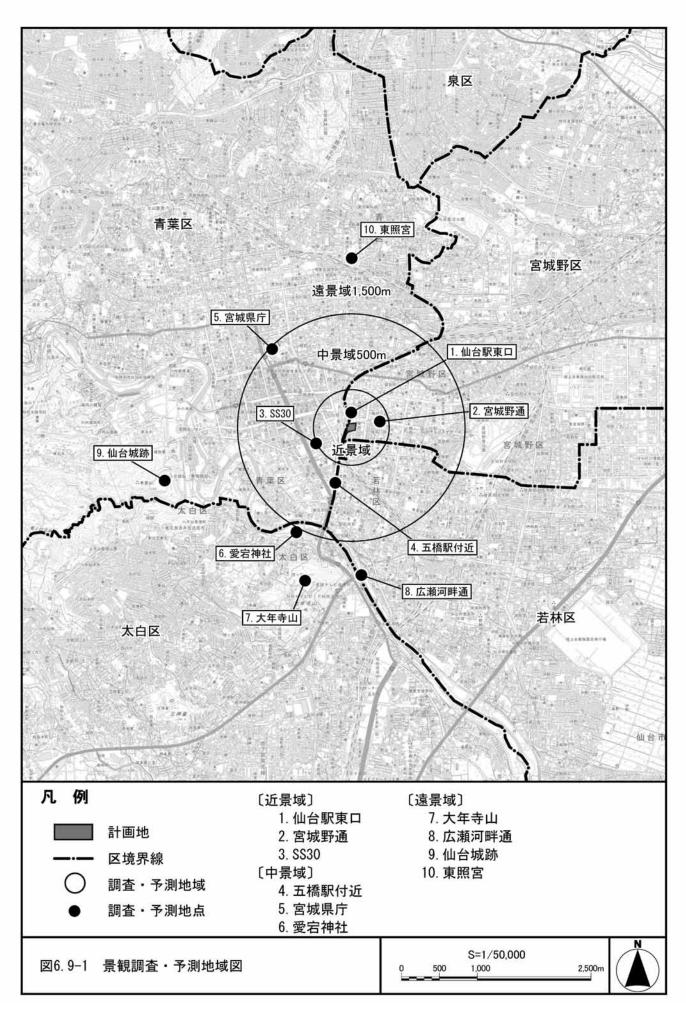

調査地点は、計画建築物が視認可能と予測された、表6.9-2及び図6.9-1に示す10地点とした。

表6.9-2 調査地点

地点番号	調査地点	計画建築物からの距離
1	仙台駅東口	約160m (近景域)
2	宮城野通	約250m (近景域)
3	SS30	約530m (近景域)
4	五橋駅付近	約710m (中景域)
5	宮城県庁	約1,450m (中景域)
6	愛宕神社	約1,600m (中景域)
7	大年寺山	約2,060m (遠景域)
8	広瀬河畔通	約2,140m (遠景域)
9	仙台城跡	約2,430m (遠景域)
10	東照宮	約2,280m(遠景域)

(4)調査方法

調査方法は、事業着手前に撮影した主要眺望地点から写真撮影により確認した。



(5)調査結果

調査結果は、表6.9-3(1)~(10)に示すとおりである。

表6.9-3(1) 眺望地点及び眺望景観の状況(地点1:仙台駅東口)

撮影地点

計画建築物の北北東、約 160m地点

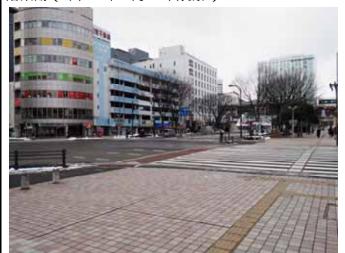
眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、仙台駅東口のバスプールやベデストリアンデッキの奥に広く 視認される。

計画建築物が仙台駅東口の西側に眺望を広く占めており、仙台駅東口の駅ビル等と連なる都市景観が形成されている。 (計画建築物の位置等は、表 6.9-5(1) ~(2)参照)

着葉期(令和6年8月8日撮影)


表6.9-3(2) 眺望地点及び眺望景観の状況(地点2:宮城野通)

計画建築物の東北東、約 250m地点

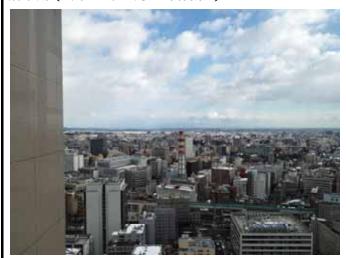
眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、計画地手前にある既存 中高層建築物により遮られ、北側の壁 面の一部がわずかに視認できる程度で ある。

(計画建築物の位置等は、表 6.9-6(1) ~(2)参照)

着葉期(令和6年8月8日撮影)


表6.9-3(3) 眺望地点及び眺望景観の状況 (地点3:SS30)

計画建築物の南西、約530m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、仙台駅東口の駅ビル(商業施設・ホテル)と連担して、眼下に広がる市街地の既存中高層建築物の中に溶け込んで市街地景観の一部として視認される。

(計画建築物の位置等は、表 6.9-7(1) ~(2)参照)

着葉期(令和6年8月8日撮影)

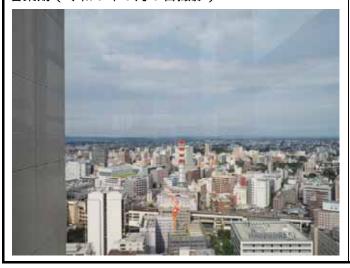


表6.9-3(4) 眺望地点及び眺望景観の状況(地点4:五橋駅付近)

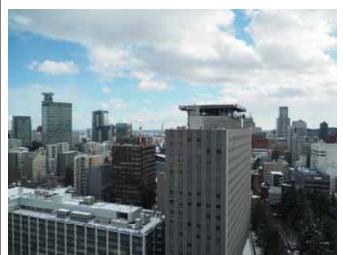
計画建築物の南、約710m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、手前にある既存中高層 建築物に遮られ、視認できない。 (計画地の位置等は、表 6.9-8(1)~ (2)参照)

着葉期(令和6年8月8日)


表6.9-3(5) 眺望地点及び眺望景観の状況(地点5:宮城県庁)

計画建築物の北西、約1,450m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、眼下に広がる市街地の 既存中高層建築物により遮られ、屋上 部分がわずかに視認される程度であ る。

(計画建築物の位置等は、表 6.9-9(1) ~(2)参照)

着葉期(令和6年8月8日撮影)

表6.9-3(6) 眺望地点及び眺望景観の状況(地点6:愛宕神社)

計画建築物の南南西、約1,600m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、市街地の既存中高層建築物の一部としてわずかに視認できる 程度である。

(計画建築物の位置等は、表6.9-10(1)~(2)参照)

着葉期(令和6年8月8日撮影)

表6.9-3(7) 眺望地点及び眺望景観の状況(地点7:大年寺山)

計画建築物の南、約2,060m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、市街地の既存中高層建築物に遮られ、視認できない。 (計画建築物の位置等は、表

(計画建築物の位置等は、表 6.9-11(1)~(2)参照)

着葉期(令和6年8月8日撮影)

表6.9-3(8) 眺望地点及び眺望景観の状況(地点8:広瀬河畔通)

計画建築物の南南東、約2,140m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、市街地の既存中高層建築物に遮られ、視認できない。 (計画建築物の位置等は、表6.9-12(1)~(2)参照)

着葉期(令和6年8月8日撮影)

表6.9-3(9) 眺望地点及び眺望景観の状況(地点9:仙台城跡)

計画建築物の西南西、約2,430m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

着葉期(令和6年8月8日撮影)

計画建築物は、市街地の既存中高層建築物の一部としてわずかに視認できる 程度である。

(計画建築物の位置等は、表6.9-13(1)~(2)参照)

表6.9-3(10) 眺望地点及び眺望景観の状況(地点10:東照宮)

計画建築物の北、約2,280m地点

眺望景観の状況

落葉期(令和6年1月26日撮影)

計画建築物は、市街地の既存中高層建築物に遮られ、視認できない。

(計画建築物の位置等は、表 6.9-14(1)~(2)参照)

着葉期(令和6年8月8日撮影)

6.9.2 予測結果と事後調査結果の比較

予測結果と事後調査結果の比較は、表6.9-4~14に示すとおりである。

表6.9-4 予測結果と事後調査結果の比較

	表6.9-4 予測結果と事後調 置結果の比較 				
眺望地点	予測結果	事後調査結果			
	計画建築物は、仙台駅東口駅前広場の南側	予測結果と概ね一致しており、計画建築物			
	バスプールに隣接して明瞭に視認できる。	は、仙台駅東口駅前広場南側のバスプールに			
	計画建築物は、仙台駅東口開発計画建築物	隣接して明瞭に視認できる。			
1.仙台駅東口	(商業施設)と連担して、新たな都市的景観	また、計画建築物は、仙台駅東口開発計画			
	が創出される。	建築物(現JR仙台イーストゲートビル等)と			
		連担して、新たな都市的景観が創出されてい			
		る。			
	計画建築物は、北側の壁面の一部がわずか	予測結果と概ね一致しており、計画建築物			
】 2.宮城野通	に視認できる程度であることから、計画建築	は、北側の壁面の一部がわずかに視認できる			
2. 日观幻 远	物による景観の変化は小さいと予測する。	程度であることから、計画建築物による景観			
		の変化は小さい。			
	計画建築物は、仙台駅東口開発計画建築物	予測結果と概ね一致しており、計画建築物			
	(商業施設・ホテル)と連担して視認できる	は、仙台駅東口開発計画建築物(現JR仙台イ			
3.SS30	が、眼下に広がる市街地の既存中高層建築物	ーストゲートビル等)と連担して視認できる			
0.0000	の中に溶け込んで市街地景観の一部として視	が、眼下に広がる市街地の既存中高層建築物			
	認されることから、景観の変更は小さいと予	の中に溶け込んで市街地景観の一部として視			
	測する。	認されることから、景観の変化は小さい。			
	計画建築物は、手前に立地している既存中	予測結果と概ね一致しており、計画建築物			
┃ ┃4.五橋駅付近	高層建築物に遮られ、視認できないことから、	は、手前に位置する既存中高層建築物に遮ら			
11211357773	景観の変化はない。	れ、視認できないことから、景観の変化はな			
		ι ₀			
	計画建築物は、眼下に広がる市街地の既存	予測結果と概ね一致しており、計画建築物			
	中高層建築物により遮られ、計画建築物の屋	は、眼下に広がる市街地の既存中高層建築物			
5.宮城県庁	上部分がわずかに視認される程度であること	により遮られ、計画建築物の屋上部分がわず			
	から、景観の変化は小さいと予測する。	かに視認される程度であることから、景観の			
		変化は小さい。			
	計画建築物は、市街地の既存中高層建築物	予測結果と概ね一致しており、計画建築物			
▮ 6.愛宕神社	の一部としてわずかに視認できる程度である	は、市街地の既存中高層建築物の一部として			
	ことから、景観の変化としては小さいと予測	わずかに視認できる程度であることから、景			
	する。	観の変化としては小さい。			
	計画建築物は、市街地の既存中高層建築物	予測結果と概ね一致しており、計画建築物			
7.大年寺山	に遮られ、視認できないことから、景観の変	は、市街地の既存中高層建築物に遮られ、視			
	化はない。	認できないことから、景観の変化はない。			
	計画建築物は、市街地の既存中高層建築物	予測結果と概ね一致しており、計画建築物			
8. 広瀬河畔通	に遮られ、視認できないことから、景観の変	は、市街地の既存中高層建築物に遮られ、視			
	化はない。	認できないことから、景観の変化はない。			
	計画建築物は、市街地の既存中高層建築物	予測結果と概ね一致しており、計画建築物			
9.仙台城跡	の一部としてわずかに視認できる程度である	は、市街地の既存中高層建築物の一部として			
	ことから、景観の変化としては小さいと予測	わずかに視認できる程度であることから、景			
	する。	観の変化としては小さい。			
	計画建築物は、市街地の既存中高層建築物	予測結果と概ね一致しており、計画建築物			
10.東照宮	に遮られ、視認できないことから、景観の変	は、市街地の既存中高層建築物に遮られ、視			
	化はない。	認できないことから、景観の変化はない。			

第1回変更による再予測結果を示す(「事後調査報告書(工事中その1)ヨドバシ仙台第1ビル計画」(令和5年4月、株式会社ヨドバシホールディングス)参照)。

表6.9-5(1) 予測結果と事後調査結果の比較(地点1:仙台駅東口 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、仙台駅東口駅前広場南側のバスプールに隣接して明瞭に視認できる。

また、計画建築物は、仙台駅東口開発計画建築物 (現JR仙台イーストゲートビル等)と連担して、新 たな都市的景観が創出されている。

表6.9-5(2) 予測結果と事後調査結果の比較(地点1:仙台駅東口 着葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、仙台駅東口駅前広場南側のバスプールに隣接して明瞭に視認できる。

また、計画建築物は、仙台駅東口開発計画建築物 (現JR仙台イーストゲートビル等)と連担して、新 たな都市的景観が創出されている。

表6.9-6(1) 予測結果と事後調査結果の比較(地点2:宮城野通 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、北側の壁面の一部が手前の既存建築物のへり沿いに わずかに視認できる程度であることから、計画建築 物による景観の変化は小さい。

表6.9-6(2) 予測結果と事後調査結果の比較(地点2:宮城野通 着葉期)

予測結果

事後調査結果

予測時点より樹木が成長したことにより、計画建築物は、手前の樹木に遮られ、視認できない。このことから、計画建築物による景観の変化は小さい。

表6.9-7(1) 予測結果と事後調査結果の比較(地点3:SS30 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、仙台駅東口開発計画建築物(現JR仙台イーストゲートビル等)と連担して視認できるが、眼下に広がる市街地の既存中高層建築物の中に溶け込んで市街地景観の一部として視認されることから、景観の変化は小さい。

表6.9-7(2) 予測結果と事後調査結果の比較(地点3:SS30 着葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、仙台駅東口開発計画建築物(現JR仙台イーストゲートビル等)と連担して視認できるが、眼下に広がる市街地の既存中高層建築物の中に溶け込んで市街地景観の一部として視認されることから、景観の変化は小さい。

表6.9-8(1) 予測結果と事後調査結果の比較(地点4:五橋駅付近 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、手前に位置する既存中高層建築物に遮られ、視認できないことから、景観の変化はない。

表6.9-8(2) 予測結果と事後調査結果の比較(地点4:五橋駅付近 着葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、手前に位置する既存中高層建築物に遮られ、視認できないことから、景観の変化はない。

表6.9-9(1) 予測結果と事後調査結果の比較(地点5:宮城県庁 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、眼下に広がる市街地の既存中高層建築物により遮られ、計画建築物の屋上部分がわずかに視認される程度であることから、景観の変化は小さい。

表6.9-9(2) 予測結果と事後調査結果の比較(地点5:宮城県庁 着葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、眼下に広がる市街地の既存中高層建築物により遮られ、計画建築物の屋上部分がわずかに視認される程度であることから、景観の変化は小さい。

表6.9-10(1) 予測結果と事後調査結果の比較(地点6:愛宕神社 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、市 街地の既存中高層建築物の一部としてわずかに視 認できる程度であることから、景観の変化としては 小さい。

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、市 街地の既存中高層建築物の一部としてわずかに視 認できる程度であることから、景観の変化としては 小さい。

表6.9-11(1) 予測結果と事後調査結果の比較(地点7:大年寺山 落葉期)

事後調査結果

表6.9-11(2) 予測結果と事後調査結果の比較(地点7:大年寺山 着葉期) 眺望景観の状況 予測結果 事後調査結果 予測結果と概ね一致しており、計画建築物は、市 街地の既存中高層建築物に遮られ、視認できないこ 計画地方面 とから、景観の変化はない。

表6.9-12(1) 予測結果と事後調査結果の比較(地点8:広瀬河畔通 落葉期)

予測結果

事後調査結果

表6.9-12(2) 予測結果と事後調査結果の比較(地点8:広瀬河畔通 着葉期)

予測結果

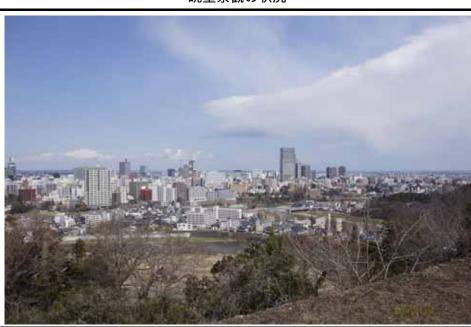

事後調査結果

表6.9-13(1) 予測結果と事後調査結果の比較(地点9:仙台城跡 落葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、市 街地の既存中高層建築物の一部としてわずかに視 認できる程度であることから、景観の変化としては 小さい。

表6.9-13(2) 予測結果と事後調査結果の比較(地点9:仙台城跡 着葉期)

予測結果

事後調査結果

予測結果と概ね一致しており、計画建築物は、市 街地の既存中高層建築物の一部としてわずかに視 認できる程度であることから、景観の変化としては 小さい。

表6.9-14(1) 予測結果と事後調査結果の比較(地点10:東照宮 落葉期)

予測結果

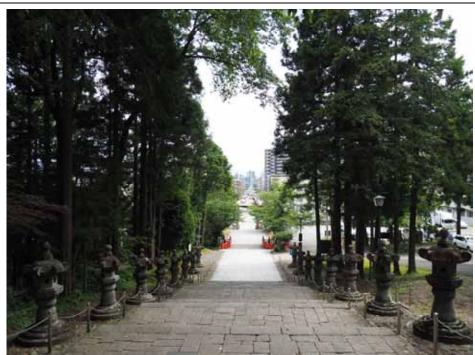

事後調査結果

表6.9-14(2) 予測結果と事後調査結果の比較(地点10:東照宮 着葉期)

事後調査結果

6.9.3 追加の環境保全措置の検討

事後調査の結果、工作物の出現による眺望景観の変化は予測結果と概ね一致し、計画建築物は市街地の既存中高層建築物の中に溶け込んで市街地景観の一部として視認されていることから、本事業の供用による景観への影響は、事業者の実行可能な範囲で回避・低減されていると評価する。そのため、追加の環境保全措置は行わない。

6.10 廃棄物等

6.10.1 事後調査の方法等及び結果

(1)調査項目

供用後の施設の稼働により発生する廃棄物の種類や発生量及び水利用の状況、削減状況等について調査を行った。

(2)調査期間

調査期間は、計画建築物の事業活動が定常になったと想定される時期とし、供用後1年を経過した令和6年6月から令和7年5月までの1年間とした。ただし、供用開始来、店舗及びオフィスの区画に空きがある状況が続いており、令和7年9月時点でも定常状態には至っていない状況である。区画の総床面積に対する入居率は、事後調査期間の令和7年5月時点において、飲食店舗(1,3,6階)は約74.7%、物販・サービス店舗(1,5階)は100%、オフィス(9~12階)は約3.7%であった。

なお、廃棄物の発生量の把握について、回収業者の各社より、令和6年6月から令和7年5月までの月単位のデータを提供することが技術的に難しいと報告があったため、令和6年度(令和6年4月から令和7年3月まで)の年度集計のデータを用いた。予定していた事後調査期間からは2ヶ月前倒しの期間となるが、テナント(店舗、オフィス)の入居状況に大きな違いはないことから、廃棄物の発生量にも大きな差はないと考える。

(3)調査地点

調査地域は、計画地内とした。

(4)調査方法

調査は、廃棄物発生量並びに水利用量の記録の確認及びヒアリングにより行った。

(5)調査結果

1)廃棄物等

供用後の施設の稼働によるヨドバシカメラ事務所及びテナント(店舗、オフィス)からの廃棄物の発生量及び再生・再資源化量は、表6.10-1に示すとおりである。

一般廃棄物の発生量は、可燃ごみが165,378kgと最も多く、次いで段ボールが137,160kgであった。ビン、缶、一斗缶、ペットボトル及びダンボールを再資源化するとの計画のとおり、これらを再生・再資源化しており、新聞及び雑誌も併せ、再生・再資源化率は100%であった。また、産業廃棄物の発生量は、廃プラスチックが13,701kgと最も多く、次いで金属くずが554kgであった。再生・再資源化率は、品目ごとの算出はしていないものの、発生量合計の96%であった。

なお、ヨドバシカメラ店舗から排出された一般廃棄物及び産業廃棄物は、全て神奈川県川崎市にあるヨドバシカメラ倉庫に運搬し、他店舗からの廃棄物と合わせて処理されている。 処理の際には、店舗ごとの廃棄物発生量は計量していないことから、本事業のうちヨドバシカメラ店舗からの発生量は把握できなかった。

表6.10-1 廃棄物発生量

表。10 1 / / / / / / / / / / / / / / / / / /					
品目		発生量 (kg)	再生・ 再資源化量 (kg)	再生・再資源化率 (%)	
一般廃棄物	可燃ごみ(生ごみを含む)	165,378	0	0	
	新聞	220	220	100	
	雑誌	8,390	8,390	100	
	段ボール	137,160	137,160	100	
	缶・びん	6,495	6,495	100	
	ペットボトル	4,333	4,333	100	
	小計	321,976	156,598	49	
産業廃棄物	廃プラスチック	13,701	-	-	
	発泡スチロール	145	-	-	
	金属くず	554	-	-	
	ガラス・陶磁器くず	507	-	-	
	小計	14,907	14,311	96 (マテリアルリサイクル:56) (サーマルリサイクル:40)	
	計	336,883	-	-	

注) ヨドバシカメラ店舗を除く、ヨドバシカメラ事務所及びテナント(店舗、オフィス)における発生量である。

2)水利用

供用後の施設の稼働による水利用量は、表6.10-2に示すとおりであり、上水は30,161㎡、井水は11,637㎡、雨水は3,536㎡であった。

雨水及び井水は貯留槽に貯留し、処理設備でろ過等の処理した上で、ビル内のトイレ洗浄水として利用しており、洗浄水は全てを雨水及び井水で賄っている。

表6.10-2 水利用量

単位: m³

用途	水利用量			
用返	上水	井水	雨水	
店舗 (ヨドバシカメラ店舗を除く)	27,222			
共用部 (ヨドバシカメラ店舗、ヨドバシカ メラ事務所及びオフィスを含む)	2,939	11,637	3,536	
計	30,161	11,637	3,536	

6.10.2 予測結果と事後調査結果の比較

(1)廃棄物等

予測結果と事後調査結果の比較は、表 6.10-3 に示すとおりである。廃棄物の発生量について、事後調査結果は予測結果より、一般廃棄物は 390,630kg、産業廃棄物は 141,014kg、合計で531,644kg 少なかった。

予測時点では、ヨドバシカメラ店舗から排出された一般廃棄物及び産業廃棄物の発生量も含んでいたが、実際は供用後には全て神奈川県川崎市にあるヨドバシカメラ倉庫に運搬し、他店舗からの廃棄物と合わせて処理されていることから、事後調査結果にはヨドバシカメラ店舗からの発生量は含んでいない。

表6.10-3 予測結果と事後調査結果の比較

				予測結果		事	後調査結果	2
l	品目	業態	発生量 (kg)	再生・再 資源化量 (kg)	再生・再 資源化率 (%)	発生量 (kg) ()内:予測結果 との差	再生・再 資源化量 (kg)	再生・ 再資源化率 (%)
一般廃棄物	厨芥(生ごみ)	店舗等	269,284	-	-			
		オフィス	10,318	-	-	165,378	0	0
	雑芥(可燃ごみ)	店舗等	105,780	-	-	(+36,550)	o o	Ů
		オフィス	23,048	-	-			
	古紙	オフィス	29,614	-	-	8,610 (-21,004)	-	-
	新聞	-	-	-	-	220	220	100
	雑誌	-	-	-	-	8,390	8,390	100
	段ボール	店舗等	213,576	-	-	137,160	137,160	100
		オフィス	7,638	-	-	(-84,054)	.0.,.00	100
	缶	店舗等	16,967	-	-		6,495	
		オフィス	3,484	-	-			6,495 (-32,817) 6,495
	びん	店舗等	16,583	-	-	(-32,817)	(-32,817)	
		オフィス	2,278	-	-			
	ペットボトル	店舗等	8,274	-	-	4,333	4,333	100
		オフィス	5,762	-	-	(-9,703) 321,976		
	小計		712,606	-	i	(-390,630)	156,598	49
産業廃棄物	廃プラスチック	店舗等	110,584		-	13,701 (-96,883)	1	-
	発泡スチロール	オフィス	134	-	-	145 (+11)	-	-
	不燃ごみ	オフィス	10,452	-	-	1,061 (-9,391)	-	-
	金属くず (一斗缶含む)	-	-	-	-	554	-	-
	ガラス・ 陶磁器くず	-	-	-	-	507	-	-
	一斗缶	店舗等	34,483	-	-	金属くずに含む	-	-
	蛍光灯	オフィス	268	-	-	0 (-268)	-	-
	小計		155,921	-	-	14,907 (-141,014)	14,311	96 (マテリアルリサ イクル:56) (サーマルリサイ クル:40)
		店舗等	775,531	373,351	48	-	-	-
	計	オフィス	92,996	_ 1	_ 1	-	-	-
		計	868,527	_ 1	_ 1	336,883 (-531,644)	170,909	51

¹ オフィスの再生・再資源化量・率は、原単位が得られなかったため予測していない。

² 発生量、再生・再資源化量ともに、店舗等及びオフィスそれぞれでは計量しておらず、合わせて計量している。

(2)水利用

年間使用量の計画(「1.対象事業の概要 1.5 事業の内容 1.5.6 給水計画」(p.25)参照) と事後調査結果の比較は、表6.10-4に示すとおりであり、事後調査結果は予測結果より4,563㎡ /年多かった。

給水系統は、上水及び雑用水の2系統として計画し、上水系統は市水を、雑用水系統は地下水及び雨水処理水を水源とした。用途は、上水は飲料水、洗面、空調用加湿給水、消火用補給水及び各所散水とし、雑用水は便所洗浄水と計画していた。

供用後は、雨水及び井水は貯留槽に貯留し、処理設備でろ過等の処理した上で、ビル内のトイレ洗浄水として利用している。トイレ洗浄水は全てを雨水及び井水で賄っており、雨水を雑用水として使用することで、地下水使用量の削減に努めている。

事後調査において、上水(市水)使用量は計画使用量より2,968㎡/年多かったものの、雑用水(雨水処理水)使用量も計画使用量より1,336㎡/年多くなっていることから、引き続き雨水処理水の使用に努め、市水及び地下水使用量の削減を図っていくこととする。

表6.10-4 予測結果と事後調査結果の比較

単位: m³/年

系統	水源	計画	事後調査結果 ()内:予測結果との差
上水	市水	27,193	30,161 (+2,968)
雑用水	地下水	11,378	11,637 (+259)
	雨水処理水	2,200	3,536 (+1,336)
	小計	13,578	15,173 (+1,595)
	計	40,771	45,334 (+4,563)

6.10.3 追加の環境保全措置の検討

事後調査の結果、供用による廃棄物量への影響は少ないと考えられる。また、水利用については、引き続き雨水処理水の使用に努め、市水及び地下水使用量の削減を図っていくことする。以上のことから、本事業の供用による廃棄物への影響は、事業者の実行可能な範囲で回避・低減されているものと評価する。そのため、追加の環境保全措置は行わない。

6.11 温室効果ガス等

6.11.1 事後調査の方法等及び結果

(1)調査項目

施設関連車両(来店客車両を含む)の走行及び施設の稼働により発生する温室効果ガスについて調査を行った。

(2)調査期間

調査期間は、計画建築物の事業活動が定常になったと想定される時期とし、令和6年6月から令和7年5月までの1年間とした。

(3)調査地点

調査地域は、計画地内とした。

(4)調査方法

1)施設関連車両の走行

駐車場の入出庫記録の確認及びヒアリングの結果から、「温室効果ガス排出量算定・報告マニュアル(ver6.0)」(令和7年3月、環境省)に基づき、二酸化炭素及びその他の温室効果ガス(メタン及び一酸化二窒素)の排出量を算出した。次に、各温室効果ガスの排出量に係数を乗じ、温室効果ガス排出量(二酸化炭素換算)の合計を算出した。

算出の計算式は、表6.11-1に示すとおりである。

表6.11-1 温室効果ガス排出量の計算式(燃料)

二酸化炭素 (CO ₂)排出量 (tCO ₂)	= 燃料使用量(kL) × 単位発熱量(GJ/kL)
()	×排出係数(tC/GJ) × 44/12
メタン (CH₄) 排出量 (t)	= 燃料使用量(kL) × 単位発熱量(GJ/kL)
()	×排出係数(kg CH ₄ /GJ)/1,000
一酸化二窒素 (N ₂ O) 排出量 (t)	= 燃料使用量 (kL) ×単位発熱量 (GJ/kL)
()	×単位発熱量当たりの排出量 (kg N₂O /GJ)/1,000
温室効果ガス排出量合計(tCO ₂)	= ×1+ ×28+ ×265 注)乗じている数値は、地球温暖化係数である。

施設関連車両の燃料は、大型車類は軽油、小型車類はガソリンとした。燃料ごとの単位発熱量は表6.11-2に、燃料ごとの二酸化炭素及びその他の温室効果ガスの排出係数は表6.11-3に示すとおりである。燃料使用量は、評価書と同様に施設関連車両の台数、平均走行距離及び燃費から表6.11-4に示すとおり設定した。

表6.11-2 燃料ごとの単位発熱量

燃料の種類	単位発熱量(GJ/kl)
軽油	38.0
ガソリン	33.4

出典:「温室効果ガス排出量算定・報告マニュアル(Ver6.0)」 (令和7年3月、環境省)

表6.11-3 燃料ごとの二酸化炭素及びその他の温室効果ガスの排出係数

	排出係数				
燃料の種類	二酸化炭素 CO ₂ (tC/GJ)	メタン CH₄ (kg/km)	一酸化二窒素 N₂0 (kg/km)		
軽油	0.0188	0.000015	0.000014		
ガソリン	0.0187	0.000010	0.000029		

注) メタン及び一酸化二窒素に係る自動車の区分は、軽油が " 普通自動車のうち、貨物の輸送 の用に供するもの"、ガソリンが" 普通自動車または小型自動車のうち人の運送の用に供するもの (乗車定員10人以下)" とした。

出典:「温室効果ガス排出量算定・報告マニュアル(Ver6.0)」(令和7年3月、環境省)「地球温暖化対策の推進に関する法律施行令」(平成11年4月政令第143号)

表6.11-4 施設関連車両の燃料使用量

車種分類	車両台数(台)	平均走行距離 (km/台)	総走行距離 (km) = ×	燃料	燃費 (km/L)	燃料使用量 (kL) / /1,000
大型車類	19,007	20	380,140	軽油	3.52	108.0
小型車類	1,102,481	10	11,024,810	ガソリン	5.67	1,944.4

[「]温室効果ガス排出量算定・報告マニュアル (Ver6.0)」(令和7年3月、環境省) から、大型車類 (軽油) は最大積載量6.000kg以上8,000kg未満 (事業用) 小型車類 (ガソリン) は最大積載量1,500kg以上 (自家用) とした。

2)施設の稼働(商業施設等)

電気の使用による温室効果ガス排出量を算出した。また、計画建築物に設置した空冷モジュールチラー更新時の熱機器交換等において、冷媒が大気質中に漏えいする可能性があることを踏まえ、漏えいによる温室効果ガスの排出量も算出した。

ア.電気の使用

電気使用量のヒアリング結果から、二酸化炭素の排出量を算出した。算出の計算式は表6.11-5に、電気使用量は表6.11-6に示すとおりである。

表6.11-5 温室効果ガス排出量の計算式(電気)

二酸化炭素(CO₂)排出量(tCO₂) = 電気使用量(kWh)×二酸化炭素排出係数(tCO₂/kWh)

表6.11-6 電気使用量

用途	電気使用量 (kWh)
ヨドバシカメラ店舗	1,864,935
テナント	3,448,315
オフィス	51,380
共用部	4,995,462
合計	10,360,092

テナントの空き区画分の空調使用を含む。

イ.冷媒の漏えい

冷媒充填量及び冷媒漏えい率から二酸化炭素の排出量を算出した。算出の計算式は、表 6.11-7に示すとおりである。

表6.11-7 温室効果ガス排出量の計算式(冷媒)

二酸化炭素(CO₂)排出量(tCO₂) = 冷媒充填量(t)×漏えい率(%)/100×675 注)乗じている数値は、地球温暖化係数である。

3)施設の稼働(駐車場)

調査方法は、「1)施設関連車両の走行」と同様とした。

調査対象は小型車類とし、燃料はガソリンとした。燃料使用量は、評価書と同様に駐車場を利用する施設関連車両の台数、平均走行距離及び燃費から表6.11-8に示すとおり設定した。

表6.11-8 駐車場を利用する施設関連車両の燃料使用量

士 任八兆	車両台数	平均走行距離	総走行距離	le Me 444.	燃費	燃料使用量
車種分類	(台)	(km/台)	(km) = ×	燃料	(km/L)	(kL) / /1,000
小型車類	1,102,481	0.82	904,034	ガソリン	5.67	159.4

[「]温室効果ガス排出量算定・報告マニュアル (Ver6.0)」(令和7年3月、環境省) から、小型車類 (ガソリン) は最大積載量1,500kg以上 (自家用) とした。

(5)調査結果

1)施設関連車両の走行

表6.11-1に示した計算式により算出した温室効果ガス排出量は、表6.11-9に示すとおりである。施設関連車両の走行による温室効果ガス排出量は、約4,736.4tCO₂となった。

表6.11-9 温室効果ガス排出量

車種分類	区分	排出量 (t)	地球温暖化係数	温室効果ガス排出量 (tCO ₂) ×
	二酸化炭素 (CO ₂)	282.9	1	282.9
大型車類	メタン (CH₄)	0.01未満	28	0.1未満
	一酸化二窒素 (N ₂ O)	0.01未満	265	0.1未満
	二酸化炭素 (CO ₂)	4,452.9	1	4,452.9
小型車類	メタン (CH₄)	0.01未満	28	0.1未満
	一酸化二窒素(N ₂ O)	0.01未満	265	0.5
	計	4,736.4		

注) 計算過程の四捨五入から、算出結果の整合は取れないことがある。

2)施設の稼働(商業施設等)

温室効果ガスの排出量は、以下に示すとおり、電気の使用により $4,910.7tCO_2$ 、冷媒の漏えいにより $30.6tCO_2$ であった。よって、施設の稼働による温室効果ガス排出量の合計は、 $4,941.3tCO_2$ であった。

ア.電気の使用

表6.11-5に示した計算式により算出した温室効果ガス排出量は、表6.11-10に示すとおりである。

表6.11-10 温室効果ガス排出量

電気使用量(kWh)	二酸化炭素排出係数 (tCO ₂ /kWh)	温室効果ガス排出量 (tCO ₂) ×
10,360,092	0.000474	4,910.7

「2023年度CO 排出係数(再生可能エネルギーの固定価格買収制度による調整等を反映していない基礎CO 排出係数)」(令和7年5月閲覧、東北電力ホームページ)

イ.冷媒の漏えい

表6.11-7に示した計算式により算出した温室効果ガス排出量は、表6.11-11に示すとおりであり、冷媒の漏えいによる温室効果ガス排出量は、1年間で30.6tCO $_2$ である。よって、事後調査対象期間中の温室効果ガス排出量は、30.6tCO $_2$ である。

表6.11-11 温室効果ガス排出量

メ	- カー・型番 1	冷媒種類 1	設置台数 1 (台)	封入量 ² (t/台)	漏えい率 ³ (%/年)	漏えい量 (t/年) = × × /100	地球温暖化 係数	温室効果ガス 排出量 (tCO ₂ /年) ×
ı	[芝キャリア(株) RUAGP511FMC RUAGP511F	R32	32	0.0352	4.03	0.045	675	30.6

¹ 本事業の竣工図(空調衛生設備図)による。

² メーカーの仕様表による。

^{3 「}令和3年度化学物質安全対策 (業務用冷凍空調機等の使用時漏えい量に関する実態調査)報告書」(令和4年3月、(株)野村総合研究所)の「使用時漏えい率の計算 (業務用空調機器:ビル用パッケージエアコン:令和2年)」による。

注) 計算過程の四捨五入から、算出結果の整合は取れないことがある。

3)施設の稼働(駐車場)

表6.11-1に示した計算式により算出した温室効果ガス排出量は、表6.11-12に示すとおりである。施設関連車両の走行による温室効果ガス排出量は、約365.2tCO₂となった。

表6.11-12 温室効果ガス排出量

車種分類	区分	排出量 (t)	地球温暖化係数	温室効果ガス排出量 (tCO ₂) ×
	二酸化炭素 (CO ₂)	365.1	1	365.1
小型車類	メタン (CH ₄)	0.01未満	28	0.1未満
	一酸化二窒素(N ₂ O)	0.01未満	265	0.1未満
	計	365.2		

注) 計算過程の四捨五入から、算出結果の整合は取れないことがある。

4)施設関連車両の走行及び施設の稼働による複合影響

施設関連車両の走行及び施設の稼働による温室効果ガス排出量の合計は、10,042.9tCO₂となった。

6.11.2 予測結果と事後調査結果の比較

(1)施設関連車両の走行による影響

予測結果と事後調査結果の比較は、表6.11-13に示すとおりであり、事後調査結果は予測結果より6,132.6tCO₂少なかった。評価書提出後の事業計画の変更により、当初計画していた2期工事が白紙(令和7年8月時点では構想中)になり、延べ面積も約6,450㎡の縮小となる等したためと考えられる。

表6.11-13 予測結果と事後調査結果の比較

単位: tCO₂

車種分類	区八	温室効果ガス排出量		
半性 刀類	区分	予測結果	事後調査結果	
	二酸化炭素 (CO ₂)	698	282.9	
大型車類	メタン (CH4)	0.3	0.1未満	
	一酸化二窒素(N ₂ O)	3	0.1未満	
	二酸化炭素 (CO ₂)	9,897	4,452.9	
小型車類	メタン (CH4)	8	0.1未満	
	一酸化二窒素(N ₂ O)	263	0.5	
	計	10,869	4,736.4	

(2)施設の稼働(商業施設等)による影響

評価書提出後の事業計画の変更により、電気使用量及び空調計画が変更となっており、評価書時点では使用する計画であったガスは不使用となった。また、空調の熱源の一つとしていたガス焚き吸収式冷温水機は、より環境負荷の少ない電気熱源の空冷モジュールチラーとなった(「事後調査報告書(工事中その2)ヨドバシ仙台第1ビル計画」(令和6年3月、株式会社ヨドバシホールディングス)p.28参照)。

このため、改めて、電気の使用による温室効果ガス排出量の再予測を行った。その結果は表6.11-14に示すとおりであり、電気の使用による温室効果ガスの排出量は $8,583tCO_2$ /年と予測した。

なお、空調計画の変更の際には、空冷モジュールチラーの具体的な機種の選定等まではしていなかったため、冷媒の漏えいによる温室効果ガス排出量の再計算は行っていない。

表6.11-14 温室効果ガス排出量(電気の使用:再予測)

電気使用量(kWh/年)	二酸化炭素排出係数 (tCO ₂ /kWh)	温室効果ガス排出量 (tCO ₂ /年) ×
18,106,500	0.000474	8,583

「2023年度CO 排出係数 (再生可能エネルギーの固定価格買収制度による調整等を反映していない基礎CO 排出係数)」(令和7年5月閲覧、東北電力ホームページ)

再予測結果と事後調査結果の比較は、表6.11-15に示すとおりであり、事後調査結果は再予測結果より4,121.7tCO₂少なかった。評価書提出後の事業計画の変更により、当初計画していた2期工事が白紙(令和7年8月時点では構想中)になり、延べ面積も約6,450㎡の縮小となったこと、評価書時点では使用する計画であったガスは不使用となったこと、評価書時点では、冷媒はR410A(地球温暖化係数2,090)を使用した機器を想定していたが、実際にはR32(同675)を使用した機器を採用したこと等によるものと考えられる。

表6.11-15 予測結果と事後調査結果の比較

単位: tCO₂

•			
区分	温室効果ガス排出量		
上 刀	予測結果	事後調査結果	
電気の使用	8,583	4,910.7	
冷媒の漏えい	480	30.6	
計	9,063	4,941.3	

「電気の使用」は、事業計画変更(令和6年3月)後の電気使用量から再予測した結果であり、「冷媒の漏えい」は、評価書時点の予測結果である。なお、「冷媒の漏えい」は、1年あたりの冷媒漏えい率で算出した結果に対し、更新周期の15(年)でさらに除する誤りがあったため、改めて算出した。

注) 評価書時点では、エネルギーとして都市ガスを使用する想定であったが、使用しないこととなった。

(3)施設の稼働(駐車場)による影響

予測結果と事後調査結果の比較は、表6.11-16に示すとおりであり、事後調査結果は予測結果より467.8tCO₂少なかった。予測では、安全側をみて、休日一日あたりのピーク台数が365日継続するとし、駐車場の利用台数は3,047,750台/年との設定で予測したが、事後調査の結果、実際は1,102,481台/年であったためと考えられる。

表6.11-16 予測結果と事後調査結果の比較

単位: tCO₂

車種分類	区分	温室効果ガス排出量		
半性刀料	运 力	予測結果	事後調査結果	
	二酸化炭素 (CO ₂)	811	365.1	
小型車類	メタン (CH ₄)	1	0.1未満	
	一酸化二窒素 (N ₂ O)	21	0.1未満	
	計	833	365.2	

(4)施設関連車両の走行及び施設の稼働による複合影響

施設関連車両の走行及び施設の稼働の合計は表6.11-17に示すとおりであり、事後調査結果は予測結果より10,722.1tCO₂少なかった。

表6.11-17 予測結果と事後調査結果の比較

単位: tCO₂

項目	温室効果ガス排出量		
	予測結果	事後調査結果	
施設関連車両の走行	10,869	4,736.4	
施設の稼働(商業施設等)	9,063	4,941.3	
施設の稼働(駐車場)	833	365.2	
計	20,765	10,042.9	

^{「(2)}施設の稼働(商業施設等)」に示したとおり、電気の使用による 温室効果ガス排出量は再予測を行った。そのため、評価書に記載した 予測結果とは異なる。

6.11.3 環境保全措置の結果

事後調査の結果、事後調査結果は予測結果を下回っていることから、本事業の供用による温室効果ガスによる環境への影響は、事業者の実行可能な範囲で回避・低減されているものと評価する。そのため、追加の環境保全措置は行わない。

7. 環境影響評価事後調査の委託を受けた者の名称等

受 託 者 の 名 称:株式会社オオバ 東京支店

代表者の氏名: 支店長湯浅敦司

主たる事務所の所在地:東京都千代田区神田錦町三丁目7番1号 興和一橋ビル