(仮称) 仙台高松発電所建設計画に係る 事業計画の変更及び環境影響の再予測評価について

〔報告〕

2021年2月 住友商事株式会社

### はじめに

(仮称) 仙台高松発電所建設計画(以下、「本事業」といいます。)は、木質バイオマス専焼の発電事業として2019年(令和元年)11月28日に環境影響評価準備書に係る市長意見を受領し、2020年(令和2年)2月28日から3月27日までの間に環境影響評価書(以下、「評価書」といいます。)の縦覧を実施しました。

その後、施設設計等の詳細検討を進めていましたが、この度、一部の事業計画について変更することを計画しました。事業計画の変更に当たっては、評価書等に示しました以下の方針に則り環境保全及び 創造のための措置等の検討を行いました。

本計画では、同種同規模のプラントの中で国内最高水準の環境対策を講じることにより、周辺環境への影響を可能な限り低減するとともに、環境影響に対する懸念や不安に対しては丁寧に説明を行う方針である。また、発電した電気は全量を東北地域に供給することで、仙台市における再生可能エネルギーの導入促進及び温室効果ガス削減に資するとともに、再生可能エネルギーで安定的な分散型電源として防災力の向上にも寄与するものと考えている。更に、東北地域の木材資源の利用拡大を通じた林業振興への貢献、災害時に避難する防災拠点としての活用、バイオマス発電所見学を通じた環境教育の推進等を通じて地域に貢献し、地域との共生を図りたいと考えている。

本資料は、評価書に示しました事業計画を変更するに当たり、その変更内容と変更に伴う環境影響の再予測評価結果をとりまとめたものです。

### 目 次

| 1. 変更計画の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1-1. 事業工程の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |
| 1-2. 敷地面積・配置計画の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1      |
| 1-3. 燃料の運搬、搬送等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4      |
| 1-4. 景観計画及び緑化計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 1-5. 排煙脱硫方式・排出ガス温度等の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5      |
| 1-6. 煙突構造の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9      |
| 1-7. 燃料貯蔵設備位置等の変更····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 1-8. 用排水量等の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 1-9. 工事計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · 13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2. 事業計画の変更に伴う環境影響再予測評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · 16 |
| 2-1. 再予測評価項目の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · 16 |
| 2-2. 再予測評価の手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28     |
| 2-3. 再予測評価結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 2-3-1. 大気質(供用による影響:施設の稼働)の再予測評価                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| (1) 年平均値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28     |
| (2) 日平均値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35     |
| (3) 特殊気象条件下の予測····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| ① 逆転層出現時······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ② 内部境界層発達によるフュミゲーション発生時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40     |
| ③ 煙突ダウンウォッシュ発生時····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| <ul><li>④ 建物ダウンウォッシュ発生時・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| (4) 地形影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| (5) 複合影響                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2-3-2. 水 質 (供用による影響:施設の稼働)の再予測評価                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49     |
| (1) 水の汚れ: 化学的酸素要求量 (COD) ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49     |
| (2) 富栄養化:全窒素·全燐··································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2-3-3. 電波障害(存在による影響:工作物等の出現)の再予測評価                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51     |
| (1) 地上デジタル波・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| (2) 衛星放送                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2-3-4. 日照阻害(存在による影響:工作物等の出現)の再予測評価                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2-3-5. 植物・動物(供用による影響:施設の稼働)の再予測評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57     |
| (1) 大気質への影響に伴う植物・動物への影響······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| (2) 水質への影響に伴う植物・動物への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2-3-6. 景 観(存在による影響:工作物等の出現)の再予測評価                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58     |
| (1) 景観資源・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| (2) 主要な眺望景観・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 3. 事後調査計画の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68     |
| (1) 事後調査スケジュールの変更 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| (2) 事後調査報告書の提出時期の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| terre to the control of the control |        |

### 1. 変更計画の概要

### 1-1. 事業工程の変更

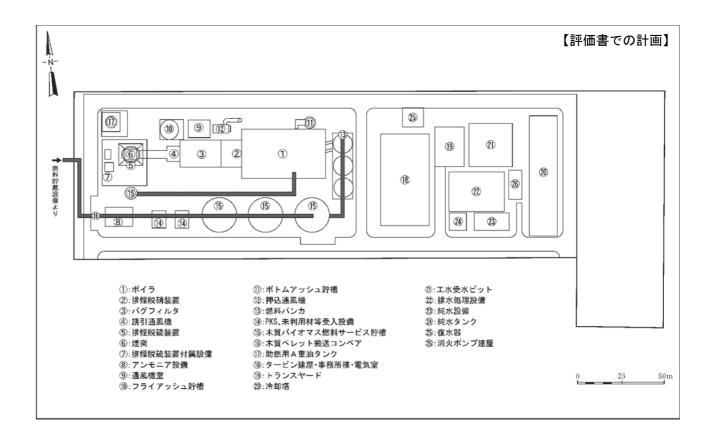
計画変更を反映した詳細設計、施工等を行うため、表1-1に示すとおり評価書の事業工程より約2年間の順延を行う計画である。

項目評価書での計画変更計画着工時期2020年度下期中2022年度上期中営業運転開始時期2023年度下期2025年度下期

表1-1 事業工程の変更概要

### 1-2. 敷地面積・配置計画の変更

評価書の計画よりコンパクトな施設配置とし、荷揚後の木質ペレット燃料の密閉型コンベアによる搬送を効率的に行うため、表1-2、図1-1及び図1-2に示すとおり敷地面積、施設配置計画等を変更する計画である。変更計画では、敷地面積を約0.2万㎡縮小するとともに、計画地の中央にタービン建屋、東側にボイラ、煙突等、西側に冷却塔、排水処理設備等を設置する。


評価書の計画よりコンパクトな施設配置に変更することから、さらに視認範囲を低減し、煙突は計画地より北西側に位置する直近住居地から離れた場所に配置することができる。

なお、敷地面積の変更等に伴い計画地敷地境界の形状も変更する計画であるが、その位置に大きな変更はない。

また、主要な建物等は表1-3に示すとおりであり、その規模に大きな変更はない。

表1-2 敷地面積の変更概要

| 項目   | 評価書での計画 | 変更計画   |
|------|---------|--------|
| 敷地面積 | 約3.6万㎡  | 約3.4万㎡ |



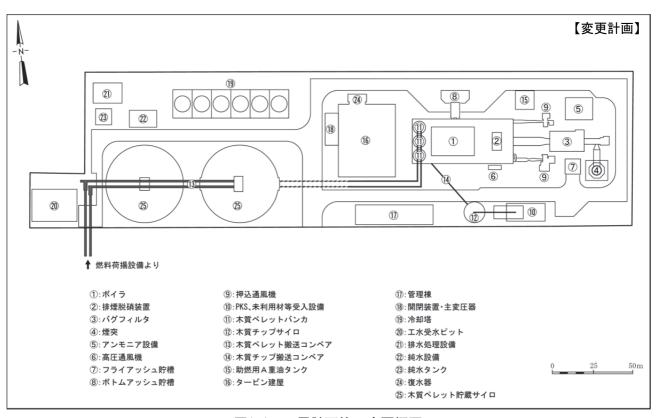
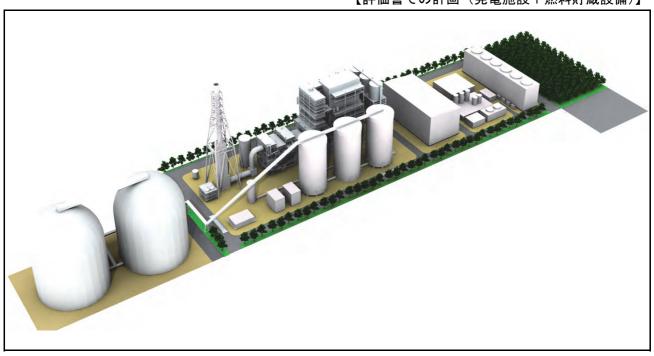




図1-1 配置計画等の変更概要

### 【評価書での計画 (発電施設+燃料貯蔵設備)】






図1-2 完成予想図の変更概要

表1-3 主要な建物等の変更概要

|          | → m; Z=b th/m                | 仕様(形)                                        | 伏・寸法)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 主要建物                         | 評価書での計画                                      | 変更計画                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                              |                                              | ・タービン建屋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                              |                                              | 鉄骨造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| タ        | ービン建屋、                       | 鉄骨造                                          | 約45m(縦)×約35m(横)×約29m(高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 事務       | <b>务所棟、電気室</b>               | 約60m(縦)×約35m(横)×約24m(高さ)                     | ・管理棟、電気室                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                              |                                              | 鉄骨造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                              | Ad H M                                       | 約12m (縦) ×約48m (横) ×約16m (高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | ボイラ                          | 鉄骨造                                          | 鉄骨造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                              | 約27m(縦)×約50m(横)×約60m(高さ)                     | 約27m(縦)×約55m(横)×約60m(高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | VA                           | 自立型構造                                        | 自立型構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 冷却塔                          | 約75m(縦)×約16m(横)×約21m(高さ)                     | 約72m(縦)×約18m(横)×約20m(高さ)<br>  白煙防止装置付                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DIV      | a +1100+165                  | 白煙防止装置付                                      | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PKS      | S、未利用材等                      | 鉄骨造 (禁) × 4400 (増) × 4410 (京文)               | 鉄骨造 (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × **** (***) × *** (***) × **** (***) × **** (***) × **** (***) × **** (***) × *** (***) × **** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × *** (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) × (***) |
|          | 受入設備                         | 約10m(縦)×約23m(横)×約12m(高さ)                     | 約11m (縦) ×約24m (横) ×約14m (高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 煙突                           | 独立型                                          | 自立型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                              | 高さ80m                                        | 高さ80m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 非水処理設備                       | 鉄骨造                                          | 鉄骨造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (担       | 说水機用建屋)<br>                  | 約6m(縦)×約5m(横)×約7m(高さ)                        | 約3m(縦)×約5m(横)×約4m(高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                              | ・木質ペレット、PKSサービス貯槽                            | ・木質ペレット、PKSサービス貯槽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| .444.    |                              | 円筒鋼板構造自立型                                    | - (設置しない)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 燃<br>料   |                              | 6,000㎡×3基                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| サ        | 木質バイオマス                      | φ約20m×約40m(高さ)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ビ        |                              | ・木質チップ貯蔵サイロ                                  | <br> ・木質チップ貯蔵サイロ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ス        |                              | ・ 不負 アック 灯 廠 リイロ<br>300 m <sup>3</sup> × 1 基 | 1,500㎡×1基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 貯槽       |                              | 500m ヘ 1 差<br>φ約 7 m×約15m(高さ)                | φ約14m×約20m(高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 槽        |                              | # 2                                          | 円筒鋼板構造自立型 180㎡×1基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | A重油                          | ₩直口同至 130m < 1 差<br>φ約5m×約6m(高さ)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | <u> </u>                     | 屋外ドーム形式タンク (RC造)                             | フラットボトムサイロ (RC造)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 核        | 然料貯蔵設備                       | 2000 t × 2 基                                 | 約60,000㎡×2基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <i>K</i> | W.T.1 № 1 /EM H.X.  /出       | φ約46m×約54m(高さ)                               | φ約47m×約60m (高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | <b>エントン +7 チョ ロトロ 14</b> (v) | ·                                            | φ ψ1±1 πτ ν ψ100πτ (left C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

注:A重油は起動時助燃料として使用する。

### 1-3. 燃料の運搬、搬送等

主な木質バイオマス燃料である木質ペレットについては、評価書の計画と同様に船舶により海上輸送し、仙台塩釜港(仙台港区)に接岸された船舶からアンローダ(燃料荷揚設備)で陸揚げした後、粉じん飛散対策を施した密閉型コンベアにて密閉型サイロである計画地内の燃料貯蔵設備(木質ペレット貯蔵サイロ)に搬送し、一時貯蔵する。燃料貯蔵設備からボイラへの搬送においても、粉じん飛散対策を施した密閉型コンベアを使用することにより、粉じん飛散及び悪臭の発生を防止する計画とする。

なお、燃料貯蔵設備から木質ペレットバンカまでの間の一部は、木質ペレット搬送用の密閉型コンベアを地下に敷設する計画とする。

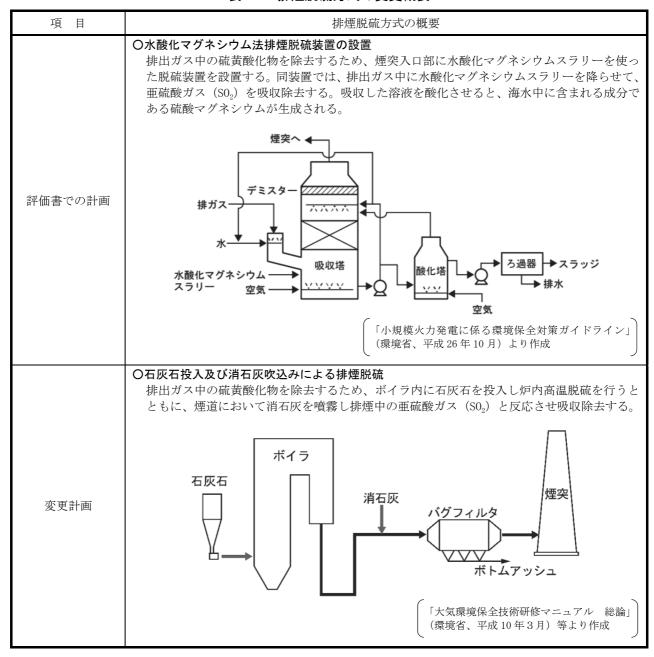
### 1-4. 景観計画及び緑化計画

建築物については、評価書の計画よりさらにコンパクトな施設配置とすることにより視認範囲を 低減するとともに、周辺の景観や海・空・雲などの背景色との調和に配慮し、アースカラーやグレ 一系をベースにした色彩等とする計画である。

計画地の南側敷地境界付近には、計画地より西側エリアの街路樹と連続性を持たせたクロマツ等を植栽し、みどりのネットワーク及びみどりの回廊づくりに貢献していきたいと考えている。仙台

港の玄関口側となる海側は、敷地面積の制約より評価書で計画していたまとまった緑地の配置は困難だが、高木及び中木を交互に植栽し、評価書の計画と同様に工場地景観に対して周囲からの視覚 遮断及び修景を図る計画である。

また、管理棟には屋上緑化を施すとともに、計画地南側及び北側の敷地境界には緑化フェンスを配置し、杜の都をイメージさせる緑化に努める計画である。


### 1-5. 排煙脱硫方式・排出ガス温度等の変更

本事業に係る環境影響評価準備書に対する市民意見として、煙突からの白煙による景観への影響を懸念する意見があった。

煙突からの白煙は、湿式排煙脱硫方式による排出ガス中の水分量の増加が主な発生原因である。 当社は、市民意見を踏まえ白煙の不可視化について検討を重ね、排出ガス中の硫黄酸化物(SOx)を 除去する排煙脱硫方式について、評価書の計画であった水酸化マグネシウムスラリーを使用した水 酸化マグネシウム法による脱硫装置の設置による湿式排煙脱硫方式より乾式脱硫方式に変更するこ とにより、排ガス濃度値を維持しつつ、排出ガス中の水分量を削減し白煙の発生量を減少すること に計画変更した。

変更する排煙脱硫方式は表1-4に示すとおりであり、ボイラ炉内への石灰石投入及び煙道への消石 灰吹込みによる乾式脱硫方式を採用する。

表1-4 排煙脱硫方式の変更概要



変更する排煙脱硫方式を含むばい煙処理フローは図1-3、発電システムの概要は図1-4に示すとおりである。

### 【評価書での計画】



### 【変更計画】

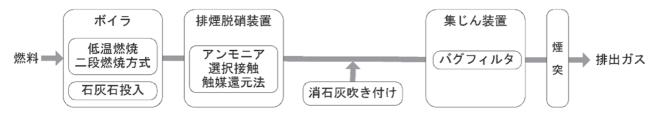
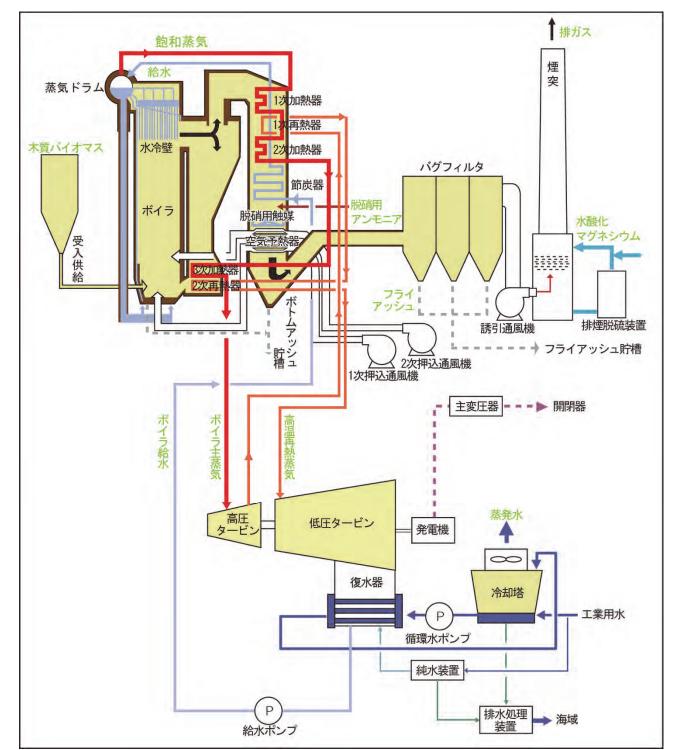




図1-3 ばい煙処理フローの変更概要

### 【評価書の計画】 【変更計画】



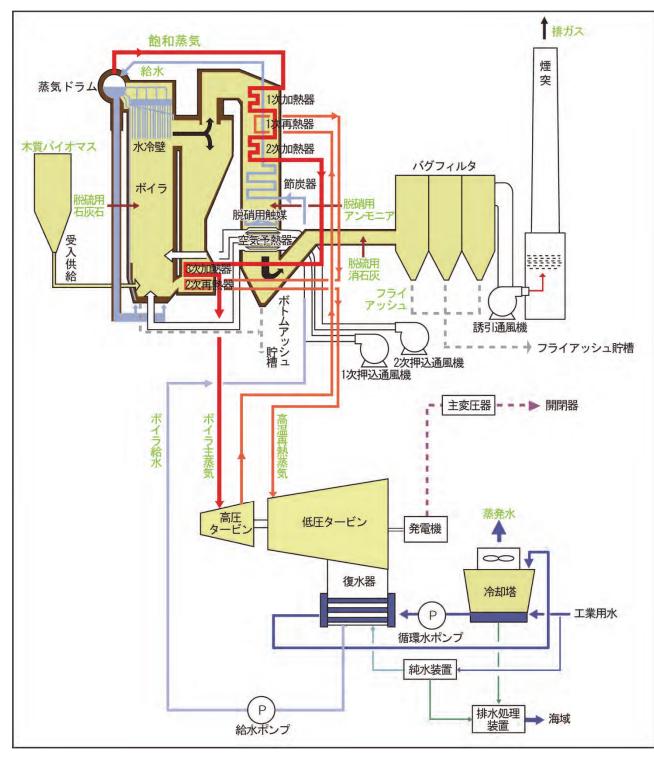



図1-4 発電システムの変更概要

また、排煙脱硫方式の変更等により、表1-5に示すとおり排出ガス量(湿り)、排出ガス温度等が変更される。評価書の計画より排出ガス温度が上昇することにより、相対的には評価書の計画より有効煙突高さが上昇し、大気汚染物質の着地濃度が低減すると考えられる。

なお、硫黄酸化物、窒素酸化物、ばいじんの排出濃度は評価書の計画より変更なく、「大気汚染防止法」(昭和43年法律第97号)の規制基準を遵守することはもとより、国内における同種・同規模プラントの中では、最高水準の排出ガス濃度値を達成するものとする。表1-5に示す硫黄酸化物、窒素酸化物及びばいじんの排出濃度は、発電施設を運転するうえで遵守する値であり、排煙脱硫方式を変更した際においても評価書の計画と同様に硫黄酸化物の排出濃度を遵守する計画とする。

|                                 |      | •                     |           |           |
|---------------------------------|------|-----------------------|-----------|-----------|
| 項                               | 目    | 単 位                   | 評価書での計画   | 変更計画      |
| 燃料の                             | 種類   | _                     | 木質バイオマス   | (変更なし)    |
| 排出ガ<br>(湿り/ぽ                    |      | 10 <sup>3</sup> Nm³/h | 502 / 372 | 450 / 369 |
| 煙突出口オ                           | ブス温度 | $^{\circ}$ C          | 66        | 150       |
| 煙突出口カ                           | ブス速度 | m/s                   | 17        | 20        |
| 煙突高                             | 寄さ   | m                     | 80        | (変更なし)    |
| 硫黄酸化物                           | 排出濃度 | ppm                   | 19        | (変更なし)    |
| 窒素酸化物<br>(0 <sub>2</sub> = 6 %) | 排出濃度 | ppm                   | 40        | (変更なし)    |
| ばいじん<br>(02=6%)                 | 排出濃度 | mg/Nm³                | 10        | (変更なし)    |

表1-5 ばい煙に関する事項の変更概要

### 1-6. 煙突構造の変更

表1-6に示すとおり、煙突の種類を変更する計画である。変更計画では自立型鋼製を採用することにより鉄骨支持が不要となり、さらに視認範囲を低減することができる。

なお、煙突の実高さは評価書の計画より変更なく、地上高80mとする計画である。


| 項目  | 評価書での計画  | 変更計画 |
|-----|----------|------|
| 種類  | 独立型      | 自立型  |
| 構造等 | 鉄骨支持FRP製 | 鋼 製  |

表1-6 煙突の種類等に関する変更概要

### 1-7. 燃料貯蔵設備位置等の変更

図1-5に示すとおり、燃料貯蔵設備の位置を変更する計画である。変更計画では計画地内の南西側に燃料貯蔵設備を設置する。

注:排出ガス量が最も多くなる条件として、木質ペレット70%、PKS (パーム椰子殻) 30%を燃料とした際における定格 最大時の値を示す。



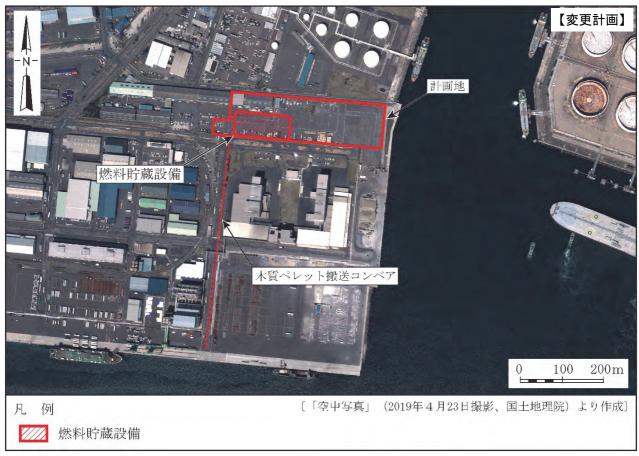



図1-5 燃料貯蔵設備位置の変更概要

### 1-8. 用排水量等の変更

表1-7に示すとおり、発電用水量を減少する計画である。変更計画では、排煙脱硫方式を乾式に変更することから排煙脱硫装置で使用する水量が不要となり、日平均で約2,500㎡、日最大で約1,800㎡を削減する。

また、発電用水量の削減に伴い、一般排水のうちプラント排水についても図1-6に示すとおり評価書の計画より日平均で約300㎡、日最大で約100㎡を削減する計画である。

なお、化学的酸素要求量 (COD)、窒素含有量、燐含有量の排水水質は評価書の計画より変更なく、排水時の水質基準は海域基準よりも厳しい河川基準を遵守するだけでなく、仙台市公害防止条例・下水道条例、下水道法施行令、水質汚濁防止法、ダイオキシン類対策特別措置法に定める基準等も全て遵守するものとする。

表1-7 用水・排水に関する変更概要

|   |              | 項目       |        | 評価書での計画                | 変更計画      |
|---|--------------|----------|--------|------------------------|-----------|
|   |              | ☆ 中 小 旦  | 日平均    | 約9,000㎡/日              | 約6,500㎡/日 |
| ш | <b>-</b> 1.c | 発電用水量    | 日最大    | 約9,500㎡/日              | 約7,700㎡/日 |
| 用 | 水            | 化活用业具    | 日平均    | 約10㎡/日                 | (変更なし)    |
|   |              | 生活用水量    | 日最大    | 約10㎡/日                 | (変更なし)    |
|   |              | プラント批ル具  | 日平均    | 約1,800㎡/日              | 約1,500㎡/目 |
|   | 水            | プラント排水量  | 日最大    | 約2,300㎡/日              | 約2,200㎡/日 |
| 排 | 量            | 生活排水量    | 日平均・最大 | 0<br>(約10㎡/日を公共下水道に排除) | (変更なし)    |
| 水 | 1.           | 化学的酸素要求量 | (COD)  | 20mg/L以下               | (変更なし)    |
|   | 水質           | 窒素含有量    |        | 120mg/L以下              | (変更なし)    |
|   | 貝            | 燐含有量     |        | 16mg/L以下               | (変更なし)    |

## 【評価書の計画】 公共下水道 排除 10 (10) 海域 排出 1,821 (2,300) : m³/日 : 平均值 : 最大值 単位 上級 (大級) 最終放流槽 1,821 (2,300) 放流槽 中和処理設備 活性炭吸着塔 凝集沈殿槽 排水受槽 1, 200 (1, 664) 120 (120) 314 (314) 105 (105) (15) (82) プラント雑排水 純水装置排水 冷却塔ブロー 生活排水等 脱硫排水 る過装置逆洗排水 大気等 7 (7) 大気等 119 (119) 大気等 37 (37) 灰加湿器 脱気器 : 排水量については、四捨五入の関係により合計と内訳が合致しない場合がある。 ボイラ 大気等 ▶ 1,374 (1,374) 大気等 ▶ 5,690 (5,690) 排煙脱硫装置 純水装置 冷却塔 落みダング 890 354) 1,687 (1,687) 119 (134) 232 (232) 工業用水受水槽 120 (120) ろ過装置

工業用水 9,049 (9,528)

【変更計画】

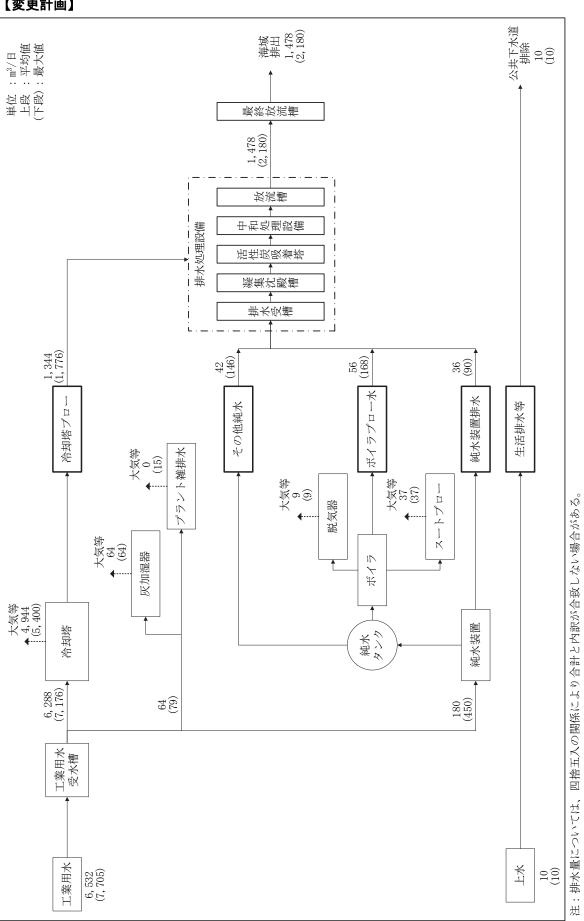


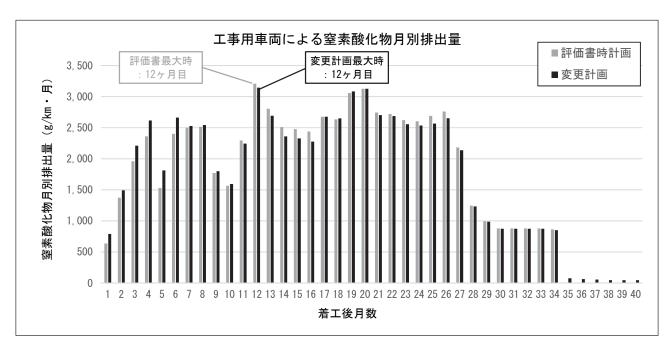

図1-6 一般排水に関するフローの変更概要

Ε¾

10 (10)

### 1-9. 工事計画

表1-3に示すとおり、建設する主要な建物等に大きな変更はなく工事量は評価書の計画と同等であるが、工事期間が評価書の工事工程より約半年延長して約2.5年間となったこと等から、工事用車両の月別運行台数がわずかに変更する計画である。


工事用車両の総台数は表1-8に示すとおりであり、ほぼ同等の通行台数となる計画である。工事用車両による月別の窒素酸化物及び浮遊粒子状物質排出量の比較は図1-7に示すとおりであり、評価書の計画と同じ着工後12ヶ月目が最大となる。また、騒音及び振動の発生量の目安となる小型車換算交通量は図1-8に示すとおりであり、評価書の計画では着工後12ヶ月目が最大であったが、変更計画では着工後19ヶ月目が最大時となる。

また、最大時における窒素酸化物排出量、浮遊粒子状物質排出量及び小型車換算交通量は、評価書の計画よりわずかに減少することとなる。

なお、工事用船舶の航行隻数は、評価書の計画と同等とする計画である。

表1-8 工事用車両総台数の変更概要

| 項目       |     | 工事用車     | 両総台数     |
|----------|-----|----------|----------|
| 块 日      |     | 評価書での計画  | 変更計画     |
|          | 小型車 | 212, 799 | 216, 005 |
| 工事用車両総台数 | 大型車 | 100, 709 | 101, 409 |
|          | 計   | 313, 508 | 317, 414 |



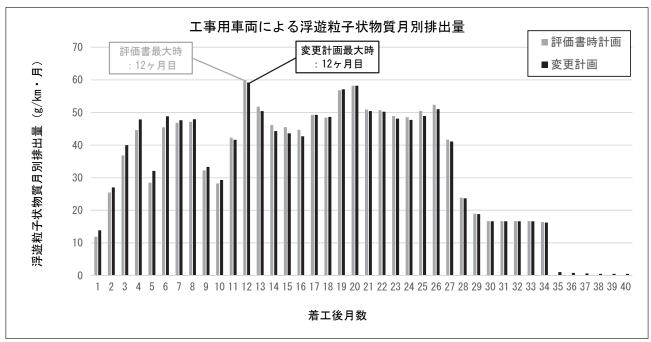



図1-7 工事用車両による窒素酸化物及び浮遊粒子状物質の月別排出量の比較

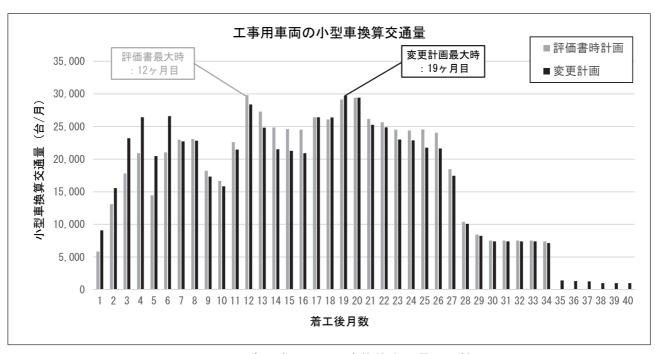



図1-8 工事用車両の小型車換算交通量の比較

### 2. 事業計画の変更に伴う環境影響再予測評価

### 2-1. 再予測評価項目の選定

評価書で環境影響評価項目に選定した環境影響要素について、今回の計画変更に伴い再予測評価の要否について検討を行った。再予測評価が必要となる項目は表2-1、再予測評価項目の選定理由は表2-2のとおりである。

表2-1 再予測評価項目の選定

|                          |                          |             | 環境影響要因の区分            |        | 工具           | 事による        | 影響         |         | 存在による影響     |              | による<br>/響 |
|--------------------------|--------------------------|-------------|----------------------|--------|--------------|-------------|------------|---------|-------------|--------------|-----------|
| 環境影響要素の区分                |                          |             | <b>承</b> 克於晉女凶少匹力    | 資材等の運搬 | 重機の稼働        | 掘削等切土・盛土・発破 | 建築物等の建築    | 工事に伴う排水 | 工作物等の出現     | 施設の稼働        | 輸送        |
|                          |                          |             |                      |        |              | •           |            |         |             |              | 選 搬       |
| 環境の自然的構成要素の良             | 大気環境                     | 大気質         | 二酸化窒素                | 0      | *            |             |            |         |             | 0            | 0         |
| 好な状態の保持を旨として             |                          |             | 二酸化硫黄                |        |              |             |            |         |             | 0            |           |
| 調査、予測及び評価される             |                          |             | 浮遊粒子状物質              | 0      | *            |             |            |         |             | 0            | 0         |
| べき項目                     |                          |             | 粉じん                  | *      | *            |             |            |         |             | *            | *         |
|                          |                          |             | 有害物質                 |        |              |             |            |         |             | ^            |           |
|                          |                          | ᄧᅠᄼᅔ        | その他(微小粒子状物質)         |        | \ <b>•</b> ⁄ |             |            |         |             | <u>△</u>     |           |
|                          |                          | 騒音          | 騒 音                  | 0      | *            |             |            |         |             | *            | 0         |
|                          |                          | 振動          | 振動 低周波音              | 0      | *            |             |            |         |             | * *          | 0         |
|                          |                          | 低周波音<br>悪 臭 | 悪 臭                  |        |              |             |            |         |             | *            |           |
|                          |                          | その他         | 白煙                   |        |              |             |            |         |             | *            |           |
|                          | 水環境                      | 水質          | 水の汚れ                 |        |              |             |            |         |             | 0            |           |
|                          | 7149696                  | 71. 54      | 水の濁り                 |        |              |             |            | *       |             |              |           |
|                          |                          |             | 富栄養化                 |        |              |             |            | 7.      |             | 0            |           |
|                          |                          |             | 溶存酸素                 |        |              |             |            |         |             |              |           |
|                          |                          |             | 有害物質                 |        |              |             |            |         |             |              |           |
|                          |                          |             | 水温                   |        |              |             |            |         |             |              |           |
|                          |                          |             | その他                  |        |              |             |            |         |             |              |           |
|                          |                          | 底 質         | 底 質                  |        |              |             |            |         |             |              |           |
|                          |                          | 地下水汚染       | 地下水汚染                |        |              |             |            |         |             |              |           |
|                          |                          | 水象          | 水源                   |        |              |             |            |         |             |              |           |
|                          |                          |             | 河川流・湖沼               |        |              |             |            |         |             |              |           |
|                          |                          |             | 地下水・湧水               |        |              |             |            |         |             |              |           |
|                          |                          |             | 海域                   |        |              |             |            |         |             |              |           |
|                          |                          | 7 11.       | 水辺環境                 |        |              |             |            |         |             |              | -         |
|                          | 1 145 45 145             | その他         | ed by M. w.          |        |              |             |            |         |             |              |           |
|                          | 土壌環境                     | 地形・地質       | 現況地形                 |        |              |             |            |         |             |              |           |
|                          |                          |             | 注目すべき地形<br>土地の安定性    |        |              |             |            |         |             |              |           |
|                          |                          | 地盤沈下        | 地盤沈下                 |        |              |             |            |         |             |              |           |
|                          |                          | 土壌汚染        | 土壌汚染                 |        |              |             |            |         |             |              |           |
|                          |                          | 工張行来<br>その他 | 工物的朱                 |        |              |             |            |         |             |              |           |
|                          | その他の                     | 電波障害        | 電波障害                 |        |              |             |            |         | Δ           |              |           |
|                          | 環境                       | 日照阻害        | 日照阻害                 |        |              |             |            |         | $\triangle$ |              |           |
|                          |                          | 風害          | 風害                   |        |              |             |            |         |             |              | l         |
|                          |                          | その他         | •                    |        |              |             |            |         |             |              |           |
| 生物の多様性の確保及び自             | 植物                       | •           | 植物相(蒲生干潟)            |        |              |             |            |         |             | $\triangle$  |           |
| 然環境の体系的保全を旨と             | 動物                       |             | 動物相(蒲生干潟)            |        |              |             |            |         |             | Δ            |           |
| して調査、予測及び評価さ             |                          |             |                      |        |              |             |            |         | 1           |              |           |
| れるべき項目                   | 生態系                      |             | 地域を特徴づける生態系          |        |              |             |            |         |             | *            |           |
| 人と自然との豊かな触れ合いの確保及び歴史的、文化 | 景観                       |             | 自然的景観資源              |        |              |             |            |         | 0           |              |           |
| いの確保及び歴史的、文化的所産への配慮を旨として |                          |             | 文化的景観資源              |        |              |             |            |         | 0           |              | 1         |
| 調査、予測及び評価される             | 白針しの料                    | はれ合いの場      | 眺 望<br>自然との触れ合いの場    | 0      |              |             |            |         | 0           |              | 0         |
| べき項目                     | 文化財                      | 540日1100場   | 自然との触れ合いの場<br>指定文化財等 |        |              |             |            |         | 1           |              |           |
| 環境への負荷の少ない持続             | 英1L <sub>円</sub><br>廃棄物等 |             | 角                    |        |              | 0           | 0          |         |             | 0            |           |
| 的な発展が可能な都市の構             | ルボツサ                     |             | 残 土                  |        |              | 0           |            |         |             |              | 1         |
| 築及び地球環境保全への貢             |                          |             |                      |        |              |             |            |         |             | 0            |           |
| 献を旨として予測及び評価             |                          |             | その他                  |        |              |             |            |         |             |              |           |
| されるべき項目                  | 温室効果カ                    |             | 二酸化炭素                | 0      | *            |             |            |         |             | 0            | 0         |
|                          |                          |             | その他の温室効果ガス           | Ö      | *            |             |            |         | 1           |              | Ö         |
|                          |                          |             | オゾン層破壊物質             |        |              |             |            |         |             |              |           |
|                          | 1                        |             |                      |        |              |             | \ <b>Y</b> |         | l           | \ <b>•</b> / |           |
|                          |                          |             | 熱帯材使用                |        |              |             | *          |         |             | *            |           |

注:1.「◎」は重点化項目、「○」は一般項目、「△」は簡略化項目、「※」は配慮項目として、評価書で選定した評価項目を示す。 2.「■」は、再予測評価を行う項目を示す。

表2-2 再予測評価項目の選定理由

|     |         |    |              | 評価書記載事項                                           |                                                                                                                                                                         | 再予測評価                                                                                                                                                                                                          |    |
|-----|---------|----|--------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 盘   | 環境影響要素  | 選定 | E)           | 環境影響要因                                            | 評価項目に選定した理由                                                                                                                                                             | (再予測評価項目)<br>選定した理由、又は選定しない理由                                                                                                                                                                                  | 選定 |
| 大気質 | 二酸化窒素   | 0  | 世 田          | <ul><li>・資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul> | 車両の走行に伴い自動車排ガスを排出することから、評価項目に選定する。<br>主要な交通ルートの沿道に住居等が存在し自動車排ガスの影響が考えられることから、一般項目とする。                                                                                   | 車両の走行に伴い自動車排ガスを排出するが、<br>変更計画による工事内容及び工事量は評価書の<br>計画とほぼ同等であり、工事時の車両通行量の変<br>更は計画していない。また、供用時の車両通行量<br>についても変更は計画していないため、予測結果<br>は評価書に示す内容より変化しないことから、再<br>予測評価項目には選定しない。                                       | 1  |
|     |         | *  | <del> </del> | <ul><li>重機の移働</li></ul>                           | 工事時における重機の稼働に伴い排ガスを排出することから、評価項目に選定する。<br>計画地は既に造成された土地であり土地造成は必要ないことから、工事量は少ない。また、計画地周辺は用途地域境界から約11m以上離れている工業専用地域であり、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、配慮項目とする。 | 工事による重機の稼働に伴い排ガスを排出するが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等で、稼働する工事用重機の種類及び量は評価書の計画とほぼ同等となる。また、計画地の位置に変更はなく、用途地域境界から約1km以上離れている工業専用地域内に位置するため、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。 | 1  |
|     |         | 0  | 供用           | • 施設の稼働                                           | 木質バイオマスの燃焼に伴い排ガスを排出することから、評価項目に選定する。<br>高煙突を伴う事業であり排ガスによる影響が<br>考えられることから、重点化項目に選定する。                                                                                   | 排ガス量、排ガス温度等を変更するため、煙突からの排ガス拡散予測結果が変化する可能性が考えられることから、再予測評価項目に選定する。                                                                                                                                              | ©  |
| 1   | 二酸化硫黄   | 0  | 供用           | • 施設の稼働                                           | 木質バイオマスの燃焼に伴い排ガスを排出することから、評価項目に選定する。<br>高煙突を伴う事業であり排ガスによる影響が<br>考えられることから、重点化項目に選定する。                                                                                   | 排ガス量、排ガス温度等を変更するため、煙突からの排ガス拡散予測結果が変化する可能性が考えられることから、再予測評価項目に選定する。                                                                                                                                              | ©  |
|     | 浮遊粒子状物質 | 0  | 世 田 田        | <ul><li>・資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul> | 車両の走行に伴い自動車排ガスを排出することから、評価項目に選定する。<br>主要な交通ルートの沿道に住居等が存在し自動車排ガスの影響が考えられることから、一般項目とする。                                                                                   | 車両の走行に伴い自動車排ガスを排出するが、<br>変更計画による工事内容及び工事量は評価書の<br>計画とほぼ同等であり、工事時の車両通行量の変<br>更は計画していない。また、供用時の車両通行量<br>についても変更は計画していないため、予測結果<br>は評価書に示す内容より変化しないことから、再<br>予測評価項目には選定しない。                                       | I  |

注:評価書記載事項及び再予測評価の「選定」欄について、「◎」は重点化項目、「○」は一般項目、「△」は簡略化項目、「※」は配慮項目として、選定した評価項目を示す。

|               |    |                   | 評価書記載事項                                             |                                                                                                                                                                         | 再予測評価                                                                                                                                                                                                                                                                  |    |
|---------------|----|-------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 環境影響要素        | 選定 |                   | 環境影響要因                                              | 評価項目に選定した理由                                                                                                                                                             | (再予測評価項目)<br>選定した理由、又は選定しない理由                                                                                                                                                                                                                                          | 選定 |
| 大気質   浮遊粒子状物質 | *  | <del>肯</del><br>二 | <ul><li>重機の稼働</li></ul>                             | 工事時における重機の稼働に伴い排ガスを排出することから、評価項目に選定する。<br>計画地は既に造成された土地であり土地造成は必要ないことから、工事量は少ない。また、計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、配慮項目とする。 | 変更計画においても、工事による重機の稼働に<br>伴い排ガスを排出するが、変更計画による工事内<br>容及び工事量は評価書の計画とほぼ同等で、稼働<br>する工事用重機の種類及び量は評価書の計画と<br>ほぼ同等となる。また、計画地の位置に変更はな<br>く、用途地域境界から約1km以上離れている工業<br>専用地域内に位置するため、周辺に住居、学校、<br>病院等は存在せず、影響を受ける対象が相当期間<br>存在しないことから、評価書に示すとおり配慮項<br>目とし、再予測評価項目には選定しない。           | I  |
|               | 0  | 供用                | • 施設の稼働                                             | 木質バイオマスの燃焼に伴い排ガスを排出することから、評価項目に選定する。<br>高煙突を伴う事業であり排ガスによる影響が考えられることから、重点化項目に選定する。                                                                                       | 排ガス量、排ガス温度等を変更するため、煙突からの排ガス拡散予測結果が変化する可能性が<br>考えられることから、再予測評価項目に選定する。                                                                                                                                                                                                  | 0  |
| 多いろ           | *  | 世<br>田<br>田       | <ul><li>・ 資材等の運搬</li><li>・ 資材・製品・人等の運搬・輸送</li></ul> | 車両の走行を行い積荷等より粉じんが発生する可能性があることから、評価項目に選定する。<br>工事時における残土等の輸送及び供用時における燃料等の輸送においては粉じん飛散防止シートの展張等の環境保全措置を実施するため、粉じんによる影響はほとんどないと考えられることから、配慮項目とする。                          | 車両の走行を行い積荷等より粉じんが発生する可能性があるが、変更計画による工事内容及び<br>工事量は評価書の計画とほぼ同等であり、工事時の車両通行量の変更は計画していない。また、供用時の車両通行量についても変更は計画していない。ない。<br>工事時における残土等の輸送及び供用時における燃料等の輸送においては粉じん飛散防止シートの展張等の輸送においては粉じん飛散防止シートの展張等の環境保全措置を実施するため、粉じんによる影響はほとんどないと考えられることから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。 | 1  |
|               | *  | <u></u> ➡  ☐      | <ul><li>重機の稼働</li></ul>                             | 掘削等により一時的に裸地が発生し、強風により<br>り粉じんが飛散する可能性があることから、評価<br>項目に選定する。<br>掘削等に当たっては、散水等による粉じんの発<br>生・飛散に対する環境保全措置を実施するため、<br>粉じんによる影響はほとんどないと考えられる<br>ことから、配慮項目とする。               | 掘削等により一時的に裸地が発生し、強風により物じんが飛散する可能性があるが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等である。<br>また、掘削等に当たっては、散水等による粉じんの発生・飛散に対する環境保全措置を実施するため、おじんによる影響はほとんどないと考えられることから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。                                                                                      | 1  |

注:評価書記載事項及び再予測評価の「選定」欄について、「◎」は重点化項目、「○」は一般項目、「△」は簡略化項目、「※」は配慮項目として、選定した評価項目を示す。

|             | 6.11                          |                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                                                               |
|-------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 選定                            | I                                                                                                                                                                                                                                                             | $\triangleleft$                                                                                                                                 | 1                                                                                                                                                                    | 1                                                                                                                                                                                                             |
| 世子測評価 再子測評価 | (再子測評価項目)<br>選定した理由、又は選定しない理由 | 燃料である木質バイオマスより粉じんが発生する可能性があるが、主な木質バイオマス燃料である木質ペイオマス燃料である木質ペリットの陸揚げ、搬送及び貯蔵の方法は評価書の計画より変更なく、粉じんによる影響はほとんどないと考えられることから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。                                                                                                           | 排ガス量、排ガス温度等を変更するため、煙突からの排ガスによる微小粒子状物質の影響が変化する可能性が考えられることから、再予測評価項目に選定する。<br>微小粒子状物質の予測評価手法は、評価書時と同じく、その生成メカニズムが十分解明されていないため、評価書と同様に定性的に予測・評価する。 | 車両の走行に伴い騒音が発生するが、変更計画<br>による工事内容及び工事量は評価書の計画とほ<br>ぼ同等であり、工事時の車両通行量の変更は計画<br>していない。また、供用時の車両通行量について<br>も変更は計画していないため、予測結果は評価書<br>に示す内容より変化しないことから、再予測評価<br>項目には選定しない。 | 工事による重機の稼働に伴い騒音が発生するが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等で、稼働する工事用重機の種類及び量は評価書の計画とほぼ同等となる。また、計画地の位置に変更はなく、用途地域境界から約1km以上離れている工業専用地域内に位置するため、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。 |
|             | 評価項目に選定した理由                   | 燃料である木質バイオマスより粉じんが発生する可能性があることから、評価項目に選定する。<br>も。<br>主な木質バイオマス燃料である木質ペレットについては、仙台塩釜港(仙台港区)に接岸された船舶からアンローダで陸揚げした後、粉じん飛散対策を施した本閉型コンベアにて、密閉型ドームである燃料貯蔵設備に搬送し、一時貯蔵する。燃料貯蔵設備から計画地への搬送に当たっても、粉じん飛散対策を施した密閉型コンベアを使用し計画地に搬送する計画であり、粉じんたよる影響はほとんどないと考えられることから、配慮項目とする。 | 木質バイオマスの燃焼を行い排ガス中に微小粒子状物質の原因となる可能性の考えられる物質を含むことから、評価項目に選定する。<br>機小粒子状物質については、その生成メカニズムが十分解明されていないため、現地調査結果を踏まえて定性的に予測・評価することから、簡略化項目とする。        | 車両の走行に伴い騒音が発生することから、評価項目に選定する。<br>主要な交通ルートの沿道に住居等が存在し騒音の影響が考えられることから、一般項目とする。                                                                                        | 正事時における重機の稼働に伴い騒音が発生することから、評価項目に選定する。<br>計画地は既に造成された土地であり土地造成は必要ないことから、工事量は少ない。また、計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、配慮項目とする。                                        |
| 評価書記載事項     | 環境影響要因                        | • 施設の稼働                                                                                                                                                                                                                                                       | <ul><li>施設の稼働</li></ul>                                                                                                                         | <ul><li>・資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul>                                                                                                                    |                                                                                                                                                                                                               |
|             |                               | 供用                                                                                                                                                                                                                                                            | (半)                                                                                                                                             | 工<br>無<br>田                                                                                                                                                          | <b></b>                                                                                                                                                                                                       |
|             | 選定                            | *                                                                                                                                                                                                                                                             | ⊲                                                                                                                                               | 0                                                                                                                                                                    | *                                                                                                                                                                                                             |
|             | 環境影響要素                        | 巻じん                                                                                                                                                                                                                                                           | その他(微小粒子状物質)                                                                                                                                    |                                                                                                                                                                      | ・ 車工 ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※                                                                                                                                                                      |
|             |                               | 大気質                                                                                                                                                                                                                                                           |                                                                                                                                                 | 畑                                                                                                                                                                    | T L                                                                                                                                                                                                           |

|                  |      |              | 評価書記載事項                                           |                                                                                                                                                                        | 再子測評価 再子測                                                                                                                                                                                                     |    |
|------------------|------|--------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 環境影響要素           | 選定   |              | 環境影響要因                                            | 評価項目に選定した理由                                                                                                                                                            | (再予測評価項目)<br>選定した理由、又は選定しない理由                                                                                                                                                                                 | 選定 |
| <b>冲</b>         | *    | 世 田          | • 施設の稼働                                           | 施設の稼働に伴い騒音が発生することから、評価項目に選定する。<br>計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、配慮項目とする。                                                 | 施設の稼働に伴い騒音が発生するが、計画地の位置に変更はなく用途地域境界から約1hm以上離れている工業専用地域内に位置するため、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。                                                                       | I  |
| <b>被</b>         | 0    | 当 世 田        | <ul><li>・資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul> | 車両の走行に伴い振動が発生することから、評価項目に選定する。<br>主要な交通ルートの沿道に住居等が存在し振動の影響が考えられることから、一般項目とする。                                                                                          | 車両の走行に伴い振動が発生するが、変更計画<br>による工事内容及び工事量は評価書の計画とほ<br>ぼ同等であり、工事時の車両通行量の変更は計画<br>していない。また、供用時の車両通行量について<br>も変更は計画していないため、予測結果は評価書<br>に示す内容より変化しないことから、再予測評価<br>項目には選定しない。                                          | I  |
|                  | *    | <del> </del> | <ul><li>重機の稼働</li></ul>                           | 工事時における重機の稼働に伴い振動が発生することから、評価項目に選定する。<br>計画地は既に造成された土地であり土地造成は必要ないことから、工事量は少ない。また、計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、配慮項目とする。 | 工事による重機の稼働に伴い振動が発生するが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等で、稼働する工事用重機の種類及び量は評価書の計画とほぼ同等となる。また、計画地の位置に変更はなく、用途地域境界から約1km以上離れている工業専用地域内に位置するため、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。 | I  |
|                  | *    | 世            | • 施設の稼働                                           | 施設の稼働に伴い振動が発生することから、評価項目に選定する。<br>計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、配慮項目とする。                                                 | 施設の稼働に伴い振動が発生するが、計画地の位置に変更はなく用途地域境界から約1hm以上離れている工業専用地域内に位置するため、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。                                                                       | I  |
| 低周波音             | *    | 無            | • 施設の稼働                                           | 施設の稼働に得い低周波音が発生することから、評価項目に選定する。<br>引面地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居、学校、<br>病院等は存在せず、影響を受ける対象が相当期間<br>存在しないことから、配慮項目とする。                                       | 施設の稼働に伴い低周波音が発生するが、計画地の位置に変更はなく用途地域境界から約1km以上離れている工業専用地域内に位置するため、周辺に住居、学校、病院等は存在せず、影響を受ける対象が相当期間存在しないことから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。                                                                     | I  |
| 注:評価書記載事項及び再予測評価 | 麗」の! | 定」欄以         | こついて、「◎」は重点                                       | :評価書記載事項及び再予測評価の「選定」欄について、「◎」は重点化項目、「○」は一般項目、「△」は簡略化項目、「                                                                                                               | 「※」は配慮項目として、選定した評価項目を示す。                                                                                                                                                                                      |    |

|         | 選定                            | 株、県 漕令で県慮し                                                                                                                                                                                                                                       | に と と と で し し し し し し し し し し し し し し し し                                                                                 | (3)<br>回<br>関                                                                | る書る実ほずル                                                                                                                                                                  | る 類 る                                                                                         |
|---------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 再予測評価   | (再予測評価項目)<br>選定した理由、又は選定しない理由 | 排煙脱硝方式は評価書の計画より変更なく、特<br>定悪臭物質であるアンモニアを使用する。また、<br>木質バイオマスの燃焼に伴う排ガスによる悪臭<br>を懸念する市民意見がある。<br>排煙脱硫装置で使用するアンモニアは、評価書<br>に示す計画のとおり漏えいしないよう関係法令<br>に基づき取扱うこと、木質バイオマスはボイラで<br>完全燃焼するため煙突からの排ガスによる悪臭<br>は発生しないことから、評価書に示すとおり配慮<br>項目とし、再予測評価項目には選定しない。 | 開放型冷却塔を使用することから、気象条件によっては白煙が発生する可能性があるが、冷却塔には白煙防止機能を付加する計画に変更はなく、白煙による影響はほとんどないと考えられることから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。 | 排水量を変更するため、水の汚れを伴う排水の<br>到達距離及び水質の拡散予測結果が変化する可能性が考えられることから、再予測評価項目に選<br>定する。 | 工事において水の濁りを伴う排水が発生するが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等である。<br>排水は前面海域である公共用水域に排水するが沈砂槽等による処理を行う環境保全措置を実施する計画に変更なく、水の濁りによる影響はほとんどないと考えられることから、評価書に示すとおり配慮項目とし、再予測評価項目には選定しない。 | 排水量を変更するため、富栄養化の原因となる<br>窒素分及び燐分を含む排水の到達距離及び水質<br>の拡散予測結果が変化する可能性が考えられる<br>ことから、再予測評価項目に選定する。 |
|         | 評価項目に選定した理由                   | 排煙脱硝装置において特定悪臭物質であるアンモニアを使用する。また、木質バイオマスの燃焼に伴う排ガスによる悪臭を懸念する市民意見があることから、評価項目に選定する。<br>排煙脱硫装置で使用するアンモニアは、漏えいしないよう関係法令に基づき取扱うこと、木質バイオマスはボイラで完全燃焼するため煙突からの排ガスによる悪臭は発生しないことから、配慮項目とする。                                                                | 開放型冷却塔を使用することから、気象条件によっては白煙が発生する可能性があることから、評価項目として選定する。 冷却塔には白煙防止機能を付加するため白煙による影響はほとんどないと考えられることから、配慮項目とする。               | 施設の稼働において水の汚れを伴う排水が発生することから、評価項目として選定する。<br>排水は、公共用水域である海域に排出することから、一般項目とする。 | 工事において水の濁りを伴う排水が発生することから、評価項目として選定する。<br>排水は前面海域である公共用水域に排水する<br>が沈砂槽等による処理を行う環境保全措置を実施するため、水の濁りによる影響はほとんどない<br>と考えられることから、配慮項目とする。                                      | 施設の稼働において富栄養化の原因となる窒素分及び燐分を含む排水が発生することから、評価項目として選定する。排水は、公共用水域である海域に排出することから、一般で同りたよ          |
| 評価書記載事項 | 環境影響要因                        | • 施設の稼働                                                                                                                                                                                                                                          | • 施設の稼働                                                                                                                   | • 施設の稼働                                                                      | <ul><li>工事に伴う排水</li></ul>                                                                                                                                                | • 施設の稼働                                                                                       |
|         |                               | 無                                                                                                                                                                                                                                                | 兼                                                                                                                         | 供用                                                                           | <b>声</b>                                                                                                                                                                 | 兼                                                                                             |
|         | 選定                            | *                                                                                                                                                                                                                                                | *                                                                                                                         | 0                                                                            | *                                                                                                                                                                        | 0                                                                                             |
|         | 環境影響要素                        |                                                                                                                                                                                                                                                  | 型型                                                                                                                        | 水の汚れ                                                                         | 水の適り                                                                                                                                                                     | <b>富栄養化</b>                                                                                   |
|         |                               | 馬貝                                                                                                                                                                                                                                               | か<br>ら<br>者                                                                                                               | 太                                                                            |                                                                                                                                                                          |                                                                                               |

|           |                 |    | 評価書記載事項                   |                                                                                                                                                                                                                                                                        | 再予測評価                                                                                                                                                                                                           |    |
|-----------|-----------------|----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 環境影響要素    | 選定              | E, | 環境影響要因                    | 評価項目に選定した理由                                                                                                                                                                                                                                                            | (再予測評価項目)<br>選定した理由、又は選定しない理由 引                                                                                                                                                                                 | 選定 |
| 電波障害      | $\triangleleft$ | 存在 | <ul><li>工作物等の出現</li></ul> | 高さ80mの煙突を設置することから、評価項目として選定する。<br>計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居等は存在せず影響を受ける対象が相当期間存在しないこと、煙突は幅が狭い構築物であるため、電波障害が発生する範囲は小さいと考えられることから、簡略化項目とする。                                                                                                               | 煙突等の配置を変更するため、遮蔽障害及び反<br>射障害の予測範囲が変化する可能性が考えられ<br>ることから、再予測評価項目に選定する。                                                                                                                                           | ⊲  |
| 日照阻害      | ⊲               | 存在 | <ul><li>工作物等の出現</li></ul> | 高さ80mの煙突を設置することから、評価項目として選定する。<br>計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、周辺に住居等は存在せず影響を受ける対象が相当期間存在しないこと、煙突は幅が狭い構築物であるため、日照阻害が発生する範囲は小さいと考えられることから、簡略化項目とする。                                                                                                               | 煙突等の配置を変更するため、日影の予測範囲が変化する可能性が考えられることから、再予測評価項目に選定する。                                                                                                                                                           | ⊲  |
| 植物相(蒲生干潟) | $\triangleleft$ | 供用 | <ul><li>施設の稼働</li></ul>   | 計画地の周辺に位置する蒲生干潟に対する大<br>気質、水質への影響を考慮し、評価項目として選<br>定する。<br>計画地周辺は用途地域境界から約1km以上離<br>れている工業専用地域であり、蒲生干潟とは一定<br>の距離が離れているため影響は小さいと考えら<br>れることから、簡略化項目とする。<br>なお、計画地は既に造成された工場用地であり<br>自然植生は分布しておらず、注目すべき種が存在<br>する可能性はほとんどないと考えられる。また、<br>計画地には注目すべき群落及び樹木・樹林等は存<br>在しない。 | 排ガス量、排ガス温度等を変更するため、煙突からの排ガス拡散予測結果が変化する可能性が考えられる。また、排水量を変更するため、水の汚れを伴う排水及び富栄養化の原因となる窒素分及び燐分を含む排水の到達距離が変化する可能性が考えられる。<br>影響が変化する可能性が考えられる、再生干潟における大気質及び水質の影響が変化する可能性が考えられる。<br>影響が変化する可能性が考えられることから、再予測評価項目に選定する。 | ∢  |

注:評価書記載事項及び再予測評価の「選定」欄について、「◎」は重点化項目、「○」は一般項目、「△」は簡略化項目、「※」は配慮項目として、選定した評価項目を示す。

| (事項<br> | (事項 | 五十二/ 小章 | 土界か「小鼠く口                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 再予測評価 (再予測評価                                                                                                                                                                                                                                     | <b>小</b><br>買   |
|---------|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|         | 点   | 環境影響要因  | 評価項目に選定した理由                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  | 選定              |
| (共)     | •   | 施設の稼働   | 計画地周辺に位置する動物の生息地として重要な地域である蒲生干潟に対する大気質、水質への影響を考慮し、評価項目として選定する。<br>計画地周辺は用途地域境界から約1km以上離れている工業専用地域であり、蒲生干潟とは一定の距離が離れているため影響は小さいと考えられることから、簡略化項目とする。<br>なお、計画地は既に造成された工場用地であり自然植生は分布しておらず、注目すべき種が存在する。<br>なお、計画地は既に造成された工場用地であり自然植生は分布しておらず、注目すべき種が存在する。<br>なお、計画地は現に造成された工場用地であり自然植生は分布しておらず、注目すべき種が存在する。<br>なお、計画地は現たとんどないと考えられ、計画地周辺にはた日すべき生息地は存在しない。計画地周辺にはは日かくかとないと考えられ、計画地周辺にはハヤブサの営巣地が存在するが、これらと一定の距離が離れており影響は及ばないと考えられるが、本事業では、復水器の冷却は循環冷却方式の冷却塔により行い、大量の温排水は発生しないとから、海生動物への影響はほとんどないと考えられることから、評価項目として選定したい。 | 排ガス量、排ガス温度等を変更するため、煙突<br>からの排ガス拡散予測結果が変化する可能性が<br>考えられる。また、排水量を変更するため、水の<br>汚れを伴う排水及び富栄養化の原因となる窒素<br>分及び燐分を含む排水の到達距離が変化する可<br>能性が考えられる。<br>そのため、補生干潟における大気質及び水質の<br>影響が変化する可能性が考えられることから、再<br>予測評価項目に選定する。                                       | $\triangleleft$ |
| (供用     |     | 施設の稼働   | 計画地は既に造成された工場用地であり自然<br>植生は分布しておらず、地域を特徴づける生態系<br>が存在する可能性はほとんどないと考えられる。<br>また、計画地周辺にはハヤブサの営巣地が存在す<br>るが、これらと一定の距離が離れており影響は及<br>ばないと考えられる。<br>一方、地域を特徴づける生態系の場である蒲生<br>干潟については、植物、動物として評価すること<br>とし、生態系については配慮項目として選定す<br>る。                                                                                                                                                                                                                                                                                        | 計画地の位置に変更はなく工場用地であり自<br>然植生は分布しておらず、地域を特徴づける生態<br>系が存在する可能性はほとんどないと考えられ<br>る。また、計画地周辺にはハヤブサの営巣地が存<br>在するが、これらと一定の距離が離れており影響<br>は及ばないと考えられる。<br>一方、地域を特徴づける生態系の場である蒲生<br>干潟については、植物、動物として評価すること<br>とし、生態系については評価書に示すとおり配慮<br>項目とし、再予測評価項目には選定しない。 | I               |
| 存在      |     | 工作物等の出現 | 計画地には自然的景観資源及び文化的景観資源が存在しないが、計画地周辺に自然的景観資源及び文化的景観資源が存在し、本事業による工作物が視認できる可能性があることから、評価項目に選定する。<br>高さ80mの煙突を設置することから、一般項目とする。                                                                                                                                                                                                                                                                                                                                                                                          | 煙突等の配置を変更するため、計画地周辺の自<br>然的景観資源及び文化的景観資源において本事<br>業による工作物の視認状況が変化する可能性が<br>考えられることから、再予測評価項目に選定す<br>る。                                                                                                                                           | 0               |

|         | 選定                            | 0                                                                                        |                                                                                                                                                                                | 1                                                                                                                    | I                                                                                                                                          | I                                                                                           | I                                                                                                                                                                                         |
|---------|-------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 再予測評価   | (再予測評価項目)<br>選定した理由、又は選定しない理由 | 煙突等の配置を変更するため、計画地周辺の眺望点からの眺望景観が変化する可能性が考えられることから、再予測評価項目に選定する。                           | 本事業の主要な交通ルートの近傍に自然との<br>触れ合いの場があるが、変更計画による工事内容<br>及び工事量は評価書の計画とほぼ同等であり、工<br>事時の車両通行量の変更は計画していない。ま<br>た、供用時の車両通行量についても変更は計画していないため、予測結果は評価書に示す内容より<br>変化しないことから、再予測評価項目には選定しない。 | 工事時及び供用時において廃棄物が発生するが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等であり廃棄物の発生量は評価書の計画より変更ないため、予測結果は評価書に示す内容より変化しないことから、再予測評価項目には選定しない。 | 工事時において残土が発生するが、変更計画に<br>よる工事内容及び工事量は評価書の計画とほぼ<br>同等であり残土の発生量及び処理・処分方法は評<br>価書の計画より変更ないため、予測結果は評価書<br>に示す内容より変化しないことから、再予測評価<br>項目には選定しない。 | 本事業の供用に伴い用水を行うが、用水量は評価書の計画より減少するため、水利用の影響は評価書の予測結果より低減することから、再予測評価項目には選定しない。                | 車両の走行及び船舶の航行に伴い二酸化炭素<br>を排出するが、工事内容及び工事量は評価書の計<br>画とほぼ同等であり、工事時の車両通行量及び船<br>船航行量の変更は計画していない。また、供用時<br>の車両通行量及び船舶航行量についても変更は<br>計画していないため、予測結果は評価書に示す内<br>容より変化しないことから、再予測評価項目には<br>選定しない。 |
|         | 評価項目に選定した理由                   | 計画地より約2~3km離れた場所に公園等の<br>眺望点が存在することから、評価項目として選定<br>する。<br>高さ80mの煙突を設置することから、一般項目<br>とする。 | 本事業の主要な交通ルートの近傍に自然との<br>触れ合いの場があることから、評価項目として選<br>定する。<br>本事業の主要な交通ルートが、自然との触れ合<br>いの場へのアクセスルートと重複する可能性が<br>あることから、一般項目とする。                                                    | 工事時及び供用時において廃棄物が発生する<br>ことから、評価項目として選定する。<br>発生した廃棄物は計画地外で処理・処分するこ<br>とから、一般項目とする。                                   | 工事時において残土が発生することから、評価<br>項目として選定する。<br>発生した残土は計画地外で処理・処分すること<br>から、一般項目とする。                                                                | 本事業の供用に伴い用水を行うことから、評価項目として選定する。<br>本事業において仙台圏工業用水道及び公共上水道より受水することから、一般項目とする。                | 車両の走行及び船舶の航行に伴い二酸化炭素を排出することから、評価項目に選定する。<br>本事業における関係車両の走行及び関係船舶<br>の航行により相当量の二酸化炭素を排出する可能性が考えられることから、一般項目とする。                                                                            |
| 評価書記載事項 | 環境影響要因                        | <ul><li>工作物等の出現</li></ul>                                                                | <ul><li>・資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul>                                                                                                                              | <ul><li>切土・盛土・発<br/>破・掘削等</li><li>建築物等の建築</li><li>施設の稼働</li></ul>                                                    | <ul><li>切土・盛土・発破・掘削等</li></ul>                                                                                                             | • 施設の稼働                                                                                     | <ul><li>・資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul>                                                                                                                                         |
|         |                               | 存在                                                                                       | 世 田 田                                                                                                                                                                          | 工事 供用                                                                                                                | <del>」</del><br>一                                                                                                                          | (<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( | 工<br>供<br>用                                                                                                                                                                               |
|         | 選定                            | 0                                                                                        | 0                                                                                                                                                                              | 0                                                                                                                    | 0                                                                                                                                          | 0                                                                                           | 0                                                                                                                                                                                         |
|         | 環境影響要素                        | 景 観 一 眺 望                                                                                | 自然との触れ合いの場                                                                                                                                                                     | 廃棄物等 廃棄物                                                                                                             | 凝                                                                                                                                          | <b>米利用</b>                                                                                  | 温室効果 二酸化炭素ガス等                                                                                                                                                                             |

|         | 選定                            | 化炭素<br>                                                                                                                                  | の<br>中<br>神<br>か<br>か<br>が<br>が<br>が<br>が<br>が<br>が<br>な<br>な<br>な<br>な<br>な<br>な<br>な<br>な<br>な<br>な<br>な<br>な<br>な                                                                                                                                                          | ペン及び<br>る工事<br>を<br>を<br>を<br>を<br>な<br>な<br>な<br>な<br>い<br>た<br>た<br>な<br>な<br>い<br>た<br>な<br>い<br>な<br>い<br>な<br>い<br>い<br>い<br>い                                                                                      | マス及び<br>る工事<br>部間書の<br>語書に<br>評価項                                                                                                                     |
|---------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 田子測評価   | (再子測評価項目)<br>選定した理由、又は選定しない理由 | 337 T HY WIN TIE                                                                                                                         | 本事業で使用する木質バイオマス燃料の生産<br>過程や輸送過程においてエネルギーを消費する<br>が、変更計画による燃料使用量は評価書の計画と<br>同等であり、燃料の使用に伴う二酸化炭素の発生<br>量及び燃料使用量に見合った分の二酸化炭素を<br>吸収する相当量の森林量(森林面積)に変更はな<br>いため、予測結果は評価書に示す内容より変化し<br>ないことから、再予測評価項目には選定しない。                                                                      | 車両の走行及び船舶の航行に伴いメタン及び一酸化二窒素が発生するが、変更計画による工事<br>一酸化二窒素が発生するが、変更計画による工事<br>内容及び工事量は評価書の計画とほぼ同等であり、工事時の車両通行量及び船舶航行量の変更は<br>計画していない。また、供用時の車両通行量及び<br>船舶航行量についても変更は計画していないた<br>め、予測結果は評価書に示す内容より変化しない<br>ことから、再予測評価項目には選定しない。 | 工事時における重機の稼働に伴いメタン及び一酸化二窒素を排出するが、変更計画による工事内容及び工事量は評価書の計画とほぼ同等であり、稼働する工事用重機の種類及び量は評価書の計画とほぼ同等となるため、予測結果は評価書に示け容より変化しないことから、再予測評価項目には選定しない。             |
|         | 評価項目に選定した理由                   | 工事時における重機の稼働に伴い二酸化炭素を排出することから、評価項目に選定する。<br>計画地は既に造成された土地であり土地造成は必要ないことから工事量は少なく、重機の稼働に伴い発生する二酸化炭素は僅かな量と想定され、影響はほとんどない考えられることから、配慮項目とする。 | 本事業は、二酸化炭素に関する環境負荷がない<br>木質バイオマス専焼の発電事業であり、木質バイ<br>オマス燃料はカーボンニュートラルであること<br>から、二酸化炭素の排出量は対象外である。しか<br>し、燃料の生産過程や輸送過程においてエネルギーを消費することから、評価項目に選定する。<br>また、本事業では約45万4/年の木質バイオマス<br>ペレットを主に消費する計画であり、燃料使用量<br>に見合った分の二酸化炭素を吸収する相当量の<br>森林量(森林面積)が持続的に必要となると考え<br>られることから、一般項目とする。 | 車両の走行及び船舶の航行に伴いメタン及び一酸化二窒素を排出することから、評価項目に選定する。<br>本事業における関係車両の走行及び関係船舶の航行により相当量のメタン及び一酸化二窒素を排出する可能性が考えられることから、一般項目とする。                                                                                                   | 工事時における重機の稼働に伴いメタン及び一酸化二窒素を排出することから、評価項目に選定する。<br>計画地は既に造成された土地であり土地造成は必要ないことから工事量は少なく、重機の稼働に伴い発生するメタン及び一酸化二窒素は僅かなな量と想定され、影響はほとんどない考えられることから、配慮項目とする。 |
| 評価書記載事項 | 環境影響要因                        | <ul><li>重機の稼働</li></ul>                                                                                                                  | ・施設の稼働                                                                                                                                                                                                                                                                        | <ul><li>資材等の運搬</li><li>・資材・製品・人等の運搬・輸送</li></ul>                                                                                                                                                                         | <ul><li>重機の稼働</li></ul>                                                                                                                               |
|         |                               | <del></del><br>丁                                                                                                                         | <b></b>                                                                                                                                                                                                                                                                       | 世 田                                                                                                                                                                                                                      | <del> </del>                                                                                                                                          |
|         | 選定                            | *                                                                                                                                        | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                        | *                                                                                                                                                     |
|         | 環境影響要素                        | 二酸化炭素                                                                                                                                    |                                                                                                                                                                                                                                                                               | その他の温室効果ガス                                                                                                                                                                                                               | その他の温室効果ガス                                                                                                                                            |
|         | 淵                             | 温室効果ガス等                                                                                                                                  |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                       |

|         | 1                             |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |
|---------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 選定                            | 1                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |
| 世子      | (再予測評価項目)<br>選定した理由、又は選定しない理由 |                                                                                                                                                                                                                                                                               | することで連びX体による森外機能の要大を回<br>避する計画である。本質チップについては森林認<br>記等を得ている本材を前提とし、無理な伐採によ<br>る供給が行われないよう地元企業と密にコミュ<br>ニケーションを取りながら検討を進める。また、<br>PKSについては供給者側で環境に配慮した生産が<br>行われていることを確認した上で使用可否を判<br>断する計画である。<br>以上の環境配慮について評価書と同等の計画<br>とすることから、評価書に示すとおり配慮項目と |
|         | 評価項目に選定した理由                   | 工事時における建築物等の建築において、コンクリート型枠等に木材を使用する可能性のあることから、評価項目に選定する。 熱帯材使用について、できる限り非本質のコンクリート型枠を採用し、基礎工事等において計画的な型枠転用に努める等の環境保全措置を実施するため、熱帯材使用による影響はほとんどないと考えられることから、配慮項目とする。<br>供用時において燃料に木質バイオマスを使用するため、評価項目に選定する。<br>木質バイオマス燃料のうち主燃料である木質でとかいでは、トレーサビリティ(由来保証)が100%確実な資源を輸入して利用すること。 | で母佐な休による森や機能の数々を凹班する計<br>面である。本質チップについては森林認証等を得<br>ている木材を前提とし、無理な技術による供給が<br>行われないよう地元企業と密にコミュニケーションを取りながら検討を進める。また、PKSにつ<br>いては供給者側で環境に配慮した生産が行われていることを確認した上で使用可否を判断する<br>計画である。<br>以上の環境配慮を行うことから、配慮項目とする。                                    |
| 評価書記載事項 | 環境影響要因                        | <ul><li>建築物等の建築</li><li>施設の稼働</li></ul>                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |
|         |                               | H<br>H<br>H                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
|         | 選定                            | * *                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
|         | 環境影響要素                        | 温室効果 熱帯材使用ガス等                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |

| | 注:評価書記載事項及び再予測評価の「選定」欄について、「◎」は重点化項目、「○」は一般項目、「△」は簡略化項目、「※」は配慮項目として、選定した評価項目を示す。

### 2-2. 再予測評価の手法

再予測評価を行う項目に係る予測及び評価の手法は、評価書で示した手法と同じ手法とした。

### 2-3. 再予測評価の結果

再予測評価結果の概要は次のとおりである。変更計画に基づき再予測を行った結果、本事業による影響は評価書の計画による影響と同等又は低減すると予測された。

### 2-3-1. 大気質(供用による影響:施設の稼働)の再予測評価

### (1) 年平均值

二酸化窒素、二酸化硫黄及び浮遊粒子状物質の年平均値の再予測結果及び評価書の予測結果との比較は、表2-3・表2-4及び図2-1に示すとおりである。

変更計画に基づく再予測の結果、最大着地濃度及び測定局濃度ともに評価書の予測結果より減少し、評価書の予測結果と同様に環境基準及び仙台市環境基本計画定量目標を下回ると予測された。

また、微小粒子状物質は、大気中での化学反応により生成する二次生成粒子の寄与が大きく、二次生成粒子は大気中での挙動が複雑であり、評価書の段階では原因物質の排出源が多様であること等から精度をもった予測は困難であるとされていたが、微小粒子状物質の発生原因となる可能性のある窒素酸化物、硫黄酸化物、ばいじんの排出に対して、国内における同種・同規模のプラントとしては最高水準の排出ガス濃度値を達成するよう対策を実施することから、本事業による微小粒子状物質の影響は少ないものと予測された。

微小粒子状物質に係る環境保全及び創造のための措置としては、変更計画においても評価書に示す排出ガス濃度値を維持し、微小粒子状物質の発生原因となる可能性のある窒素酸化物、硫黄酸化物、ばいじんの排出に対して、国内における同種・同規模のプラントとしては最高水準の排出ガス濃度値を達成するよう対策を実施することから、変更計画による微小粒子状物質の影響は少ないものと予測された。

表2-3 年平均値予測結果の比較(最大着地濃度)

|                         | <b>在</b> 口    | 光子                              | 予測        | 結果         | 差分         |
|-------------------------|---------------|---------------------------------|-----------|------------|------------|
|                         | 項目            | 単位                              | 評価書       | 変更計画       | (変更計画-評価書) |
|                         | 寄与濃度(①)       | ppm                             | 0. 00020  | 0.00011    | -0.00009   |
| 一系加索主                   | バックグラウンド濃度(②) | ppm                             | 0.012     | 0.012 (同左) | _          |
| 二酸化窒素                   | 将来環境濃度(③)     | ppm                             | 0. 0122   | 0. 01211   | -0. 00009  |
|                         | 寄与率 (①/③)     | %                               | 1.6       | 0.9        | -0.7       |
|                         | 寄与濃度(①)       | ppm                             | 0.00010   | 0. 000046  | -0.000054  |
| <b>→ 悪糸 // , アた 土</b> 土 | バックグラウンド濃度(②) | ppm                             | 0.001     | 0.001 (同左) | _          |
| 二酸化硫黄                   | 将来環境濃度(③)     | ppm                             | 0.00110   | 0.001046   | -0.000054  |
|                         | 寄与率 (①/③)     | %                               | 9. 1      | 4. 4       | -4. 7      |
|                         | 寄与濃度(①)       | $\text{mg}/\text{m}^{\text{3}}$ | 0.000050  | 0. 000028  | -0.000022  |
| 运送特力化协府                 | バックグラウンド濃度(②) | $mg/m^3$                        | 0.012     | 0.012 (同左) | _          |
| 浮遊粒子状物質                 | 将来環境濃度(③)     | $mg/m^3$                        | 0. 012050 | 0. 01203   | -0.000022  |
|                         | 寄与率 (①/③)     | %                               | 0. 4      | 0.2        | -0.2       |
| 最大                      | 着地濃度地点        | _                               | 北西 約2.5km | 北西 約3.2km  | _          |

注:1. 寄与濃度は、着地濃度が最大となる濃度を示す。

<sup>2.</sup> バックグラウンド濃度は、最大着地濃度地点に最も近い多賀城市役所の値とした。

表2-4(1) 年平均値予測結果の比較(測定局濃度:二酸化窒素)

|      |               |                 |                              | 評価書                                       |                   |                         |                     |                              | 変更計画                         |                     |                         | 差分<br>(変更計画一      | 差分<br>画一評価書)            |
|------|---------------|-----------------|------------------------------|-------------------------------------------|-------------------|-------------------------|---------------------|------------------------------|------------------------------|---------------------|-------------------------|-------------------|-------------------------|
| 図番中市 | 測定局名          | 李<br>歌<br>(ppm) | バッカバラカンド<br>濃度<br>(ppm)<br>② | 将来環境<br>濃度<br>(ppm)<br>(ppm)              | 寄与率<br>(%)<br>(%) | 年間98%値<br>の換算値<br>(ppm) | 李<br>(ppm)<br>(Dpm) | バッカゲラカンド<br>濃度<br>(ppm)<br>② | 将来環境<br>濃度<br>(ppm)<br>③=①+② | 寄与棒<br>(%)<br>(1)/③ | 年間98%値<br>の換算値<br>(ppm) | 寄与<br>濃度<br>(ppm) | 年間98%値<br>の換算値<br>(ppm) |
| 1    | 福室            | 0.00003         | 0.009                        | 0.00903                                   | 0.3               | 0.02290                 | 0.00002             | 0.009                        | 0.00902                      | 0.2                 | 0.02288                 | -0.00001          | -0.00002                |
| 3    | 鶴谷            | 0.00002         | 0.008                        | 0.00802                                   | 0.2               | 0.02153                 | 0.00001             | 0.008                        | 0.00801                      | 0.2                 | 0.02152                 | -0.00001          | -0.00001                |
| 4    | 由 野           | 0.00002         | 0.013                        | 0.01302                                   | 0.2               | 0.02828                 | 0.00001             | 0.013                        | 0.01301                      | 0.1                 | 0.02827                 | -0.00001          | -0.00001                |
| 2    | 七剱            | 0,00001         | 0.011                        | 0.01101                                   | 0.1               | 0.02557                 | 0.00001             | 0.011                        | 0.01101                      | 0.1                 | 0.02557                 | 0                 | 0                       |
| 9    | 植祭            | 0.00006         | 0.009                        | 90600 0                                   | 0.7               | 0.02294                 | 0.00004             | 0.009                        | 0.00904                      | 0.4                 | 0.02291                 | -0.00002          | -0.00003                |
| 7    | 利 府           | 0.00006         | 0.010                        | 0.01006                                   | 0.6               | 0.02429                 | 0.00005             | 0.010                        | 0.01005                      | 0.5                 | 0.02427                 | -0.00001          | -0.00002                |
| 8    | 苦 竹           | 0.00002         | 0.016                        | 0.01602                                   | 0.1               | 0.03234                 | 0.00001             | 0.016                        | 0.01601                      | 0.1                 | 0.03232                 | -0.00001          | -0.00002                |
| 6    | 塩釜自排          | 0.00005         | 0.015                        | 0.01505                                   | 0.3               | 0.03103                 | 0.00003             | 0.015                        | 0.01503                      | 0.2                 | 0.03100                 | -0.00002          | -0.00003                |
| 10   | 精生干渴近傍        | 0.00003         | 0.012                        | 0.01203                                   | 0.2               | 0.02695                 | 0.00001             | 0.012                        | 0.01201                      | 0.1                 | 0.02692                 | -0.00002          | -0.00003                |
| 11   | 多賀城市役所        | 0.00020         | 0.012                        | 0.01220                                   | 1.6               | 0.02718                 | 0.00011             | 0.012                        | 0.01211                      | 0.9                 | 0.02706                 | -0.00009          | -0.00012                |
| 12   | 松ヶ浜地区避難所      | 0.00003         | 0.012                        | 0.01203                                   | 0.2               | 0.02695                 | 0.00001             | 0.012                        | 0.01201                      | 0.1                 | 0.02692                 | -0.00002          | -0.00003                |
|      | 環境基準          | 1日平均值,          | の年間98%値                      | 日平均値の年間98%値が0.04ppmから0.06ppmまでのゾーン内又はそれ以下 | 50.06ppm          | までのゾーン                  | 内又はそれ               | 3.下                          |                              |                     |                         |                   |                         |
| 仙台市  | 仙台市環境基本計画定量目標 | 1日平均值           | の年間98%値                      | 日平均値の年間98%値が0.04ppm以下                     | 14                |                         |                     |                              |                              |                     |                         |                   |                         |

# 注:図中番号の数字は、図2-1(1)に対応する。

表2-4(2) 年平均値予測結果の比較(測定局濃度:二酸化硫黄)

|      |               |             |                              | 評価書                          |                   |                          |            |                              | 変更計画                         |                  |                          | 差分<br>(変更計画一評価書)  | 分<br>一評価書)               |
|------|---------------|-------------|------------------------------|------------------------------|-------------------|--------------------------|------------|------------------------------|------------------------------|------------------|--------------------------|-------------------|--------------------------|
| 図海中市 | 測定局名          | 寄与<br>(ppm) | バックグラウンド<br>濃度<br>(ppm)<br>② | 将来環境<br>濃度<br>(ppm)<br>③=①+② | 寄与率<br>(%)<br>①/③ | 年間2%除外値<br>の換算値<br>(ppm) | 端<br>(ppm) | バックグラウンド<br>濃度<br>(ppm)<br>② | 将来環境<br>濃度<br>(ppm)<br>(ppm) | 寄与<br>(%)<br>(%) | 年間2%除外値<br>の換算値<br>(ppm) | 寄与<br>濃度<br>(ppm) | 年間2%除外値<br>の換算値<br>(ppm) |
| 4    | 由 野           | 0.00001     | 0.001                        | 0.00101                      | 1.0               | 0.00220                  | 0,00001    | 0.001                        | 0.00101                      | 0.5              | 0.00220                  | 0                 | 0                        |
| 8    | 苦 价           | 0.00001     | 0.000                        | 0.00001                      | I                 | 0.00175                  | 0.00000    | 000 0                        | 0.00000                      | I                | 0.00175                  | -0.00001          | 0                        |
| 10   | 蒲生干潟近傍        | 0.00001     | 0.001                        | 0.00101                      | 1.0               | 0.00220                  | 0.00001    | 0.001                        | 0.00101                      | 9.0              | 0.00220                  | 0                 | 0                        |
| 11   | 多賀城市役所        | 60000 0     | 0.001                        | 0.00109                      | 8.3               | 0.00224                  | 0.00004    | 0.001                        | 0.00104                      | 4.3              | 0.00222                  | -0.00005          | -0.00002                 |
| 12   | 松ヶ浜地区避難所      | 0.00001     | 0.001                        | 0.00101                      | 1.0               | 0.00220                  | 0.00001    | 0.001                        | 0.00101                      | 0.5              | 0.00220                  | 0                 | 0                        |
|      | 環境基準          | 1日平均値       | の年間2%陽                       | 1日平均値の年間2%除外値が0.04ppm以       | pm以下              |                          |            |                              |                              |                  |                          |                   |                          |
| 仙台市建 | 山台市環境基本計画定量目標 |             | の年間2%隊                       | 1 日平均値の年間2%除外値が0.04ppm以      | om以下              |                          |            |                              |                              |                  |                          |                   |                          |

注:図中番号の数字は、図2-1(2)に対応する。

表2-4(3) 年平均値予測結果の比較(測定局濃度:浮遊粒子状物質)

| 年間2%除外値       寄与       バッルゲウルト       将来環境       寄与率       年間2%除外値         の検算値       濃度       濃度       (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |            |                       |                       | 對<br>和<br>是                                         |            |                 |            |                        | 変更計画                   |            |                 | 差分<br>(変更計画一   | 分<br>一評価書)       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----------------------|-----------------------|-----------------------------------------------------|------------|-----------------|------------|------------------------|------------------------|------------|-----------------|----------------|------------------|
| (mg/mi) (mg | 図海中中 |            | 幸                     | バックがラウンド<br>濃度        | 将来環境<br>濃度                                          | 寄与率        | 年間2%除外値<br>の換算値 | 寄与<br>濃度   | <i>バックグラ</i> ウンド<br>濃度 | 将来環境<br>濃度             | 寄与率        | 年間2%除外値<br>の換算値 | 香<br>中<br>田    | 年間2%除外値          |
| 0.000008         0.017         0.017008         0.0 042505         0.000005         0.017 00         0.017005         0.0 042495         0.000008         0.017 00         0.016008         0.01 00         0.015008         0.01         0.042495         0.000008         0.017 00         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.013         0.01003         0.0         0.042495         0.000003         0.013         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            | $(mg/m^3)$ $\bigcirc$ | $(mg/m^3)$ $\bigcirc$ | $\begin{array}{c} (mg/m^3) \\ (3=(1+2) \end{array}$ | (%)<br>(%) | $(mg/m^3)$      | $(mg/m^3)$ | $(mg/m^3)$ $\bigcirc$  | $(mg/m^3)$<br>(3=(1+2) | (%)<br>(%) | $(mg/m^3)$      | (原)<br>(mg/m³) | ()投身順<br>(mg/m³) |
| 0.000011         0.016         0.016011         0.016011         0.016011         0.040611         0.040611         0.0406018         0.016         0.016008         0.016008         0.016008         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.017003         0.0170003         0.0170003         0.0170003         0.0170003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    |            | 0.000008              | 0.017                 | 0.017008                                            | 0.0        | 0.042505        | 0.000005   | 0.017                  | 0.017005               | 0.0        | 0.042499        | -0.000003      | -0.000006        |
| 0.000004         0.017         0.017004         0.0 017004         0.0 042497         0.000003         0.017         0.017003         0.0         0.042495           0.000005         0.017         0.017003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017003         0.0         0.042495         0.000003         0.017         0.017002         0.0         0.042495         0.000003         0.017         0.017002         0.0         0.042495         0.000003         0.017         0.017002         0.0         0.042495         0.000003         0.017         0.017002         0.0         0.042496         0.000009         0.017         0.017002         0.0         0.042496         0.000009         0.019         0.019009         0.0         0.046306         0.0         0.019009         0.0         0.046306         0.0         0.019009         0.0         0.046306         0.0         0.0210         0.048196         0.000003         0.021         0.02000         0.0         0.048194         0.000009         0.019         0.019009         0.0         0.048194         0.000009         0.019         0.019009         0.0         0.048194         0.000009         0.019         0.019009         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2    |            | 0.000011              | 0.016                 | 0.016011                                            | 0.1        | 0.040611        | 0.000008   | 0.016                  | 0.016008               | 0.1        | 0.040606        | -0. 000003     | -0.000005        |
| 0.000005         0.017005         0.017005         0.042499         0.000003         0.017003         0.0 0.042495         0.000002         0.017002         0.0 0.042495         0.000002         0.017002         0.0 0.0 0.042495         0.000002         0.017002         0.0 0.0 0.0 0.042495         0.000002         0.017002         0.0 0.017002         0.0 0.042494         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.017002         0.0 0.0 0.017002         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3    |            | 0.000004              | 0.017                 | 0.017004                                            | 0.0        | 0.042497        | 0.000003   | 0.017                  | 0.017003               | 0.0        | 0.042495        | -0.000001      | -0.000002        |
| 0.000003         0.017003         0.017003         0.042495         0.000002         0.017002         0.017002         0.0 0.045494         0.0 0.045494         0.0 0.00001         0.019009         0.0 0.019009         0.0 0.046305         0.000009         0.019009         0.0 0.019009         0.0 0.019009         0.0 0.019009         0.0 0.019009         0.0 0.019009         0.0 0.01000         0.0 0.01010         0.0 0.01010         0.0 0.01010         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.01000         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    |            | 0,000005              | 0.017                 | 0.017005                                            | 0.0        | 0.042499        | 0.000003   | 0.017                  | 0.017003               | 0.0        | 0.042495        | -0.000002      | -0.000004        |
| 0.000014         0.0199         0.019014         0.1         0.046315         0.000009         0.019         0.019009         0.0         0.046306         0.019009         0.019009         0.0         0.046306         0.012         0.021012         0.0         0.048194         0.0         0.020         0.021012         0.0         0.048194         0.0         0.020         0.020003         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.020         0.020003         0.0         0.048194         0.0         0.048194         0.0         0.019009         0.0         0.048194         0.0         0.048194         0.0         0.019009         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.019009         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.0         0.048194         0.049194         0.0         0.018194         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2    |            | 0.000003              | 0.017                 | 0.017003                                            | 0.0        | 0.042495        | 0.000002   | 0.017                  | 0.017002               | 0.0        | 0.042494        | -0.000001      | -0.000001        |
| 0.000015         0.0210         0.021015         0.1         0.050116         0.000012         0.021         0.021012         0.1         0.050110         0.050110         0.048194         0.000003         0.020         0.020003         0.0         0.048194         0.0         0.048194         0.000003         0.019009         0.0         0.048194         0.048194         0.000003         0.019009         0.0         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048194         0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9    |            | 0.000014              | 0.019                 | 0.019014                                            | 0.1        | 0.046315        | 0.000000   | 0.019                  | 0.019009               | 0.0        | 0.046306        | -0.000005      | -0.000009        |
| 0.000004         0.020         0.028900         0.048196         0.000003         0.020         0.020003         0.0 0.048194         0.0 000003         0.019009         0.0 0.048194         0.0 000003         0.019009         0.0 0.048304         0.0 000009         0.019009         0.0 0.019009         0.0 0.048304         0.0 00000         0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.012003         0.0 0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7    |            | 0.000015              | 0.021                 | 0.021015                                            | 0.1        | 0.050116        | 0.000012   | 0.021                  | 0.021012               | 0.1        | 0.050110        | -0.000003      | -0.000006        |
| 0.000014         0.019         0.019014         0.1         0.046315         0.000009         0.019         0.019009         0.0         0.046306         0.033098         0.000003         0.012         0.012003         0.0         0.012003         0.012003         0.012         0.012003         0.0         0.012028         0.0         0.033046         0.012         0.012008         0.012         0.012003         0.0         0.012003         0.012         0.012003         0.0         0.012003         0.012         0.012003         0.0         0.012003         0.012003         0.012003         0.0         0.033046         0.012         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.0         0.0032998         0.0         0.012003         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8    |            | 0.000004              | 0.020                 | 0.020004                                            | 0.0        | 0.048196        | 0.000003   | 0.020                  | 0.020003               | 0.0        | 0.048194        | -0.000001      | -0.000002        |
| 0.000008         0.012         0.012008         0.12008         0.0033008         0.000003         0.012         0.012028         0.0         0.033046         7           0.000005         0.012         0.012         0.012008         0.012         0.012028         0.0         0.033046         0.012003         0.012003         0.012003         0.012003         0.012003         0.0         0.033046         0.012003         0.012003         0.012003         0.012003         0.0         0.032998         0.012003         0.012003         0.012003         0.0         0.032998         0.012003         0.012003         0.0         0.032998         0.0         0.012003         0.0         0.012003         0.0         0.012003         0.0         0.0         0.032998         0.0         0.012003         0.0         0.0         0.0         0.032998         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6    | 塩釜自排       | 0.000014              | 0.019                 | 0.019014                                            | 0.1        | 0.046315        | 0.000009   | 0.019                  | 0.019009               | 0.0        | 0.046306        | -0.000005      | -0.000009        |
| 0.000050         0.012         0.012050         0.4         0.033088         0.000028         0.012         0.012028         0.2         0.033046         0.00003         0.012         0.012003         0.0         0.012003         0.012         0.012003         0.0         0.033048         0.00003         0.012         0.012003         0.0         0.032998         0.0         0.012         0.012003         0.0         0.032998         0.0         0.032998         0.0         0.00003         0.0         0.012003         0.0         0.032998         0.0         0.0         0.032998         0.0         0.0         0.0         0.032998         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10   | 蒲生干潟近傍     | 0.000008              | 0.012                 | 0.012008                                            | 0.1        | 0.033008        | 0.000003   | 0.012                  | 0.012003               | 0.0        | 0.032998        | -0.000005      | -0.000010        |
| 0.000008       0.012       0.012008       0.1       0.033008       0.000003       0.012       0.012003       0.0       0.0       0.032998         1日平均値の年間2%除外値が0.10mg/m³以下       1日平均値の年間2%除外値が0.10mg/m³以下       10mg/m³以下                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11   | 多賀城市役所     | 0.000050              | 0.012                 | 0.012050                                            | 0.4        | 0.033088        | 0.000028   | 0.012                  | 0.012028               | 0.2        | 0.033046        | -0.000022      | -0.000042        |
| 1 日平均値の年間2%除外値が0.10mg/m<br>1 日平均値の年間2%除外値が0.10mg/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12   | 松ヶ浜地区避難所   | 0.000008              | 0.012                 | 0.012008                                            | 0.1        | 0.033008        | 0.000003   | 0.012                  | 0.012003               | 0.0        | 0.032998        | -0.000005      | -0.000010        |
| 1日平均値の年間2%除外値が0.10mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 環境基準       | 1日平均値                 | の年間2%除                | ≷外值が0.10mg                                          | g/m³以下     |                 |            |                        |                        |            |                 |                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 仙台市  | 球境基本計画定量目標 | 1日平均值                 | の年間2%勝                | ≷外值が0.10mg                                          | g/㎡以下      |                 |            |                        |                        |            |                 |                |                  |

注:図中番号の数字は、図2-1(3)に対応する。

### 【評価書の予測結果】

# 仙台市宮城野区 計画地 10km 仙台市若林区 凡例 ▲ 最大着地濃度出現地点 (北西約2.5km 0.00020ppm) 測定局 1:福室 計画地 3:鶴 谷 4:中 野 [単位:ppm] 5:七鄉 0.00003以上 ~ 0.00005未満 6:塩釜 0.00005以上 ~ 0.0001未満 7:利 府 8:苦 竹 0.0001以上 ~ 9: 塩釜自排 10:蒲生干潟近傍 ◆ 11:多賀城市役所 12:松ヶ浜地区避難所

### 【変更計画に基づく再予測結果】

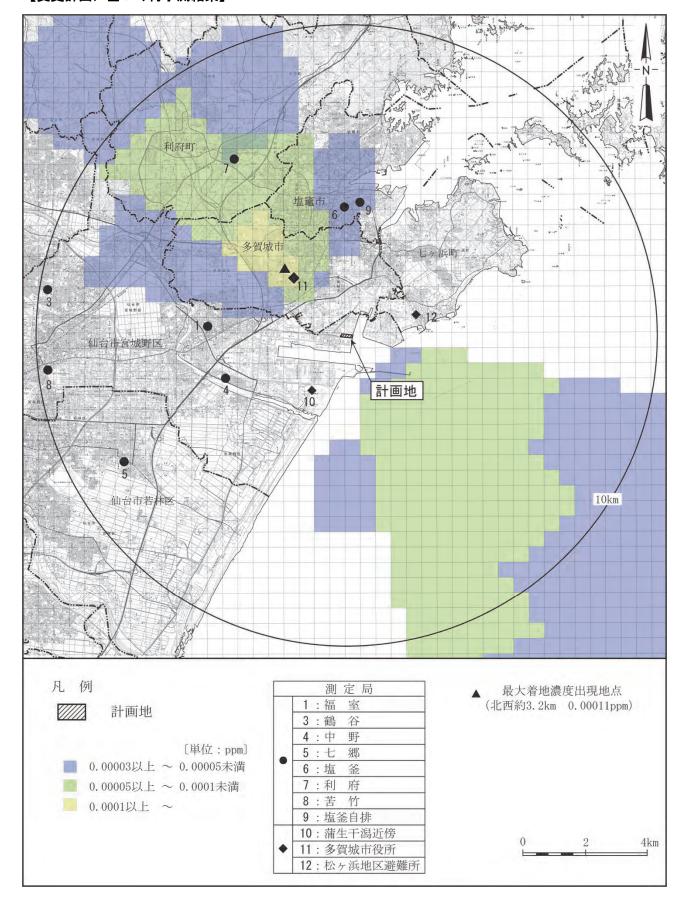



図2-1(1) 年平均値寄与濃度予測結果の比較(二酸化窒素)

### 【評価書の予測結果】

# 仙台市宮城野区 計画地 仙台市若林区 10km 凡例 測定局 ▲ 最大着地濃度出現地点 (北西約2.5km 0.00010ppm) 4:中野 計画地 8: 苦 竹 10:蒲生干潟近傍 [単位:ppm] ◆ 11:多賀城市役所 0.00001以上 ~ 0.00003未満 12:松ヶ浜地区避難所 0.00003以上 ~ 0.00005未満 0.00005以上~

### 【変更計画に基づく再予測結果】

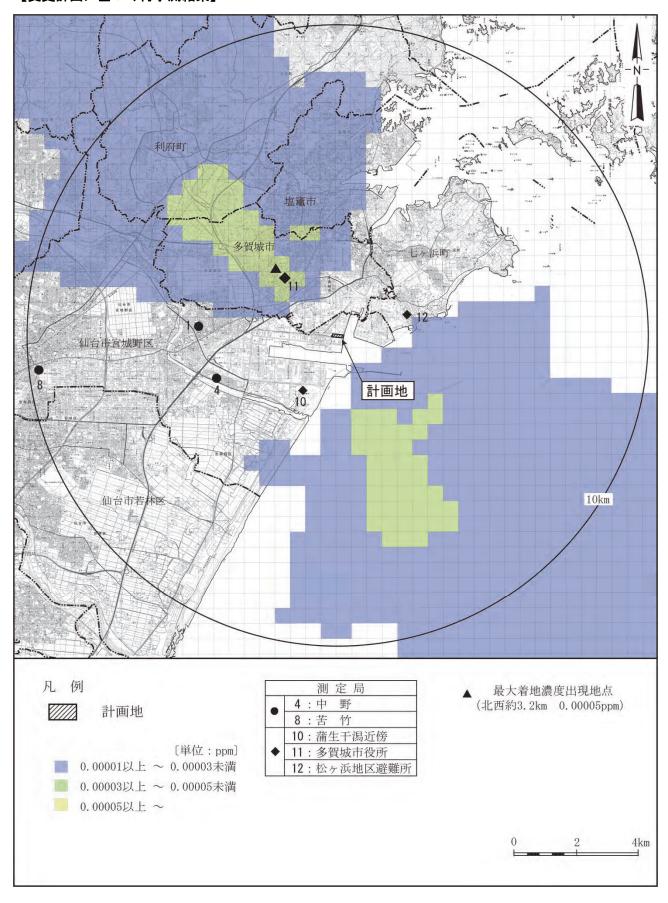



図2-1(2) 年平均値寄与濃度予測結果の比較(二酸化硫黄)

## 【評価書の予測結果】

# 【変更計画に基づく再予測結果】

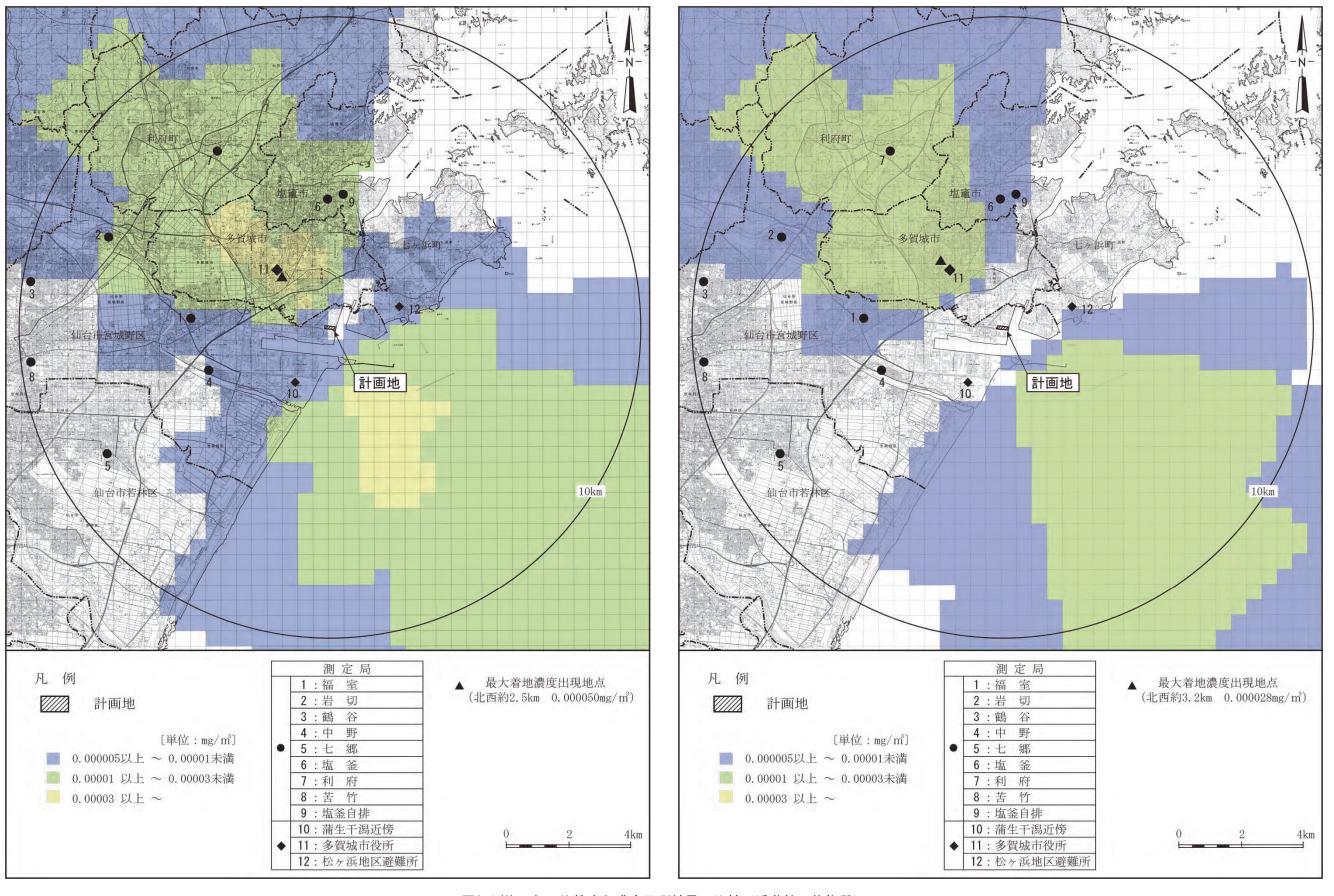



図2-1(3) 年平均値寄与濃度予測結果の比較(浮遊粒子状物質)

## (2) 日平均值

二酸化窒素、二酸化硫黄及び浮遊粒子状物質の日平均値の再予測結果及び評価書の予測結果との比較は、寄与高濃度日について表2-5、実測高濃度日について表2-6に示すとおりである。

変更計画に基づく再予測の結果、寄与高濃度日については、日平均値の寄与濃度最大値は、いずれの地点も評価書の予測結果より減少し、評価書の予測結果と同様に環境基準及び仙台市環境 基本計画定量目標を下回ると予測された。実測高濃度日についても、寄与濃度及び年間98%値の 換算値又は年間2%除外値の換算値は、いずれの地点も評価書の予測結果より減少し、評価書の 予測結果と同様に環境基準及び仙台市環境基本計画定量目標を下回ると予測された。

表2-5(1) 日平均値予測結果の比較(寄与高濃度日:二酸化窒素)

|      | _              |           |                   |         | <u> </u> |          |          | <u> </u> |          |          | <u> </u> |          |          | <u> </u> |          |                                                  |                            |
|------|----------------|-----------|-------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------------------------------|----------------------------|
| 差分   | (変更計画一評価書)     | 日平均値のサル連用 | 台<br>会<br>最<br>大値 | (mdd)   | -0.00018 | -0.00004 | -0.00009 | -0.00002 | -0.00037 | -0.00008 | -0.00004 | -0.00034 | -0.00019 | -0.00049 | -0.00017 |                                                  |                            |
|      | 寄与率            |           | (%)               | ©/(3)   | 1.7      | 0.9      | 1.2      | 9.0      | 2.4      | 1.3      | 0.7      | 1.7      | 1.1      | 2.3      | 0.9      |                                                  |                            |
|      | <b>华</b> 来環境   | 濃度        | (maa)             | 3=0+0   | 0.02339  | 0.02221  | 0.02833  | 0.02818  | 0.02355  | 0.02431  | 0.03121  | 0.03256  | 0.02831  | 0.02866  | 0.02825  |                                                  |                            |
| 変更計画 | 1, 447° 747° N | 濃度        | (maa)             | È0      | 0.023    | 0.022    | 0.028    | 0.028    | 0.023    | 0.024    | 0.031    | 0.032    | 0.028    | 0.028    | 0.028    |                                                  |                            |
|      | 農度             | 上位5日間     | の<br>(maa)        | ì       | 0.00026  | 0.00015  | 0.00021  | 0.00013  | 0.00040  | 0.00028  | 0.00015  | 0.00040  | 0.00019  | 0.00062  | 0.00017  | 以下                                               |                            |
|      | 寄与濃度           | 日平均値の     | 東入順<br>(ppm)      | Ì.      | 0.00039  | 0.00021  | 0.00033  | 0.00018  | 0.00055  | 0.00031  | 0.00021  | 0.00056  | 0.00031  | 0.00066  | 0.00025  | -ン内又はそれ                                          |                            |
|      | 寄与率            |           | (%)               | ①/③     | 2.4      | 1.1      | 1.5      | 0.7      | 3.8      | 1.6      | 0.8      | 2.7      | 1.8      | 3.9      | 1.5      | までのゾー                                            |                            |
|      | 将来環境           | 濃度        | (maa)             | 3=(1+2) | 0.02357  | 0.02225  | 0.02842  | 0.02820  | 0.02392  | 0.02439  | 0.03125  | 0.03290  | 0.02850  | 0.02915  | 0.02842  | 1 日平均値の年間 98%値が 0.04ppm から 0.06ppm までのゾーン内又はそれ以下 | 以下                         |
| 評価書  | *1475 "AM" "N  | 濃度        | (maa)             | j<br>O  | 0.023    | 0.022    | 0.028    | 0.028    | 0.023    | 0.024    | 0.031    | 0.032    | 0.028    | 0.028    | 0.028    | 直が 0.04ppm >                                     | 1 日平均値の年間 98%値が 0.04ppm 以下 |
|      | 寄与濃度           | 上位5日間     | の半均値<br>(mad)     | ì       | 0.00037  | 0.00020  | 0.00029  | 0.00017  | 0.00063  | 98000 0  | 0.00020  | 0, 00061 | 0.00035  | 0,00105  | 0.00030  | の年間 98%                                          | の年間 98%                    |
|      | 寄与             | 日平均値の     | 東入個<br>(ppm)      | Ì0      | 0.00057  | 0.00025  | 0.00042  | 0.00020  | 0.00092  | 0.00039  | 0.00025  | 0.00090  | 0.00050  | 0.00115  | 0.00042  | 1日平均値                                            | 1日平均值                      |
|      |                | 測定局名      |                   |         | 福室       | 鶴谷       | 垂 中      | 九        | 塩釜       | 利 府      | 苦 价      | 塩釜自排     | 精生干潟近傍   | 多賀城市役所   | 松ヶ浜地区避難所 | 環境基準                                             | 仙台市環境基本計画定量目標              |
|      | 1              | 図海子小      |                   |         | 1        | 3        | 4        | 2        | 9        | 2        | $\infty$ | 6        | 10       | 11       | 12       |                                                  | 仙台市建                       |

||加古巾塚境&本計画に重目標 | 1 日半59個の年間 98:||注:図中番号の数字は、図2-1(1)に対応する。

表2-5(2) 日平均値予測結果の比較(寄与高濃度日:二酸化硫黄)

|             |               |              |                  | 評価書       |                    |            |              |               | 変更計画         |                    |            | 差分            |
|-------------|---------------|--------------|------------------|-----------|--------------------|------------|--------------|---------------|--------------|--------------------|------------|---------------|
| -           |               | 寄与濃度         |                  | バックケッラウント | 将来環境               | 客与率        | 寄与濃度         |               | 1,445,444,11 |                    | 客与率        | (変更計画-評価書)    |
| 別<br>帝<br>七 | 測定局名          | 日平均値の<br>最大値 | 上位5日間<br>の平均値    | 濃度        | (<br>)<br>(<br>)   |            | 日平均値の<br>最大値 | 上位5日間<br>の平均値 | 濃度           | 濃度                 | •          | 日平均値の<br>寄与濃度 |
|             |               | (mqq)        | (mdd)            | (ppm)     | (ppm)<br>(3=(1+(2) | (%)<br>(%) | (mdd)        | (mdd)         | (ppm)        | (ppm)<br>(3=(1+(2) | (%)<br>(%) | 最大值<br>(ppm)  |
| 4           | 由 野           | 0.00020      | 0.00014          | 0.002     | 0.00220            | 9.1        | 0.00013      | 0.00009       | 0.002        | 0.00213            | 6.3        | 20000 '0-     |
| 8           | 苦 竹           | 0.00012      | 0.00010          | 0.002     | 0.00212            | 5.7        | 0.00008      | 0.00006       | 0.002        | 0.00208            | 4.1        | -0.00004      |
| 10          | 精生干潟近傍        | 0.00024      | 0.00017          | 0.003     | 0.00324            | 7.4        | 0.00013      | 0.00008       | 0.003        | 0.00313            | 4.0        | -0.00011      |
| 11          | 多賀城市役所        | 0,00055      | 0.00050          | 0.003     | 0.00355            | 15.5       | 0.00027      | 0.00025       | 0.003        | 0.00327            | 8.2        | -0, 00028     |
| 12          | 松ヶ浜地区避難所      | 0.00020      | 0.00014          | 0.003     | 0.00320            | 6.3        | 0.00010      | 0.00007       | 0.003        | 0.00310            | 3.3        | -0.00010      |
|             | 環境基準          | 1日平均值        | . 日平均値の年間2%除外値が0 | 外值が 0.04  | O. 04ppm 以下        |            |              |               |              |                    |            |               |
| 1台市         | 仙台市環境基本計画定量目標 | 1 日平均値       | 日平均値の年間2%除外値が(   | 外值が 0.04  | 0.04ppm以下          |            |              |               |              |                    |            |               |
| 1           |               | 1            | 1                |           |                    |            |              |               |              |                    |            |               |

注:図中番号の数字は、図2-1(2)に対応する。

表2-5(3) 日平均値予測結果の比較(寄与高濃度日:浮遊粒子状物質)

|      |               |              |                  | 評価書        |                                                           |           |              |               | 変更計画         |                                                     |            | 差分             |
|------|---------------|--------------|------------------|------------|-----------------------------------------------------------|-----------|--------------|---------------|--------------|-----------------------------------------------------|------------|----------------|
|      |               | 寄与濃度         | 濃度               | バッケケッラウンド  | 将来環境                                                      | 寄与率       | 寄与濃度         | 濃度            | 1, 477° 747. | 将来環境                                                | 客与率        | (変更計画一評価書)     |
| 図海中号 | 測定局名          | 日平均値の<br>最大値 | 上位5日間<br>の平均値    | 濃度         | 濃度                                                        | - <u></u> | 日平均値の<br>最大値 | 上位5日間<br>の平均値 | 濃度           | (漢)<br>(漢)                                          | -<br>,     | 日平均値の<br>寄与濃度  |
|      |               | $(mg/m^3)$   | (mg/m³)          | $(mg/m^3)$ | $\begin{matrix} (\text{mg/m}^3) \\ (3=(1+2) \end{matrix}$ | (%)       | $(mg/m^3)$   | (mg/m³)       | $(mg/m^3)$   | $\begin{array}{c} (mg/m^3) \\ (3=(1+2) \end{array}$ | (%)<br>(%) | 最大値<br>(mg/m³) |
| 1    | 福 室           | 0.000143     | 0,000094         | 0.045      | 0.045143                                                  | 0.3       | 0.000099     | 0,000065      | 0.045        | 0.04510                                             | 0.2        | -0.000044      |
| 2    | 岩 切           | 0.000139     | 0.000106         | 0.039      | 0.039139                                                  | 0.4       | 0.000102     | 0.000081      | 0.039        | 0.03910                                             | 0.3        | -0.000037      |
| 3    | 鶴谷            | 0.000063     | 0.000050         | 0.040      | 0.040063                                                  | 0.2       | 0.000052     | 0.000037      | 0.040        | 0.04005                                             | 0.1        | -0.000011      |
| 4    | 垂 中           | 0.000106     | 0.000074         | 0.044      | 0.044106                                                  | 0.2       | 0.000082     | 0.000053      | 0.044        | 0.04408                                             | 0.2        | -0.000024      |
| 2    | 七剱            | 0.000051     | 0.000042         | 0.040      | 0.040051                                                  | 0.1       | 0.000045     | 0.000033      | 0.040        | 0.04005                                             | 0.1        | -0.000006      |
| 9    | 塩祭            | 0.000231     | 0.000158         | 0.045      | 0.045231                                                  | 0.5       | 0.000139     | 0.000101      | 0.045        | 0.04514                                             | 0.3        | -0.000092      |
| 7    | 利 府           | 0.000099     | 0.000091         | 0.045      | 0.045099                                                  | 0.2       | 0.000077     | 0.000070      | 0.045        | 0.04508                                             | 0.2        | -0.000022      |
| 8    | 苦 竹           | 0.000064     | 0,000051         | 0.052      | 0.052064                                                  | 0.1       | 0.000052     | 0, 000038     | 0.052        | 0.05205                                             | 0.1        | -0.000012      |
| 6    | 塩釜自排          | 0.000226     | 0.000154         | 0.049      | 0.049226                                                  | 0.5       | 0.000139     | 0.000100      | 0.049        | 0.04914                                             | 0.3        | -0.000087      |
| 10   | 精生干潟近傍        | 0.000126     | 0.000087         | 0.032      | 0.032126                                                  | 0.4       | 0.000077     | 0.000048      | 0.032        | 0.03208                                             | 0.2        | -0.000049      |
| 11   | 多賀城市役所        | 0.000289     | 0.000265         | 0.032      | 0.032289                                                  | 0.9       | 0.000165     | 0.000154      | 0.032        | 0.03217                                             | 0.5        | -0.000124      |
| 12   | 松ヶ浜地区避難所      | 0.000105     | 0.000076         | 0.032      | 0.032105                                                  | 0.3       | 0.000063     | 0.000044      | 0.032        | 0.03206                                             | 0.2        | -0.000042      |
|      | 環境基準          | 1日平均値        | 1日平均値の年間2%除外値が0. |            | 10mg/må以下                                                 |           |              |               |              |                                                     |            |                |
| 仙台市  | 仙台市環境基本計画定量目標 | 1日平均值(       | 1日平均値の年間2%除外値が0. |            | 10mg/m³以下                                                 |           |              |               |              |                                                     |            |                |

注:図中番号の数字は、図2-1(3)に対応する。

日平均値予測結果の比較(実測高濃度日:二酸化窒素) 表2-6(1)

|          |                |          |                         | 評価書                      |                   |         |                    |              | 変更計画                |                   |         | 差分         | 农             |
|----------|----------------|----------|-------------------------|--------------------------|-------------------|---------|--------------------|--------------|---------------------|-------------------|---------|------------|---------------|
| <u>⊞</u> |                | 奉        | バックがラウンド                | 将来環境                     | 寄与率               | 年間98%値  | 新中                 | . 1.44.446 N | 将来環境                | 寄与率               | 年間98%值  | (変更計画一     | -評価書)         |
| 無        | 倒还同名           | 濃度       | 濃度                      | 濃度                       |                   | の換算値    | 濃度                 | 濃度           | 濃度                  |                   | の換算値    | 寄与         | 年間98%値        |
| i        |                | (mdd)    | (ppm)                   | (ppm)<br>(3=(1)+(2)      | (%)<br>(%)<br>(m) | (mdd)   | (mdd)              | (ppm)        | (ppm)<br>(3=(1)+(2) | (%)<br>(%)<br>(D) | (mdd)   | 测<br>(mdd) | の換算値<br>(ppm) |
| П        | 福室             | 0        | 0.028                   | 0.028                    | ı                 | 0.02255 | 0                  | 0.028        | 0.028000            | ı                 | 0.02255 | 0          | 0             |
| 3        | 鶴谷             | 0.000001 | 0.023                   | 0.023001                 | 0.0               | 0.01896 | 0.000001           | 0.023        | 0.023001            | 0.0               | 0.01896 | 0          | 0             |
| 4        | 岳 中            | 0.000088 | 0.044                   | 0.044088                 | 0.2               | 0.03408 | 0.000083           | 0.044        | 0.044083            | 0.2               | 0.03408 | -0.000005  | 0             |
| 2        | 九              | 0.000027 | 0.034                   | 0.034027                 | 0.1               | 0.02687 | 0.000026           | 0.034        | 0.034026            | 0.1               | 0.02687 | -0.000001  | 0             |
| 9        | 植後             | 0.000202 | 0.028                   | 0.028202                 | 0.7               | 0.02269 | 0.000154           | 0.028        | 0.028154            | 0.5               | 0.02266 | -0.000048  | -0.00003      |
| 2        | 利 府            | 0.000014 | 0.027                   | 0.027014                 | 0.1               | 0.02184 | 0.000013           | 0.027        | 0.027013            | 0.0               | 0.02184 | -0.000001  | 0             |
| $\infty$ | 苦 价            | 0        | 0.034                   | 0.034                    | -                 | 0.02685 | 0                  | 0.034        | 0.034000            | 1                 | 0.02685 | 0          | 0             |
| 6        | 塩釜自排           | 0        | 0.040                   | 0.040                    | -                 | 0.03115 | 0                  | 0.040        | 0.040000            | 1                 | 0.03115 | 0          | 0             |
| 10       | 精生干潟近傍         | 0.000000 | 0.040                   | 0.040000                 | 0.0               | 0.03115 | 0.000000           | 0.040        | 0.040000            | 0.0               | 0.03115 | 0          | 0             |
| 11       | 多賀城市役所         | 0        | 0.040                   | 0.040                    | _                 | 0.03115 | 0                  | 0.040        | 0.040000            | -                 | 0.03115 | 0          | 0             |
| 12       | 松ヶ浜地区避難所       | 0.000000 | 0.040                   | 0.040000                 | 0.0               | 0.03115 | 0000000000         | 0.040        | 0.040000            | 0.0               | 0.03115 | 0          | 0             |
|          | 環境基準           | 1日平均値    | の年間98%値2                | 日平均値の年間98%値が0.04 ppmから0. | $\overline{}$     | でのゾーン内  | OGppmまでのゾーン内又はそれ以下 |              |                     |                   |         |            |               |
| 仙台市      | 仙台市環境基本計画定量目標  | 1日平均値の   | 1 日平均値の年間98%値が0.04ppm以下 | io.04ppm以下               |                   |         |                    |              |                     |                   |         |            |               |
| 1        | <b>党外以外上</b> 国 | 十十年2000  | オトノイン                   |                          |                   |         |                    |              |                     |                   |         |            |               |

日平均値予測結果の比較(実測高濃度日:二酸化硫黄) 表2-6(2)

|          |               |             |                  | 評価書                      |            |                |                  |                 | 変更計画                 |            |               | 差分                | 公                        |
|----------|---------------|-------------|------------------|--------------------------|------------|----------------|------------------|-----------------|----------------------|------------|---------------|-------------------|--------------------------|
| <u>=</u> | 4 II          | 寄与          | 1144 JUG. N      | 将来環境                     | 寄与率        | 年間2%除外         | 寄与               | 1. 477° 7771° N | 将来環境                 | 寄与率        | 年間2%除外值       | (変更計画             | - 評価書)                   |
| 梅        | 测定局名          | 濃度<br>(ppm) | 濃度<br>(ppm)<br>② | 濃度<br>(ppm)<br>③=①+②     | (%)<br>(%) | 値の換算値<br>(ppm) | 濃度<br>(ppm)<br>① | 濃度<br>(ppm)     | 濃度<br>(ppm)<br>③=①+② | (%)<br>(%) | の換算値<br>(ppm) | 寄与<br>濃度<br>(ppm) | 年間2%除外値<br>の換算値<br>(ppm) |
| 4        | 垂 中           | 0,000003    | 0.002            | 0.002003                 | 0.1        | 0.00163        | 0.000003         | 0.002           | 0.002003             | 0.1        | 0.00163       | 0                 | 0                        |
| 8        | 計 竹           | 0           | 0.001            | 0.001                    | Ι          | 0.00126        | 0                | 0.001           | 0.001000             | Ι          | 0.00126       | 0                 | 0                        |
| 10       | 精生干渴近傍        | 0           | 900 0            | 900 0                    | I          | 0.00313        | 0                | 0.006           | 000900 0             | Ι          | 0.00313       | 0                 | 0                        |
| 11       | 多賀城市役所        | 0.000472    | 900'0            | 0.006472                 | 7.3        | 0.00331        | 0.000187         | 900.0           | 0.006187             | 3.0        | 0.00320       | -0.000285         | -0.00011                 |
| 12       | 松ヶ浜地区避難所      | 0           | 900.0            | 0.006                    | I          | 0.00313        | 0                | 0.006           | 0.006000             | I          | 0.00313       | 0                 | 0                        |
|          | 環境基準          | 1日平均値       | の年間2%除           | 1 日平均値の年間2%除外値が0.04ppm以¯ | JUIX下      |                |                  |                 |                      |            |               |                   |                          |
| 仙台市      | 仙台市環境基本計画定量目標 | 1日平均値       | の年間2%隙           | 1日平均値の年間2%除外値が0.04ppm以¯  | om以下       |                |                  |                 |                      |            |               |                   |                          |

注:図中番号の数字は、図2-1(2)に対応する。

注:1. 図中番号の数字は、図2-1(1)に対応する。 2. 寄与濃度欄の「0.000000」は、四捨五入して0.00001に満たないことを示す。

表2-6(3) 日平均値予測結果の比較(実測高濃度日:浮遊粒子状物質)

|          |               |                    |                    | 評価書                                |            |                  |             |                    | 変更計画                 |            |                 | 差分                  | 分                          |
|----------|---------------|--------------------|--------------------|------------------------------------|------------|------------------|-------------|--------------------|----------------------|------------|-----------------|---------------------|----------------------------|
| <u> </u> |               | 新中                 | 1.44.446.1         | 将来環境                               | 寄与率        | 年間2%除外           | 奉           | バックが、対かが           | 将来環境                 | 寄与率        | 年間2%除外值         | (変更計画-              | 一評価書)                      |
| 梅        | 测定同名          | 濃度<br>(mg/m³)<br>① | 濃度<br>(mg/m³)<br>② | 濃度<br>(mg/m³)<br>③=①+②             | (%)<br>(%) | 値の換算値<br>(mg/m³) | 濃度<br>(ppm) | 濃度<br>(mg/m³)<br>② | 濃度<br>(ppm)<br>③=①+② | (%)<br>(%) | の換算値<br>(mg/m³) | 寄与<br>濃度<br>(mg/m³) | 年間2%除外値<br>の換算値<br>(mg/m³) |
| 1        | 福 室           | 0.000004           | 0.039              | 0.039004                           | 0.0        | 0.033709         | 0.000003    | 0.039              | 0.039003             | 0.0        | 0.033708        | -0.000001           | -0.000001                  |
| 2        | 岩鸟            | 0.000010           | 0.042              | 0.042010                           | 0.0        | 0.035176         | 0.000008    | 0.042              | 0.042008             | 0.0        | 0.035175        | -0.000002           | -0.000001                  |
| 3        | 鶴谷            | 0.000006           | 0.041              | 0.041006                           | 0.0        | 0.034686         | 0.000002    | 0.041              | 0.041002             | 0.0        | 0.034684        | -0.000004           | -0.000002                  |
| 4        | 垂 中           | 0.000032           | 0.058              | 0.058032                           | 0.1        | 0.042997         | 0.000017    | 0.058              | 0.058017             | 0.0        | 0.042989        | -0.000015           | -0. 000008                 |
| 2        | 七郷            | 0.000024           | 0.048              | 0.048024                           | 0.0        | 0.038111         | 0.000017    | 0.048              | 0.048017             | 0.0        | 0.038108        | -0. 000007          | -0. 000003                 |
| 9        | 塩 釜           | 0                  | 0.043              | 0.043                              | I          | 0.035659         | 0           | 0.043              | 0.043000             | _          | 0.035659        | 0                   | 0                          |
| 7        | 利 府           | 0.000015           | 0.041              | 0.041015                           | 0.0        | 0.034690         | 0.000014    | 0.041              | 0.041014             | 0.0        | 0.034690        | -0.000001           | 0                          |
| 8        | 苦 竹           | 0.000001           | 0.050              | 0.050001                           | 0.0        | 0.039076         | 0.000001    | 0.050              | 0.050001             | 0.0        | 0.039076        | 0                   | 0                          |
| 6        | 塩釜自排          | 0.000008           | 0.048              | 0.048008                           | 0.0        | 0.038104         | 0.000007    | 0.048              | 0.048007             | 0.0        | 0.038103        | -0.000001           | -0.000001                  |
| 10       | 精生干渴近傍        | 0.000009           | 0.040              | 0.040009                           | 0.0        | 0.034199         | 900000000   | 0.040              | 0.040006             | 0.0        | 0.034198        | -0. 000003          | -0.000001                  |
| 11       | 多賀城市役所        | 0.000044           | 0.040              | 0.040044                           | 0.1        | 0.034216         | 0.000022    | 0.040              | 0.040022             | 0.1        | 0.034206        | -0.000022           | -0.000010                  |
| 12       | 松ヶ浜地区避難所      | 0.000029           | 0.040              | 0.040029                           | 0.1        | 0.034209         | 0.000017    | 0.040              | 0.040017             | 0.0        | 0.034203        | -0.000012           | -0.000006                  |
|          | 環境基準          | 1日平均值              | の年間2%除             | 日平均値の年間2%除外値が0.10mg/m³             | g/㎡以下      |                  |             |                    |                      |            |                 |                     |                            |
| 仙台市      | 仙台市環境基本計画定量目標 | 1日平均值              | の年間2%除             | 日平均値の年間2%除外値が0.10mg/m <sup>3</sup> | g/mg以下     |                  |             |                    |                      |            |                 |                     |                            |
|          |               |                    |                    |                                    |            |                  |             |                    |                      |            |                 |                     |                            |

注:図中番号の数字は、図2-1(3)に対応する。

## (3) 特殊気象条件下の予測

#### ① 逆転層出現時

二酸化窒素、二酸化硫黄及び浮遊粒子状物質の逆転層発生時の再予測結果及び評価書の予測結果との比較は、表2-7に示すとおりである。

変更計画に基づく再予測の結果、寄与濃度(1時間値の最大着地濃度)は評価書の予測結果より減少し、将来環境濃度は評価書の予測結果と同様に短期暴露の指針値又は環境基準、仙台市環境基本計画定量目標を下回ると予測された。

|         | 項目            | 単位       | 予測      | 結果         | 差分         |
|---------|---------------|----------|---------|------------|------------|
|         | ·             | 千匹       | 評価書     | 変更計画       | (変更計画-評価書) |
|         | 寄与濃度(①)       | ppm      | 0.0180  | 0. 0126    | -0.0054    |
|         | バックグラウンド濃度(②) | ppm      | 0. 083  | 0.083 (同左) | _          |
| 二酸化窒素   | 将来環境濃度(①+②)   | ppm      | 0. 1010 | 0. 0956    | -0.0054    |
|         | 短期暴露の指針値      | ppm      | 0.1     | ~0.2       | _          |
|         | 仙台市環境基本計画定量目標 | ppm      | -       | _          | _          |
|         | 寄与濃度(①)       | ppm      | 0.0086  | 0. 0051    | -0.0035    |
|         | バックグラウンド濃度(②) | ppm      | 0. 035  | 0.035 (同左) | _          |
| 二酸化硫黄   | 将来環境濃度(①+②)   | ppm      | 0.0436  | 0. 0401    | -0.0035    |
|         | 環境基準          | ppm      | 0. 1.   | 以下         | _          |
|         | 仙台市環境基本計画定量目標 | ppm      | 0. 1.   | 以下         | _          |
|         | 寄与濃度(①)       | $mg/m^3$ | 0. 0045 | 0. 0032    | -0.0013    |
|         | バックグラウンド濃度(②) | $mg/m^3$ | 0. 142  | 0.142 (同左) | _          |
| 浮遊粒子状物質 | 将来環境濃度(①+②)   | $mg/m^3$ | 0. 1465 | 0. 1452    | -0.0013    |
|         | 環境基準          | $mg/m^3$ | 0. 20   | 以下         | _          |
|         | 仙台市環境基本計画定量目標 | $mg/m^3$ | 0. 20   | 以下         | _          |

表2-7 逆転層出現時予測結果の比較

## ② 内部境界層発達によるフュミゲーション発生時

二酸化窒素、二酸化硫黄及び浮遊粒子状物質の内部境界層発達によるフュミゲーション発生時の再予測結果及び評価書の予測結果との比較は、表2-8に示すとおりである。

変更計画に基づく再予測の結果、寄与濃度(1時間値の最大着地濃度)は評価書の予測結果より減少し、将来環境濃度は評価書の予測結果と同様に短期暴露の指針値又は環境基準、仙台市環境基本計画定量目標を下回ると予測された。

注:1. 寄与濃度は、1時間値の最大着地濃度を示す。

<sup>2.</sup> バックグラウンド濃度は、代表測定局における2016年度の1時間値及び計画地における2016年8月24日~2017年8月23日の1時間値のうちの最大値を示す。

表2-8 内部境界層発達によるフュミゲーション発生時予測結果の比較

|         | <b>西</b> 日    | 出任       | 予測      | 結果         | 差分         |
|---------|---------------|----------|---------|------------|------------|
|         | 項目            | 単位       | 評価書     | 変更計画       | (変更計画-評価書) |
|         | 寄与濃度(①)       | ppm      | 0. 0473 | 0. 0253    | -0.022     |
|         | バックグラウンド濃度(②) | ppm      | 0. 083  | 0.083 (同左) | _          |
| 二酸化窒素   | 将来環境濃度(①+②)   | ppm      | 0. 1303 | 0. 1083    | -0.022     |
|         | 短期暴露の指針値      | ppm      | 0.1     | ~0.2       | _          |
|         | 仙台市環境基本計画定量目標 | ppm      | -       | _          | _          |
|         | 寄与濃度(①)       | ppm      | 0. 0226 | 0. 0103    | -0. 0123   |
|         | バックグラウンド濃度(②) | ppm      | 0. 035  | 0.035 (同左) | _          |
| 二酸化硫黄   | 将来環境濃度(①+②)   | ppm      | 0. 0576 | 0. 0453    | -0. 0123   |
|         | 環境基準          | ppm      | 0. 1.   | 以下         | _          |
|         | 仙台市環境基本計画定量目標 | ppm      | 0. 1.   | 以下         | _          |
|         | 寄与濃度(①)       | $mg/m^3$ | 0. 0119 | 0. 0063    | -0.0056    |
|         | バックグラウンド濃度(②) | $mg/m^3$ | 0. 142  | 0.142 (同左) | _          |
| 浮遊粒子状物質 | 将来環境濃度(①+②)   | $mg/m^3$ | 0. 1539 | 0. 1483    | -0.0056    |
|         | 環境基準          | $mg/m^3$ | 0.20    | 以下         | _          |
|         | 仙台市環境基本計画定量目標 | $mg/m^3$ | 0. 20   | 以下         | _          |

注:1. 寄与濃度は、1時間値の最大着地濃度を示す。

## ③ 煙突ダウンウォッシュ発生時

二酸化窒素、二酸化硫黄及び浮遊粒子状物質の煙突ダウンウォッシュ発生時の再予測結果及び 評価書の予測結果との比較は、表2-9に示すとおりである。

変更計画に基づく再予測の結果、寄与濃度(1時間値の最大着地濃度)は二酸化窒素、二酸化 硫黄及び浮遊粒子状物質の全てについて評価書の予測結果より減少した。

また、二酸化硫黄については評価書に比べバックグラウンド濃度が高くなったことに起因して 将来環境濃度が高くなったが、二酸化窒素及び浮遊粒子状物質の将来環境濃度は評価書の予測結 果より減少した。

なお、将来環境濃度は、二酸化窒素、二酸化硫黄及び浮遊粒子状物質の全てについて、評価書の予測結果と同様に短期暴露の指針値又は環境基準、仙台市環境基本計画定量目標を下回ると予測された。

<sup>2.</sup> バックグラウンド濃度は、代表測定局における2016年度の1時間値及び計画地における2016年8月24日~2017年8月23日の1時間値のうちの最大値を示す。

表2-9 煙突ダウンウォッシュ発生時予測結果の比較

|         | <b>西</b> 日           | 出任                              | 予測           | 結果      | 差分         |
|---------|----------------------|---------------------------------|--------------|---------|------------|
|         | 項目                   | 単位                              | 評価書          | 変更計画    | (変更計画-評価書) |
|         | 風 向                  | _                               | W            | NNW     | _          |
|         | 地上風速                 | m/s                             | 7. 5         | 8.8     | _          |
|         | 風速の推計値               | m/s                             | 11. 4        | 13. 3   | _          |
|         | の大気安定度               | _                               | C – D        | C – D   | _          |
|         | さ(=実煙突高さ)<br>地濃度出現距離 | m<br>km                         | 80           | 80      | <u> </u>   |
|         | で最大となった日時            | — KIII                          | 2017年5月7日15時 |         | _          |
|         | 寄与濃度(①)              | ppm                             | 0. 0040      | 0.0036  | -0.0004    |
|         | バックグラウンド濃度(②)        | ppm                             | 0. 005       | 0.005   | 0          |
| 二酸化窒素   | 将来環境濃度(①+②)          | ppm                             | 0.0090       | 0.0086  | -0.0004    |
|         | 短期暴露の指針値             | ppm                             | 0.1          | ~0.2    | _          |
|         | 仙台市環境基本計画定量目標        | ppm                             | _            | _       | _          |
|         | 寄与濃度(①)              | ppm                             | 0.0019       | 0.0015  | -0.0004    |
|         | バックグラウンド濃度(②)        | ppm                             | 0.000        | 0.001   | 0.001      |
| 二酸化硫黄   | 将来環境濃度(①+②)          | ppm                             | 0.0019       | 0.0025  | 0.0006     |
|         | 環境基準                 | ppm                             | 0. 1.        | 以下      | _          |
|         | 仙台市環境基本計画定量目標        | ppm                             | 0. 1.        | 以下      | _          |
|         | 寄与濃度(①)              | $\text{mg}/\text{m}^{\text{3}}$ | 0.0010       | 0.0009  | -0.0001    |
|         | バックグラウンド濃度(②)        | $mg/m^3$                        | 0.072        | 0.023   | -0.049     |
| 浮遊粒子状物質 | 将来環境濃度(①+②)          | $mg/m^3$                        | 0. 0730      | 0. 0239 | -0.0491    |
|         | 環境基準                 | $mg/m^3$                        | 0. 20        | 以下      | _          |
|         | 仙台市環境基本計画定量目標        | $mg/m^3$                        | 0. 20        | 以下      | _          |

注:1. 寄与濃度は、1時間値の最大着地濃度を示す。

## ④ 建物ダウンウォッシュ発生時

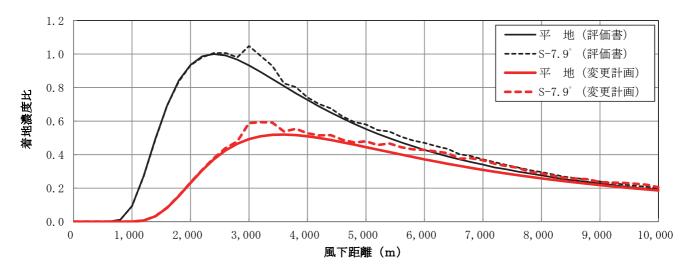
二酸化窒素、二酸化硫黄及び浮遊粒子状物質の建物ダウンウォッシュ発生時の再予測結果及び 評価書の予測結果との比較は、表2-10に示すとおりである。

変更計画に基づく再予測の結果、寄与濃度(1時間値の最大着地濃度)は評価書の予測結果より減少し、将来環境濃度は評価書の予測結果と同様に短期暴露の指針値又は環境基準、仙台市環境基本計画定量目標を下回ると予測された。

<sup>2.</sup> バックグラウンド濃度は、着地濃度が最大となった時刻における代表測定局及び計画地の1時間値の最大値を示す。

表2-10 建物ダウンウォッシュ発生時予測結果の比較

|         | 項目                   | 単位           | 予測                | 結果               | 差分         |
|---------|----------------------|--------------|-------------------|------------------|------------|
|         | 垻 目                  | 中世           | 評価書               | 変更計画             | (変更計画-評価書) |
|         | 風向                   | _            | SW                | NW               | _          |
|         | 地上風速                 | m/s          | 7. 6              | 11. 6            | _          |
|         | 風速の推計値               | m/s          | 12. 8             | 19. 5            | _          |
|         | の大気安定度               | 1.           | C                 | C                |            |
|         | 地濃度出現距離<br>ぶ最大となった日時 | km<br>—      | 0.8 2017年7月26日14時 | 0.6 2016年10月6日9時 | <u> </u>   |
| 有地版及7   | 寄与濃度(①)              | ppm          | 0. 0103           | 0.0093           | -0. 001    |
|         | バックグラウンド濃度(②)        | ppm          | 0. 012            | 0.008            | -0.004     |
| 二酸化窒素   | 将来環境濃度(①+②)          | ppm          | 0. 0223           | 0. 0173          | -0.005     |
|         | 短期暴露の指針値             | ppm          | 0.1               | ~0.2             | _          |
|         | 仙台市環境基本計画定量目標        | ppm          | -                 | _                | _          |
|         | 寄与濃度(①)              | ppm          | 0. 0049           | 0.0038           | -0. 0011   |
|         | バックグラウンド濃度(②)        | ppm          | 0. 002            | 0. 001           | -0.001     |
| 二酸化硫黄   | 将来環境濃度(①+②)          | ppm          | 0. 0069           | 0.0048           | -0.0021    |
|         | 環境基準                 | ppm          | 0. 1.             | 以下               | _          |
|         | 仙台市環境基本計画定量目標        | ppm          | 0. 1.             | 以下               | _          |
|         | 寄与濃度(①)              | $mg/m^{\!3}$ | 0.0026            | 0.0023           | -0.0003    |
|         | バックグラウンド濃度(②)        | $mg/m^{\!3}$ | 0.023             | 0.011            | -0.012     |
| 浮遊粒子状物質 | 将来環境濃度(①+②)          | $mg/m^{\!3}$ | 0. 0256           | 0.0133           | -0.0123    |
|         | 環境基準                 | $mg/m^3$     | 0. 20             | 以下               |            |
|         | 仙台市環境基本計画定量目標        | $mg/m^3$     | 0. 20             | 以下               | _          |


注:1. 寄与濃度は、1時間値の最大着地濃度を示す。

## (4) 地形影響

予測地域内で最も標高が高い番ヶ森山方面に向かう方向として、南-7.9°(S-7.9°、南から南南東の向きへ反時計回りに7.9°ずらした方位)に対する平地と実地形との着地濃度比について、再予測結果及び評価書の予測結果との比較は、図2-2に示すとおりである。変更計画に基づく再予測の結果、変更計画における最大着地濃度の着地濃度比は、平地では評価書の予測結果の約52%、実地形では評価書の予測結果の約57%となった。

変更計画に基づく地形影響を考慮した将来環境濃度の再予測の結果は表2-11に示すとおりであり、二酸化窒素、二酸化硫黄及び浮遊粒子状物質の全てについて評価書の予測結果より減少し、将来環境濃度は評価書の予測結果と同様に短期暴露の指針値又は環境基準、仙台市環境基本計画定量目標を下回ると予測された。

<sup>2.</sup> バックグラウンド濃度は、着地濃度が最大となった時刻における代表測定局及び計画地の1時間値の最大値を示す。



注: 濃度比 (γ (x)) は、以下に示す煙軸上着地濃度比を表す。 (煙軸上着地濃度比) = (実地形での着地濃度) / (平地での最大着地濃度)

図2-2 平地の最大着地濃度に対する濃度比の比較  $(\gamma(x))$ 

表2-11 地形影響予測結果の比較

|         | 項目             | 単位                                          | 予測       | 結果         | 差分         |
|---------|----------------|---------------------------------------------|----------|------------|------------|
|         | ·              | 中匹                                          | 評価書      | 変更計画       | (変更計画-評価書) |
|         | 寄与濃度(①)        | ppm                                         | 0.00372  | 0.0021     | -0.00162   |
|         | バックグラウンド濃度(②)  | ppm                                         | 0.053    | 0.053 (同左) | _          |
| 二酸化窒素   | 将来環境濃度(①+②)    | ppm                                         | 0.05672  | 0. 0551    | -0.00162   |
|         | 短期暴露の指針値       | ppm                                         | 0.1      | ~0.2       | _          |
|         | 仙台市環境基本計画定量目標  | ppm                                         | -        | _          | _          |
|         | 寄与濃度(①)        | ppm                                         | 0.00178  | 0.0009     | -0.00088   |
|         | バックグラウンド濃度(②)  | ppm                                         | 0.035    | 0.035 (同左) | _          |
| 二酸化硫黄   | 将来環境濃度(①+②)    | ppm                                         | 0. 03678 | 0. 0359    | -0.00088   |
| —段 化机块  | 環境基準           | ppm                                         | 0. 1     | 以下         | _          |
|         | 仙台市環境基本計画定量目標  | ppm                                         | 0. 11    | 以下         | _          |
|         | 寄与濃度(①)        | $\text{mg}/\text{m}^{\scriptscriptstyle 3}$ | 0.00094  | 0. 0005    | -0.00044   |
|         | バックグラウンド濃度 (②) | $mg/m^3$                                    | 0. 100   | 0.100 (同左) | _          |
| 浮遊粒子状物質 | 将来環境濃度(①+②)    | $mg/m^3$                                    | 0. 10094 | 0. 1005    | -0.00044   |
|         | 環境基準           | $mg/m^3$                                    | 0. 20    | 以下<br>以下   | _          |
|         | 仙台市環境基本計画定量目標  | $mg/m^3$                                    | 0.20     | 以下         | _          |

注:1. 寄与濃度は、1時間値の最大着地濃度を示す。

#### (5) 複合影響

本事業と、本事業の計画地から約1.5km南西側に位置する「仙台パワーステーション」及び本事業の計画地から約2.4km南西側で計画される「(仮称) 仙台バイオマス発電事業」(現、「杜の都バイオマス発電所」)における寄与濃度を足し合わせた、施設の稼働に伴う二酸化窒素、二酸化

<sup>2.</sup> バックグラウンド濃度は、代表測定局及び計画地のうち、風下軸(煙源からS-7.9°の方角に向かう直線)の付近にあり、かつ最大着地濃度地点(風下軸上で煙源から3km離れた地点)に最も近い地点の1時間値の最大値を示す。

硫黄、浮遊粒子状物質の年平均値の再予測結果及び評価書の予測結果との比較は、表2-12・表2-13 に示すとおりである。

変更計画に基づく再予測の結果、最大着地濃度は本事業による寄与濃度が減少したことから、 二酸化窒素、二酸化硫黄及び浮遊粒子状物質の全てについて評価書の予測結果より減少した。各 測定局の濃度についても、評価書の予測結果より寄与濃度は減少又は同じ値となり、評価書の予 測結果と同様に環境基準及び仙台市環境基本計画定量目標を下回ると予測された。

表2-12 複合影響予測結果の比較(最大着地濃度)

|         |         |                          | 224 /4  | 最大着地濃     | 度予測結果        | 差分         |
|---------|---------|--------------------------|---------|-----------|--------------|------------|
|         | 項目      |                          | 単位      | 評価書       | 変更計画         | (変更計画-評価書) |
|         |         | 仙台パワー<br>ステーション<br>①     |         | 0. 00082  | 0.00082(同左)  | _          |
|         | 二酸化窒素   | (仮称)仙台バイオ<br>マス発電事業<br>② |         | 0. 000021 | 0.000021(同左) | -          |
|         | 一敗旧至米   | 本事業                      | ppm     | 0. 00020  | 0. 00011     | -0.00009   |
|         |         | 将 来<br>④=①+②+③           |         | 0. 001041 | 0. 000951    | -0.00009   |
|         |         | 仙台パワー<br>ステーション<br>①     |         | 0. 00079  | 0.00079(同左)  | _          |
| 最大着地濃度  | 二酸化硫黄   | (仮称)仙台バイオ<br>マス発電事業<br>② | ppm     | 0. 000010 | 0.000010(同左) | _          |
| 双八有 地恢反 | 一致化物质   | 本事業<br>③                 | ррш     | 0. 00010  | 0. 000046    | -0.000054  |
|         |         | 将 来<br>④=①+②+③           |         | 0. 00090  | 0. 000846    | -0. 000054 |
|         |         | 仙台パワー<br>ステーション<br>①     |         | 0. 00041  | 0.00041(同左)  | _          |
|         | 浮遊粒子状物質 | (仮称)仙台バイオ<br>マス発電事業<br>② | mg/m³   | 0. 000005 | 0.000005(同左) | _          |
|         |         | 本事業<br>③                 | m8/ 111 | 0. 000050 | 0. 000028    | -0. 000022 |
|         |         | 将 来<br>④=①+②+③           |         | 0. 000465 | 0. 000443    | -0. 000022 |
|         | 最大着地濃度地 | 点                        | _       | 北西 約2.5km | 北西 約3.2km    | _          |

注:1. 仙台パワーステーションの着地濃度は、二酸化窒素、二酸化硫黄、浮遊粒子状物質の年平均値の最大着地濃度を示す。

<sup>2. (</sup>仮称) 仙台バイオマス発電事業の着地濃度は、「(仮称) 仙台バイオマス発電事業 環境影響評価書」(令和2年6月、株式会社レノバ)に示す予測結果のうち、本事業の最大着地濃度出現地点に最寄りの予測地点における寄与濃度を示す。

<sup>3.</sup> 本事業の最大着地濃度は、表2-3における二酸化窒素、二酸化硫黄、浮遊粒子状物質の年平均値の最大着地濃度を示す。

複合影響予測結果の比較(測定局濃度:二酸化窒素) 表2-13(1)

|          |               | 仙台パワース   | (仮称)仙台バ                                   |          |           | 評価書       |             |         |          |       | 変更計画            |     |         | 差分       | 公        |
|----------|---------------|----------|-------------------------------------------|----------|-----------|-----------|-------------|---------|----------|-------|-----------------|-----|---------|----------|----------|
|          |               | デージョン    | イオマス発電                                    | 本事業      | バックゲ      | 将来環境      | 本事業         | 年間98%   | 本事業      | バックゲ  | 将来環境            | 本事業 | 年間98%   | (変更計画-   | 一評価書)    |
| E        |               | 最大着地     | 華業                                        | 寄与濃度     | ラウンド      | 濃度        | <b>参与</b> 率 | 値の      | 寄与濃度     | ラウンド  | 濃度              | 寄与率 | 値の      | 将来環境     | 年間98%    |
| H<br>⊠ # | 測定局名          | 濃度       | 寄与濃度                                      |          | 濃度        |           |             | 換算値     |          | 濃度    |                 |     | 換算値     | 濃度       | 値の       |
| 毎        |               | (mdd)    | (mdd)                                     | (mdd)    | (mdd)     | (mdd)     | (%)         | (mdd)   | (mdd)    | (mdd) | (mdd)           | (%) | (mdd)   |          | 換算値      |
|          |               | $\Theta$ | (S)                                       | (c)      | 4         | 2)=       | 3/2         |         | (m)      |       | 2=              | 3/0 |         | (mdd)    | (mdd)    |
|          |               |          |                                           |          |           | (D+2+3+4) |             |         |          |       | (1)+(2)+(3)+(4) |     |         |          |          |
| 1        | 福室            |          | 0.000046                                  | 0.00003  | 600.0     | 0.00990   | 0.3         | 0.02407 | 0.00002  | 0.009 | 0.00989         | 0.2 | 0.02406 | -0.00001 | -0.00001 |
| 3        | 鶴谷            |          | 0.000050                                  | 0.00002  | 0.008     | 0.00889   | 0.2         | 0.02271 | 0.00001  | 0.008 | 0.00888         | 0.1 | 0.02269 | -0.00001 | -0.00002 |
| 4        | 垂 中           |          | 0.000048                                  | 0.00002  | 0.013     | 0.01389   | 0.1         | 0.02946 | 0.00001  | 0.013 | 0.01388         | 0.1 | 0.02945 | -0.00001 | -0.00001 |
| 2        | 七郷            |          | 0.000010                                  | 0.00001  | 0.011     | 0.01184   | 0.1         | 0.02669 | 0.00001  | 0.011 | 0.01184         | 0.1 | 0.02669 | 0        | 0        |
| 9        | 塩 釜           |          | 0.000010                                  | 0.00006  | 0.009     | 0.00989   | 0.6         | 0.02406 | 0.00004  | 0.009 | 0.00987         | 0.4 | 0.02403 | -0.00002 | -0.00003 |
| 2        | 利 府           | 0.00082  | 0.000010                                  | 0.00006  | 0.010     | 0.01089   | 0.6         | 0.02541 | 0.00005  | 0.010 | 0.01088         | 0.5 | 0.02539 | -0.00001 | -0.00002 |
| 8        | 苦 竹           |          | 0.000050                                  | 0.00002  | 0.016     | 0.01689   | 0.1         | 0.03351 | 0.00001  | 0.016 | 0.01688         | 0.1 | 0.0335  | -0.00001 | -0.00001 |
| 6        | 塩釜自排          |          | 0.000010                                  | 0.00005  | 0.015     | 0.01588   | 0.3         | 0.03215 | 0.00003  | 0.015 | 0.01586         | 0.2 | 0.03212 | -0.00002 | -0.00003 |
| 10       | 蒲生干潟近傍        |          | 0.000020                                  | 0.00003  | 0.012     | 0.01287   | 0.2         | 0.02808 | 0.00001  | 0.012 | 0.01285         | 0.1 | 0.02806 | -0.00002 | -0.00002 |
| 11       | 多賀城市役所        |          | 0.000021                                  | 0.00020  | 0.012     | 0.01304   | 1.5         | 0.02831 | 0.00011  | 0.012 | 0.01295         | 0.8 | 0.02819 | -0.00009 | -0.00012 |
| 12       | 松ヶ浜地区避難所      |          | 0.000010                                  | 0.00003  | 0.012     | 0.01286   | 0.2         | 0.02807 | 0.00001  | 0.012 | 0.01284         | 0.1 | 0.02804 | -0.00002 | -0.00003 |
|          | 環境基準          | 1日平均     | 日平均値の年間98%値が0.04ppmから0.06ppmまでのゾーン内又はそれ以下 | %值が0.04  | ppmカッらの.( | )6ppmまでの  | ンゾーン内       | 又はそれ以   | <u>⊬</u> |       |                 |     |         |          |          |
| 仙台市      | 仙台市環境基本計画定量目標 | 1日平均     | 1 日平均値の年間98%値が0.04ppm以                    | %值350.04 | ppm以下     |           |             |         |          |       |                 |     |         |          |          |

注:1. 図中番号の数字は、図2-1(1)に対応する。

2. 仙台パワーステーションの着地濃度は、二酸化窒素年平均値の最大着地濃度を示す。3. (仮称) 仙台バイオマス発電事業の寄与濃度は、「(仮称) 仙台バイオマス発電事業 環境影響評価書」(令和2年6月、株式会社レノバ) に示す予測結果のうち、本事業 の最大着地濃度出現地点に最寄りの予測地点又は近傍の予測値における二酸化窒素年平均値の寄与濃度を示す。

複合影響予測結果の比較(測定局濃度:二酸化硫黄) 表2-13(2)

|        |                                         | 仙台パワース   | 仙台パワース (仮称)仙台バ   |                          |                        | 評価書     |     |         |         |       | 変更計画    |     |         | 差分         | 尔        |
|--------|-----------------------------------------|----------|------------------|--------------------------|------------------------|---------|-----|---------|---------|-------|---------|-----|---------|------------|----------|
|        |                                         | ノモベード    | テーション イオマス発電     | 本事業                      | バッカガ                   | 将来環境    | 本事業 | 年間2%    | 本事業     | バッカガ  | 将来環境    | 本事業 | 後る闘争    | (変更計画一評価書) | -評価書)    |
| E      |                                         | 最大着地     | ₩                | 寄与濃度                     | ラウンド                   | 濃度      | 寄与率 | 除外値の    | 寄与濃度    | ラウンド  | 濃度      | 寄与率 | 除外値の    | 将来環境       | 年間2%     |
| ¥ 区    | 測定局名                                    | 濃度       | 寄与濃度             |                          | 濃度                     |         | _   | 換算値     |         | 濃度    |         |     | 換算値     | 濃度         | 除外値の     |
| Ħ<br>O |                                         | (mdd)    | (mdd)            | (mdd)                    | (mdd)                  | (mdd)   | (%) | (mdd)   | (mdd)   | (mdd) | (mdd)   | (%) | (mdd)   |            | 換算値      |
|        |                                         | $\Theta$ | (3)              | <u>©</u>                 | 4                      | =(2)=   | 3/2 | _       | (m)     | 4     | 2       | 3/2 |         | (mdd)      | (mdd)    |
|        |                                         |          |                  |                          |                        | D+2+3+4 |     |         |         |       | D+2+3+4 |     |         |            |          |
| 4      | 垂 中                                     |          | 0.000022 0.00001 | 0.00001                  | 0.001                  | 0.00182 | 0.5 | 0.00257 | 0.00001 | 0.001 | 0.00182 | 0.5 | 0.00257 | 0          | 0        |
| ∞      | 苦 竹                                     |          | 0.000020         | 0.000020 0.000006        | 0.000                  | 0.00082 | 0.7 | 0.00212 | 0.00000 | 0.000 | 0.00081 | 0.0 | 0.00211 | -0.00001   | -0.00001 |
| 10     | 精生干潟近傍                                  | 0.00079  | 0.000010 0.00001 | 0.00001                  | 0.001                  | 0.00181 | 0.6 | 0.00256 | 0.00001 | 0.001 | 0.00181 | 0.6 | 0.00256 | 0          | 0        |
| 11     | 多賀城市役所                                  |          | 0.000010         | 60000 0                  | 0.001                  | 0.00189 | 4.8 | 0.0026  | 0.00004 | 0.001 | 0.00184 | 2.2 | 0.00258 | -0.00005   | -0.00002 |
| 12     | 松ヶ浜地区避難所                                |          | 0.000005         | 0.000005 0.00001         | 0.001                  | 0.00181 | 0.6 | 0.00256 | 0.00001 | 0.001 | 0.00181 | 0.6 | 0.00256 | 0          | 0        |
|        | 環境基準                                    | 1日平均1    | 重の年間29           | 1 日平均値の年間2%除外値が0.04ppm以下 | ). 04ppm以 <sup>-</sup> | 14      |     |         |         |       |         |     |         |            |          |
| 仙台市    | 仙台市環境基本計画定量目標                           |          | 重の年間25           | 1日平均値の年間2%除外値が0.04ppm以下  | ). 04ppm以 <sup>-</sup> | 14      |     |         |         |       |         |     |         |            |          |
|        | 111111111111111111111111111111111111111 |          |                  |                          |                        |         |     |         |         |       |         |     |         |            |          |

注:1. 図中番号の数字は、図2-1(2)に対応する。

2. 仙台パワーステーションの着地濃度は、二酸化硫黄年平均値の最大着地濃度を示す。3. (仮称) 仙台バイオマス発電事業の寄与濃度は、「(仮称) 仙台バイオマス発電事業 環境影響評価書」(令和2年6月、株式会社レノバ) に示す予測結果のうち、本事業の最大着地濃度出現地点に最寄りの予測地点又は近傍の予測値における二酸化硫黄年平均値の寄与濃度を示す。

複合影響予測結果の比較(測定局濃度:浮遊粒子状物質) 表2-13(3)

|             |               | 仙台パワース     | (仮称)仙台バ           |                        |            | 評価書          |     |            |            |            | 変更計画            |     |            | 差分         | 尔          |
|-------------|---------------|------------|-------------------|------------------------|------------|--------------|-----|------------|------------|------------|-----------------|-----|------------|------------|------------|
|             |               | アージョン      | イオマス発電            | 本事業                    | バックグ       | 将来環境         | 本事業 | 年間2%       | 本事業        | バックゲ       | 将来環境            | 本事業 | 年間2%       | (変更計画一評価書) | -評価書)      |
| E           |               | 最大着地       | 華                 | 寄与濃度                   | ラウンド       | 濃度           | 寄与率 | 除外値の       | 寄与濃度       | ラウンド       | 濃度              | 寄与率 | 除外値の       | 将来環境       | 年間2%       |
| Н<br>Д<br>Ж | 測定局名          | 濃度         | 寄与濃度              |                        | 濃度         |              |     | 換算値        |            | 濃度         |                 |     | 換算値        | 濃度         | 除外値の       |
| <b>油</b>    |               | $(mg/m^3)$ | $(mg/m^3)$        | $(mg/m^3)$             | $(mg/m^3)$ | $(mg/m^3)$   | (%) | $(mg/m^3)$ | $(mg/m^3)$ | $(mg/m^3)$ | $(mg/m^3)$      | (%) | $(mg/m^3)$ |            | 換算値        |
|             |               | $\Theta$   | (S)               | <u></u>                | 4          | 2            | 3/0 | _          | (m)        | 4          | 2               | 3/2 | _          | $(mg/m^3)$ | $(mg/m^3)$ |
|             |               |            |                   |                        |            | (D+(2+3)+(4) |     |            |            |            | (1)+(2)+(3)+(4) |     |            |            |            |
| 1           | 福室            |            | 0.000011          | 0.000011 0.000008      | 0.017      | 0.017429     | 0.0 | 0.043305   | 0.000005   | 0.017      | 0.017426        | 0.0 | 0.043299   | -0.000003  | -0.000006  |
| 2           | 岩 切           |            | 0.000010 0.000011 | 0.000011               | 0.016      | 0.016431     | 0.1 | 0.041409   | 0.000008   | 0.016      | 0.016428        | 0.0 | 0.041403   | -0. 000003 | -0.000006  |
| 3           | 鶴谷            |            | 0.000010          | 0.000004               | 0.017      | 0.017424     | 0.0 | 0.043295   | 0.000003   | 0.017      | 0.017423        | 0.0 | 0.043293   | -0.000001  | -0.000002  |
| 4           | 垂 中           |            | 0.000012          | 900000 0               | 0.017      | 0.017427     | 0.0 | 0.043301   | 0.000003   | 0.017      | 0.017425        | 0.0 | 0.043297   | -0.000002  | -0.000004  |
| 2           | 七新            |            | 0.00000           | 0.000003               | 0.017      | 0.017418     | 0.0 | 0.043284   | 0.000002   | 0.017      | 0.017417        | 0.0 | 0.043282   | -0. 000001 | -0.000002  |
| 9           | 塩 釜           |            | 0.000005          | 0.000014               | 0.019      | 0.019429     | 0.1 | 0.047103   | 0.000000   | 0.019      | 0.019424        | 0.0 | 0.047094   | -0.000005  | -0.000009  |
| 2           | 利 府           | 0.00041    | 0.000005 0.000015 | 0.000015               | 0.021      | 0.02143      | 0.1 | 0.050904   | 0.000012   | 0.021      | 0.021427        | 0.1 | 0.050898   | -0.000003  | -0.000006  |
| 8           | 苦 竹           |            | 0.000010          | 0.000010 0.000004      | 0.020      | 0.020424     | 0.0 | 0.048993   | 0.000003   | 0.020      | 0.020423        | 0.0 | 0.048991   | -0.000001  | -0.000002  |
| 6           | 塩釜自排          |            | 0.000005          | 0.000014               | 0.019      | 0.019429     | 0.1 | 0.047103   | 0.000000   | 0.019      | 0.019424        | 0.0 | 0.047094   | -0.000005  | -0.000009  |
| 10          | 精生干潟近傍        |            | 0.000005          | 800000 0               | 0.012      | 0.012423     | 0.1 | 0.033796   | 0.000003   | 0.012      | 0.012418        | 0.0 | 0.033787   | -0.000005  | -0.000009  |
| 11          | 多賀城市役所        |            | 0.000005          | 0.000050               | 0.012      | 0.012465     | 0.4 | 0.033876   | 0.000028   | 0.012      | 0.012443        | 0.2 | 0.033834   | -0.000022  | -0.000042  |
| 12          | 松ヶ浜地区避難所      |            | 0.000005          | 0.000005 0.000008      | 0.012      | 0.012423     | 0.1 | 0.033796   | 0.000003   | 0.012      | 0.012418        | 0.0 | 0.033787   | -0.000005  | -0.000009  |
|             | 環境基準          | 1日平均       | 直の年間2             | 日平均値の年間2%除外値が0.10mg/   |            | m以下          |     |            |            |            |                 |     |            |            |            |
| 仙台市         | 仙台市環境基本計画定量目標 | 1日平均       | 直の年間2             | 1 日平均値の年間2%除外値が0.10mg/ |            | m以下          |     |            |            |            |                 |     |            |            |            |
|             |               |            |                   |                        |            |              |     |            |            |            |                 |     |            |            |            |

注:1. 図中番号の数字は、図2-1(2)に対応する。

## 2-3-2. 水 質(供用による影響:施設の稼働)の再予測評価

### (1) 水の汚れ: 化学的酸素要求量(COD)

化学的酸素要求量 (COD) の再予測結果及び評価書の予測結果との比較は、図2-3に示すとおりである。

変更計画に基づく再予測の結果、環境基準値(8 mg/L以下:海域におけるC類型の基準)を下回る濃度となる距離及びバックグラウンド値と同等の濃度となる距離は評価書の予測結果より減少し、施設の稼働に伴う水の汚れ(化学的酸素要求量(COD))の影響は、評価書の予測結果と同様に排水口の近傍に限られるものであり、公共用水域(海域)に対する影響は少ないと予測された。

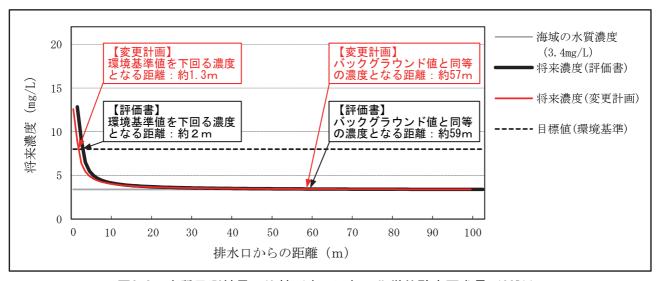



図2-3 水質予測結果の比較 (水の汚れ:化学的酸素要求量 (COD))

### (2) 富栄養化:全窒素・全燐

全窒素及び全燐の再予測結果及び評価書の予測結果との比較は、図2-4に示すとおりである。 プラント排水の排出先となる公共用水域(海域)における全窒素及び全燐の濃度は、現況でバックグラウンド濃度が既に目標値(全窒素=1 mg/L以下:海域におけるIV類型の環境基準を準用、全燐=0.09mg/L以下:海域におけるIV類型の環境基準を準用)を上回っているが、バックグラウンド濃度と同等となる排水口からの距離は評価書の予測結果より減少し、施設の稼働に伴う富栄養化(全窒素・全燐)の影響は、評価書の予測結果と同様に排水口の近傍に限られるものであり、公共用水域(海域)に対する影響は少ないと予測された。

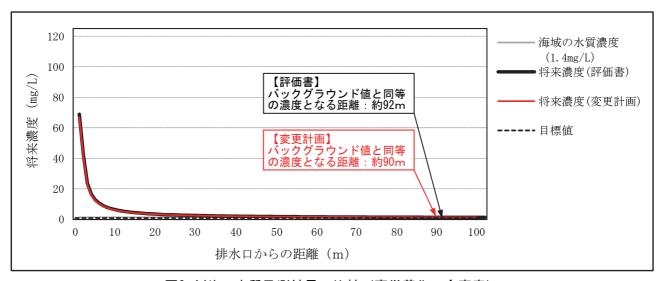



図2-4(1) 水質予測結果の比較(富栄養化:全窒素)

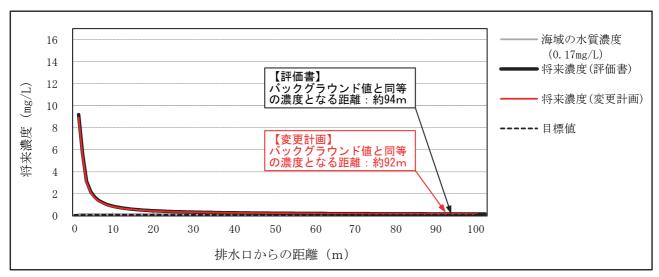



図2-4(2) 水質予測結果の比較(富栄養化:全燐)

## 2-3-3. 電波障害(存在による影響:工作物等の出現)の再予測評価

#### (1) 地上デジタル波

計画建築物の存在による地上デジタル波のテレビ電波受信障害予測範囲の再予測結果及び評価書の予測結果との比較は、図2-5に示すとおりである。

変更計画に基づく再予測の結果、計画建築物による地上デジタル波の遮蔽障害範囲は、評価書の予測結果と同様に計画建築物より北東側にわずかに発生する程度であり、計画地外には発生しない。

また、反射障害範囲は、計画建築物より南東側に約1.1~1.7kmの範囲で発生し評価書の予測結果より増加したが、反射障害範囲は主に海域であり陸域では計画地近傍の工業専用地域内に限られる。計画地は用途地域境界から約1km以上離れている工業専用地域に位置し電波障害が発生する範囲に住居等は存在しないことから、地上デジタル波の電波障害は生じないと予測された。

### (2) 衛星放送

計画建築物の存在による衛星放送のテレビ電波受信障害予測範囲の再予測結果及び評価書の 予測結果との比較は、図2-6に示すとおりである。

変更計画に基づく再予測の結果、計画建築物による衛星放送の遮蔽障害範囲は、評価書の予測結果と同様に計画建築物より北側にわずかに発生する程度であり、計画地は用途地域境界から約1km以上離れている工業専用地域に位置し住居等は存在しないことから、衛星放送の遮蔽障害は生じないと予測された。

なお、衛星放送の反射障害は生じない。

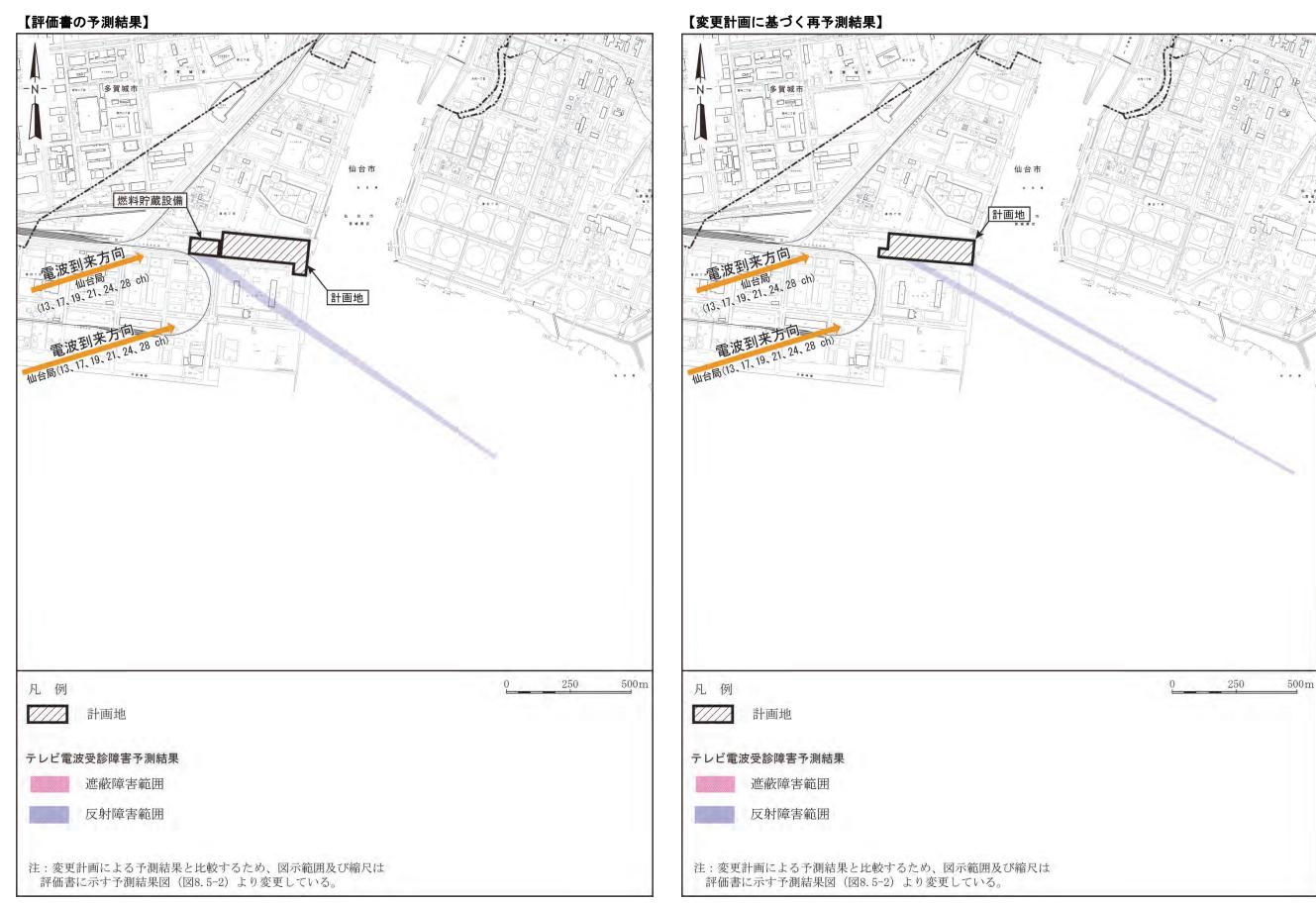



図2-5 テレビ電波受信障害予測結果の比較(地上デジタル波)

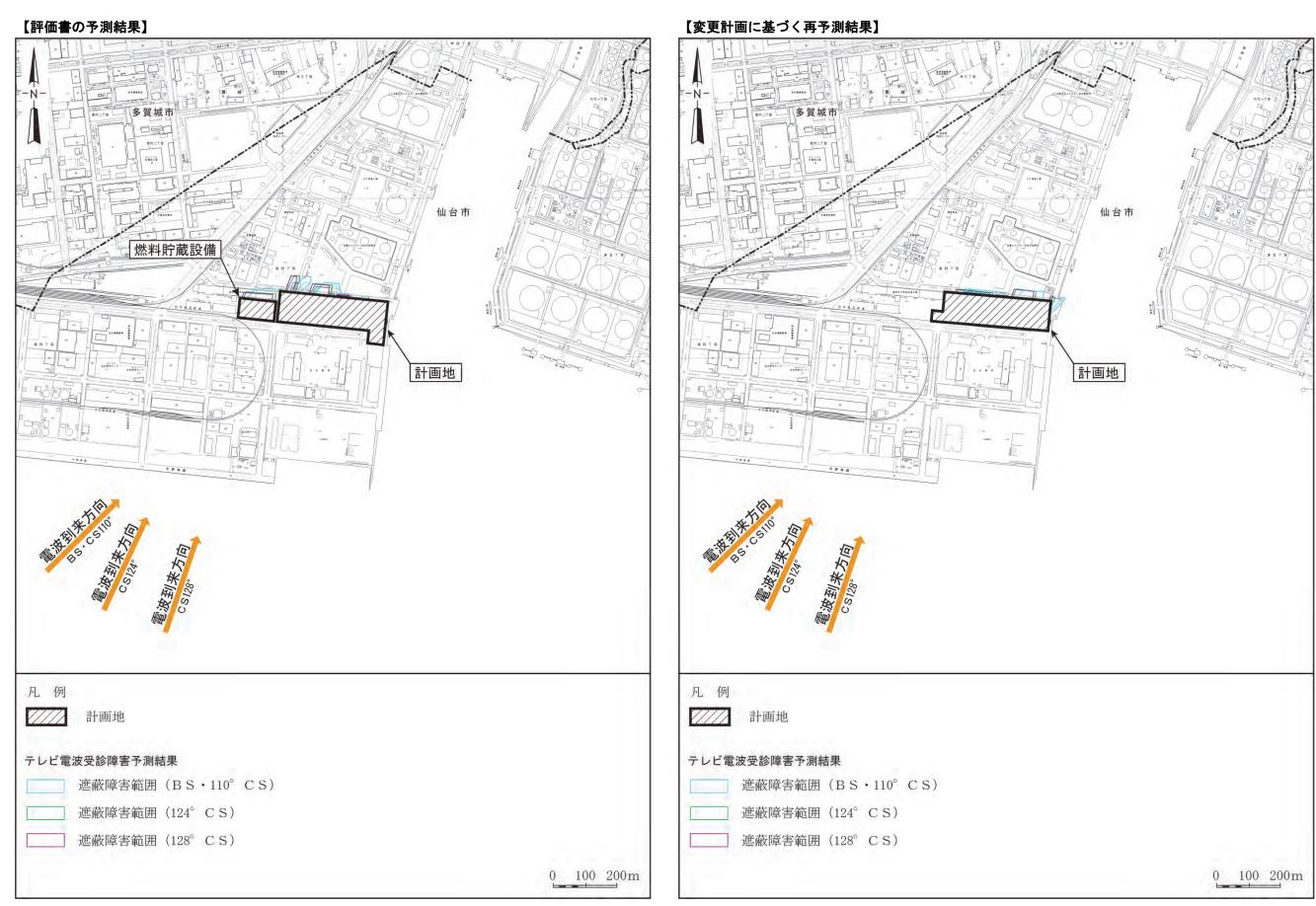



図2-6 テレビ電波受信障害予測結果の比較(衛星放送)

## 2-3-4. 日照阻害(存在による影響:工作物等の出現)の再予測評価

計画建築物の存在による冬至日における時刻別日影図の再予測結果及び評価書の予測結果との比較は図2-7、等時間日影図は図2-8に示すとおりである。

変更計画に基づく再予測の結果、冬至日における日影の最大到達距離は約650mで評価書の予測結果と同等となり、日影の範囲は、評価書の予測結果と同様に規制対象とならない工業専用地域内に限られ、また、配慮が特に必要な教育施設、病院、文化施設、社会福祉施設や住居地には及ばないと予測された。また、冬至日における日影の継続時間が3時間以上の範囲についても、評価書と同様に計画地の近傍に限られ、配慮が特に必要な教育施設、病院、文化施設、社会福祉施設や住居地には及ばないと予測された。

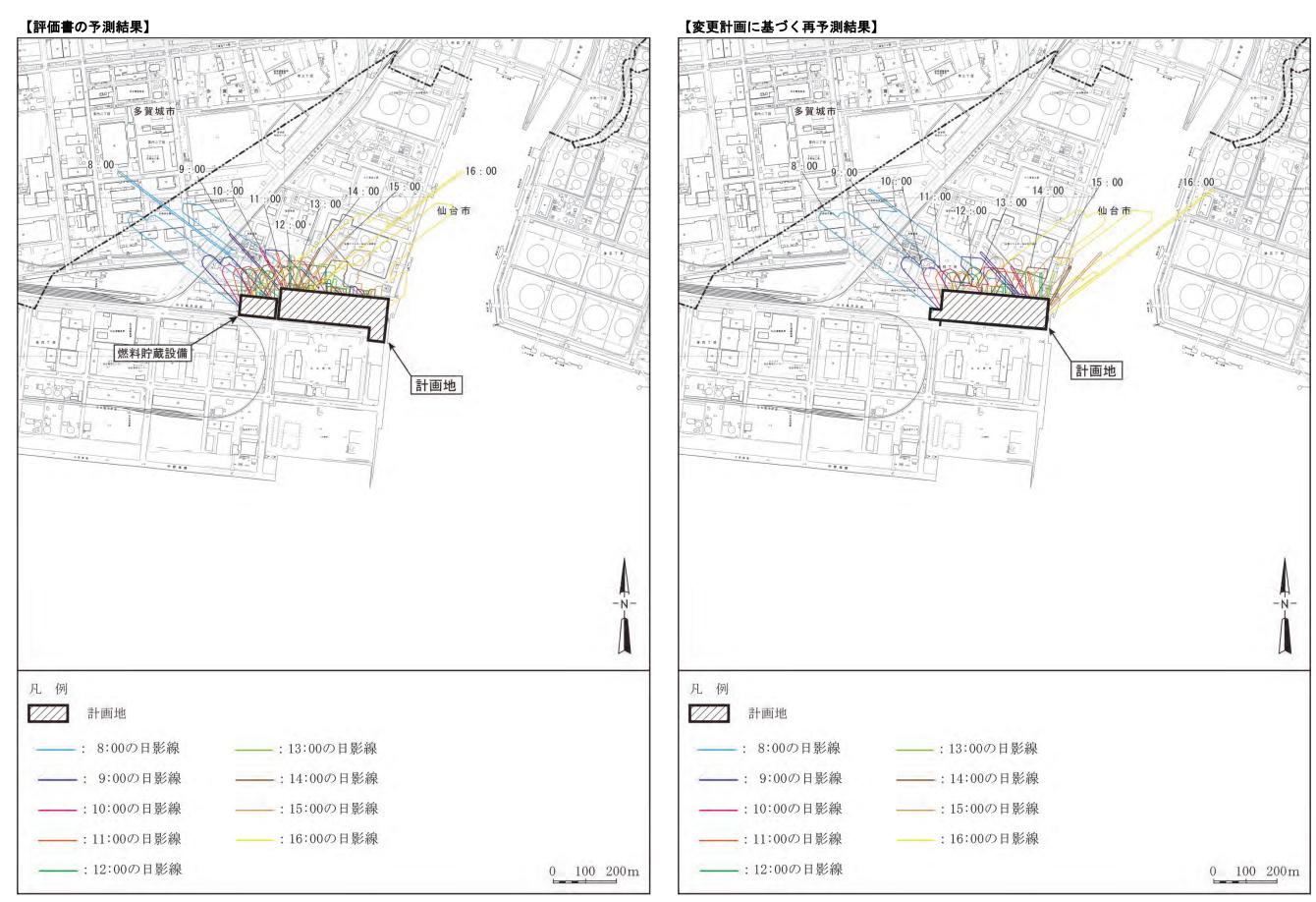



図2-7 冬至日の時刻別日影図予測結果の比較

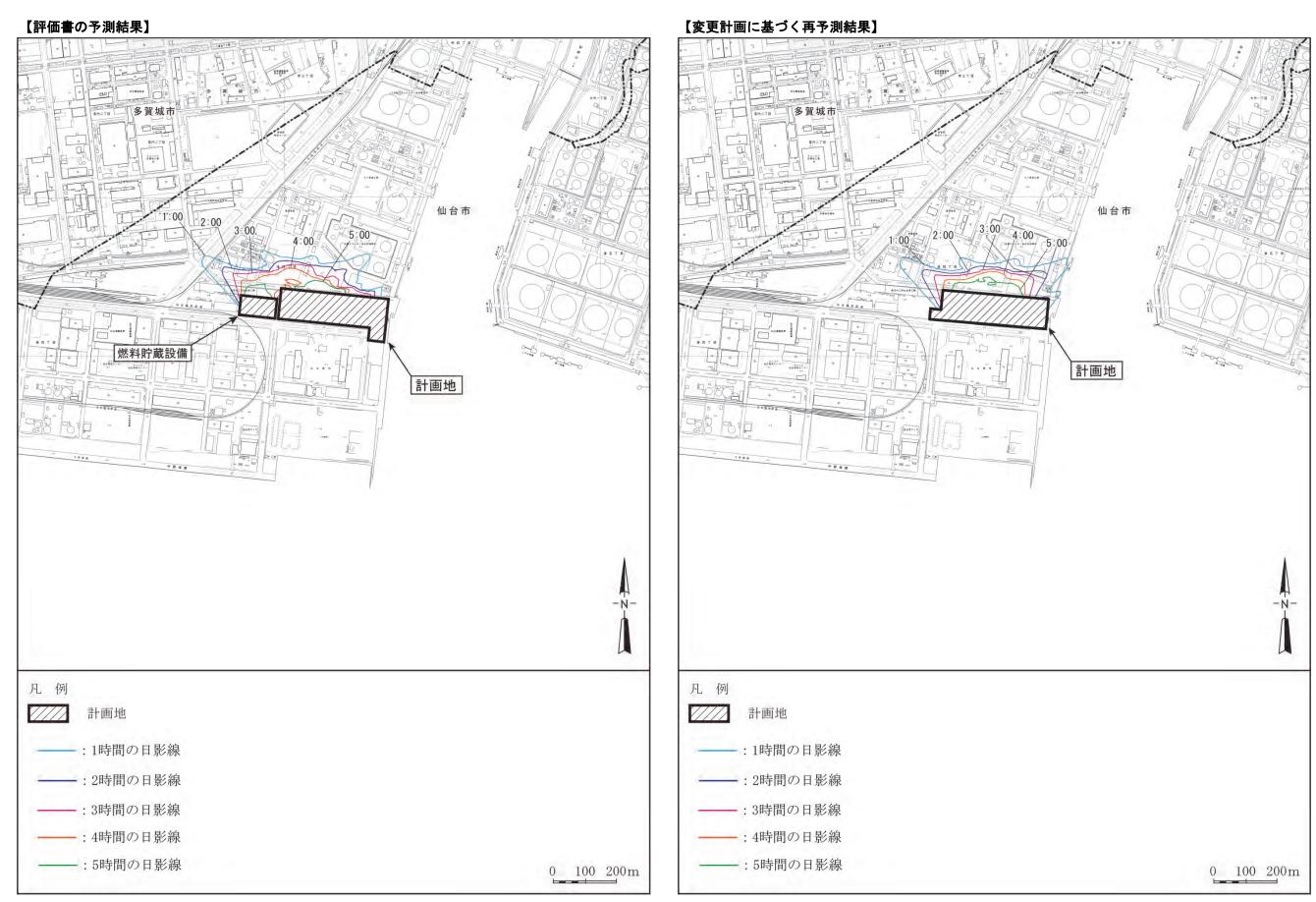



図2-8 冬至日の等時間日影図予測結果の比較

## 2-3-5. 植物・動物(供用による影響:施設の稼働)の再予測評価

## (1) 大気質への影響に伴う植物・動物への影響

蒲生干潟における二酸化窒素、二酸化硫黄及び浮遊粒子状物質の年平均値の再予測結果及び評価書の予測結果との比較は、表2-14に示すとおりである。

変更計画に基づく再予測の結果、蒲生干潟における本事業による二酸化窒素の寄与濃度は、0.00003ppm未満、二酸化硫黄の寄与濃度は0.00001ppm未満、浮遊粒子状物質の寄与濃度は0.000005未満~0.00001mg/m³未満と評価書の予測結果より減少し本事業の稼働後も大気質の状況はほとんど変化しないと予測され、本事業の稼働による蒲生干潟に生育する植物相及び注目すべき種への影響は少ないと予測された。

|         | <b>塔</b> ロ    | 光件       | 予測                 | 結果                 |
|---------|---------------|----------|--------------------|--------------------|
|         | 項目            | 単位       | 評価書                | 変更計画               |
|         | 寄与濃度(①)       | ppm      | 0.00003~0.00005    | 0.00003未満          |
| 二酸化窒素   | バックグラウンド濃度(②) | ppm      | 0.012              | 0.012(同左)          |
|         | 将来環境濃度(③)     | ppm      | 0.01203~0.01205    | 0.01203未満          |
|         | 寄与濃度(①)       | ppm      | 0.00001~0.00003    | 0.00001未満          |
| 二酸化硫黄   | バックグラウンド濃度(②) | ppm      | 0. 001             | 0.001(同左)          |
|         | 将来環境濃度(③)     | ppm      | 0.00101~0.00103    | 0.00101未満          |
|         | 寄与濃度(①)       | $mg/m^3$ | 0.000005~0.00003   | 0.000005未満~0.00001 |
| 浮遊粒子状物質 | バックグラウンド濃度(②) | $mg/m^3$ | 0.012              | 0.012 (同左)         |
|         | 将来環境濃度(③)     | mg/m³    | 0. 012005~0. 01203 | 0.012005未満~0.01201 |

表2-14 蒲生干潟における大気質年平均値予測結果の比較

注:大気質の年平均値予測結果は、図2-1に示すとおりである。

## (2) 水質への影響に伴う植物・動物への影響

蒲生干潟における水質への影響の再予測結果及び評価書の予測結果との比較は、表2-15に示すとおりである。

変更計画に基づく再予測の結果、施設の稼働に伴う排水により水質の変化が想定される範囲は、水の汚れ(化学的酸素要求量(COD))が約57m、富栄養化(全窒素)が約90m、富栄養化(全燐)が約92mと評価書の予測結果より減少し、評価書の予測結果と同様に計画地より約2km以上離れている蒲生干潟には排水の影響は及ばないと予測された。

|             | 1百 日     |                          | 予測    | 結果    | 差分         |
|-------------|----------|--------------------------|-------|-------|------------|
|             | 項目       |                          | 評価書   | 変更計画  | (変更計画-評価書) |
|             | 排水到達路    | 三離                       | 約101m | 約99m  | 約-2m       |
| de DVII-la  | 化学的酸素要求量 | 環境基準を下回る<br>濃度となる距離      | 約2m   | 約1.3m | 約-0.7m     |
| 水の汚れ        | (COD)    | バックグラウンド値と<br>同等の濃度となる距離 | 約59m  | 約57m  | 約-2m       |
| 富栄養化        | 全窒素      | バックグラウンド値と<br>同等の濃度となる距離 | 約92m  | 約90m  | 約-2m       |
| <b>田木食化</b> | 全燐       | バックグラウンド値と<br>同等の濃度となる距離 | 約94m  | 約92m  | 約-2m       |

表2-15 蒲生干潟における水質予測結果の比較

## 2-3-6. 景 観(存在による影響:工作物等の出現)の再予測評価

#### (1) 景観資源

変更計画に基づく計画地の位置及び計画建築物の規模は評価書の計画とほぼ同じであり、本事業の実施により予測地域内に分布する景観資源を直接改変することはない。

また、計画建築物と景観資源が同時に視認できる主要な眺望地点についても評価書と変更なく、「蒲生干潟・日和山・高砂神社」、「長浜」、「貞山運河(南貞山運河)」、「スリーエム仙台港パーク(仙台港中央公園)」、「緩衝緑地帯」、「貞山運河(御舟入堀)」の景観資源が計画建築物と同時に視認できるが、主要な眺望地点から計画地方向への眺望は、既存の煙突、工場等により構成される工場地景観であり、変更計画に基づく計画建築物による景観資源の変化は、ほとんどない。したがって、変更計画に基づく施設の存在に伴う景観資源への影響は、ほとんどないと予測された。

### (2) 主要な眺望景観

変更計画に基づく工作物等の出現に伴う主要な眺望の予測結果は表2-16、フォトモンタージュによる眺望の変化は図2-9に示すとおりである。

変更計画に基づく再予測の結果、設備配置等を変更することから主要な眺望地点からの視認される計画建築物の形状等は変化するが、視認の程度に大差はなく計画建築物の色彩についても周辺の工場地景観と調和していることから、変更計画に基づく施設の存在に伴う景観資源への影響は、ほとんどないと予測された。

表2-16 主要な眺望景観の予測結果の比較

| 마바람마 는 성                     | 計画地                 | lún Þ | 眺望の変化                                                                                                                                                                 | の予測結果                                                                                                                                                                                                                                                              |
|------------------------------|---------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 眺望地点名                        | からの<br>距離           | 仰角    | 評価書                                                                                                                                                                   | 変更計画                                                                                                                                                                                                                                                               |
| 蒲生干潟・日和<br>山・高砂神社            | 約1.7<br>~<br>約2.8km | 約2~3° | 計画建築物の煙突頂部が視認されるものの、地形の起伏、工場等の既存構造物等により遮蔽されており、視認範囲は極めてわずかであり、現状のスカイラインに変化はない。また、計画建築物の色彩についても、周辺の工場地景観と調和していることから、眺望景観の変化は、ほとんどないと予測された。                             | 変更計画による計画建築物の煙突<br>頂部及びボイラ上層部が視認される<br>ものの、計画建築物の大部分は評価<br>書と同様に地形の起伏、工場等の既<br>存構造物等により遮蔽されている。<br>変更計画では評価書の計画に比べ<br>ボイラ上層部が視認されることとな<br>るが、現状のスカイラインに変化は<br>ない。また、計画建築物の色彩につ<br>いても、周辺の工場地景観の変化は<br>評価書と同様に、ほとんどないと予<br>測された。                                    |
| 貞山運河(南貞<br>山運河)              | 約3.0<br>~<br>約5.0km | 約1~2° | 橋梁の隙間から、工場地景観の一部として計画建築物の燃料貯蔵設備、ボイラ等の上層部が視認されるものの、視認範囲はわずかであり、現状のスカイラインに変化はない。また、計画建築物の色彩についても、周辺の工場地景観と調和していることから、眺望景観の変化は、ほとんどないと予測された。                             | 橋梁の隙間から変更計画による煙<br>突頂部、ボイラ及び燃料貯蔵設備上<br>層部が視認されるものの、計画建築<br>物の大部分は評価書と同様に工場等<br>の既存構造物等により遮蔽されてい<br>る。<br>変更計画では評価書の計画に比べ<br>る。<br>変更計画では評価書の計画に比視<br>認されることとなるが、現大の<br>記されることとなるが、また、計画<br>建築物の色彩についても、ま別の<br>は異観と調和していることから、<br>眺望景観の変化は評価書と同様に、<br>ほとんどないと予測された。 |
| スリーエム仙台<br>港パーク(仙台<br>港中央公園) | 約2. 4km             | 約2°   | 計画建築物の煙突、ボイラ、燃料<br>貯蔵設備等が視認されるものの、計<br>画地の周辺は、既存の工場等が大部<br>分を占めており、調査地点から望む<br>街並みの連続性に違和感はない。ま<br>た、計画建築物の色彩についても、<br>周辺の工場地景観と調和しているこ<br>とから、眺望景観の変化は少ないと<br>予測された。 | 変更計画による計画建築物の煙<br>突、ボイラ、燃料貯蔵設備等が視認<br>されるものの、計画地の周辺は、既<br>存の工場等が大部分を占めており、<br>調査地点から望む街並みの連続性に<br>違和感はない。<br>変更計画では評価書の計画と同等<br>の視認程度であり、計画建築物の色<br>彩についても、周辺の工場地景観と<br>調和していることから、眺望景観の<br>変化は少ないと予測された。                                                          |
| 貞山運河(御舟<br>入堀)               | 約1.0<br>~<br>約3.5km | 約1~5° | 計画建築物の煙突、ボイラ等が視認されるものの、計画地の周辺は、<br>既存の工場等が大部分を占めており、調査地点から望む街並みの連続性に違和感はない。また、計画建築物の色彩についても、周辺の工場地景観と調和していることから、眺望景観の変化は少ないと予測された。                                    | 変更計画による計画建築物の煙<br>突、ボイラ上層部、燃料貯蔵設備等<br>が視認されるものの、計画地の周辺<br>は、既存の工場等が大部分を占めて<br>おり、調査地点から望む街並みの連<br>続性に違和感はない。<br>変更計画では評価書の計画と同等<br>の視認程度であり、計画建築物の色<br>彩についても、周辺の工場地景観と<br>調和していることから、眺望景観の<br>変化は少ないと予測された。                                                       |



図2-9(1) 眺望景観の変化予測結果の比較(蒲生干潟・日和山・高砂神社【展葉期】)

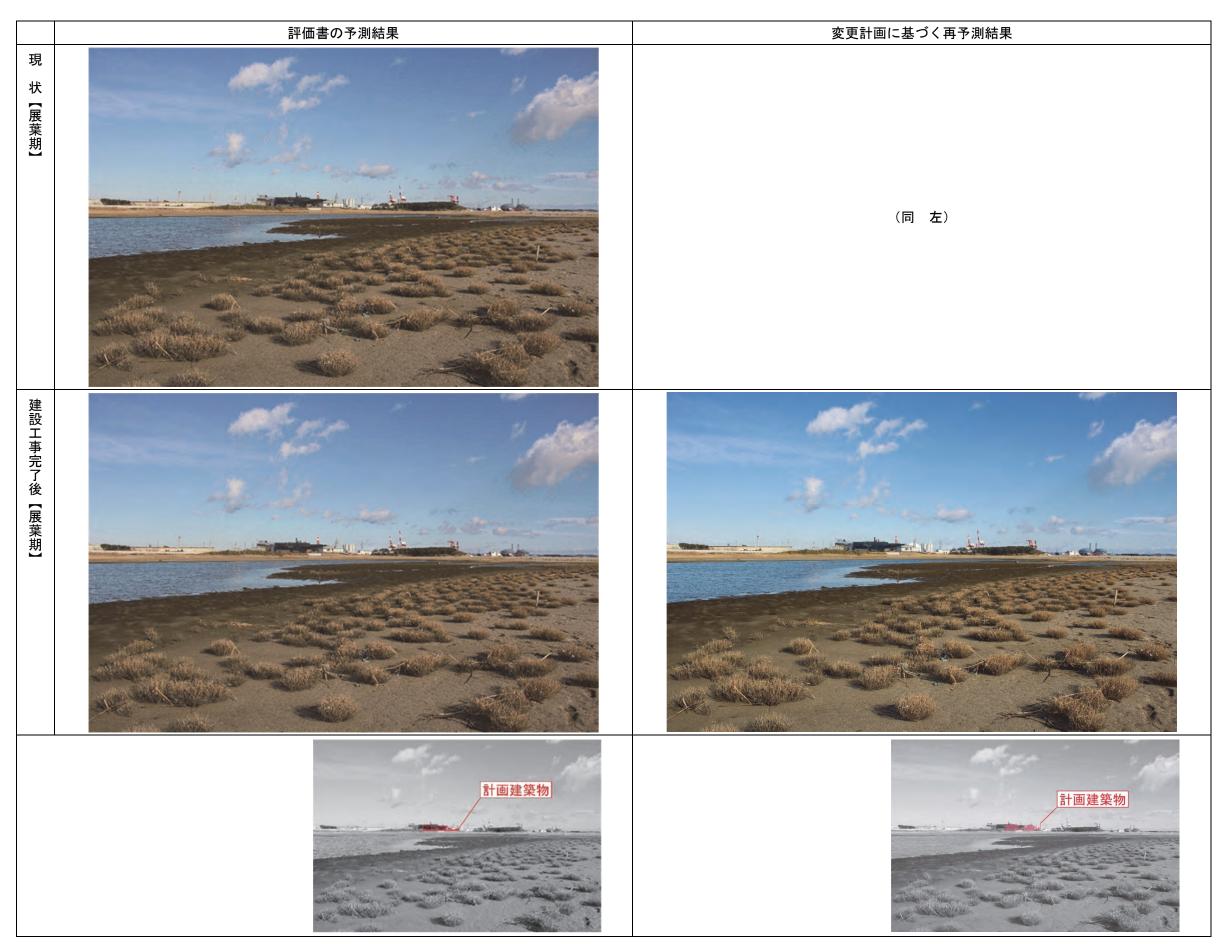



図2-9(2) 眺望景観の変化予測結果の比較(蒲生干潟・日和山・高砂神社【落葉期】)

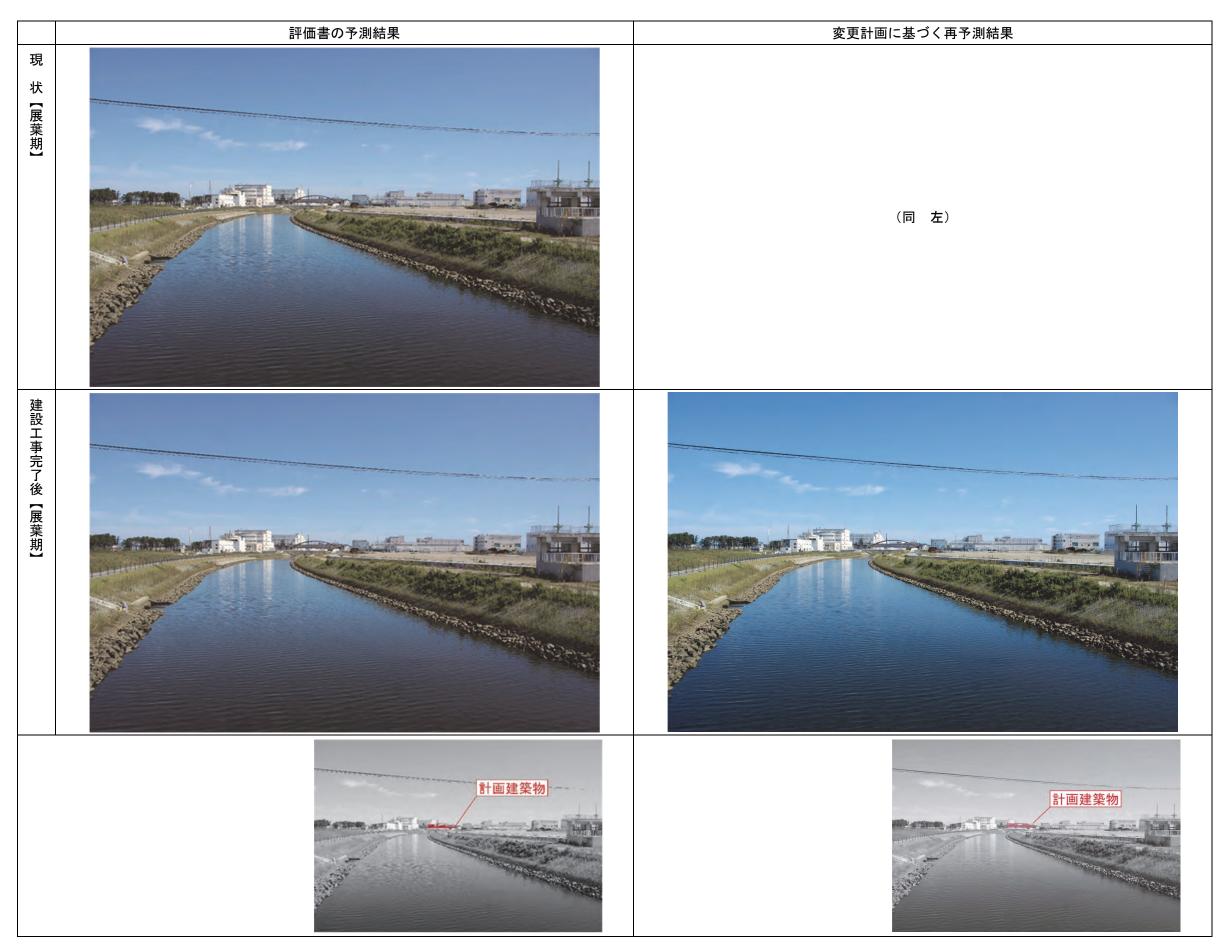



図2-9(3) 眺望景観の変化予測結果の比較(貞山運河(南貞山運河)【展葉期】)




図2-9(4) 眺望景観の変化予測結果の比較(貞山運河(南貞山運河)【落葉期】)

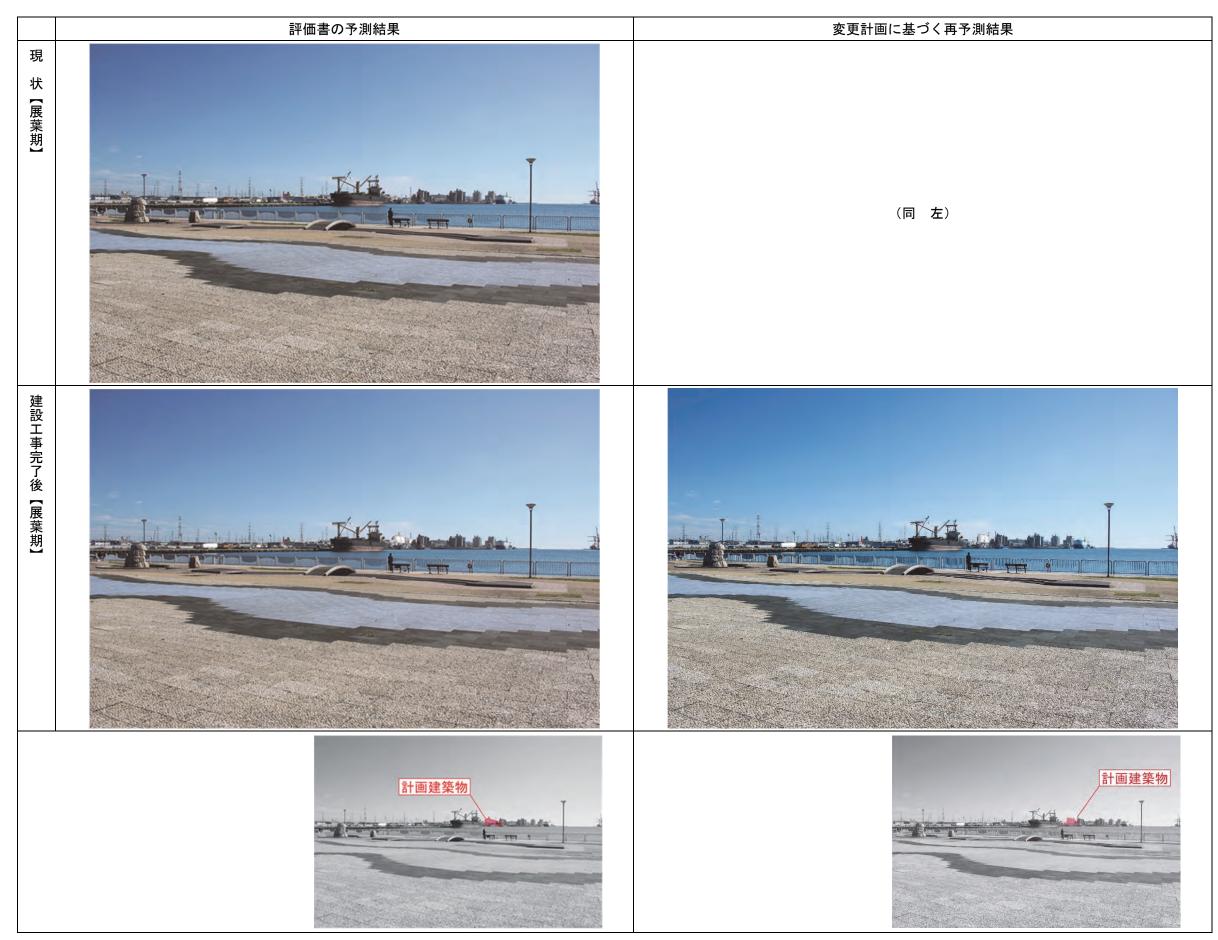



図2-9(5) 眺望景観の変化予測結果の比較 (スリーエム仙台港パーク(仙台港中央公園)【展葉期】)

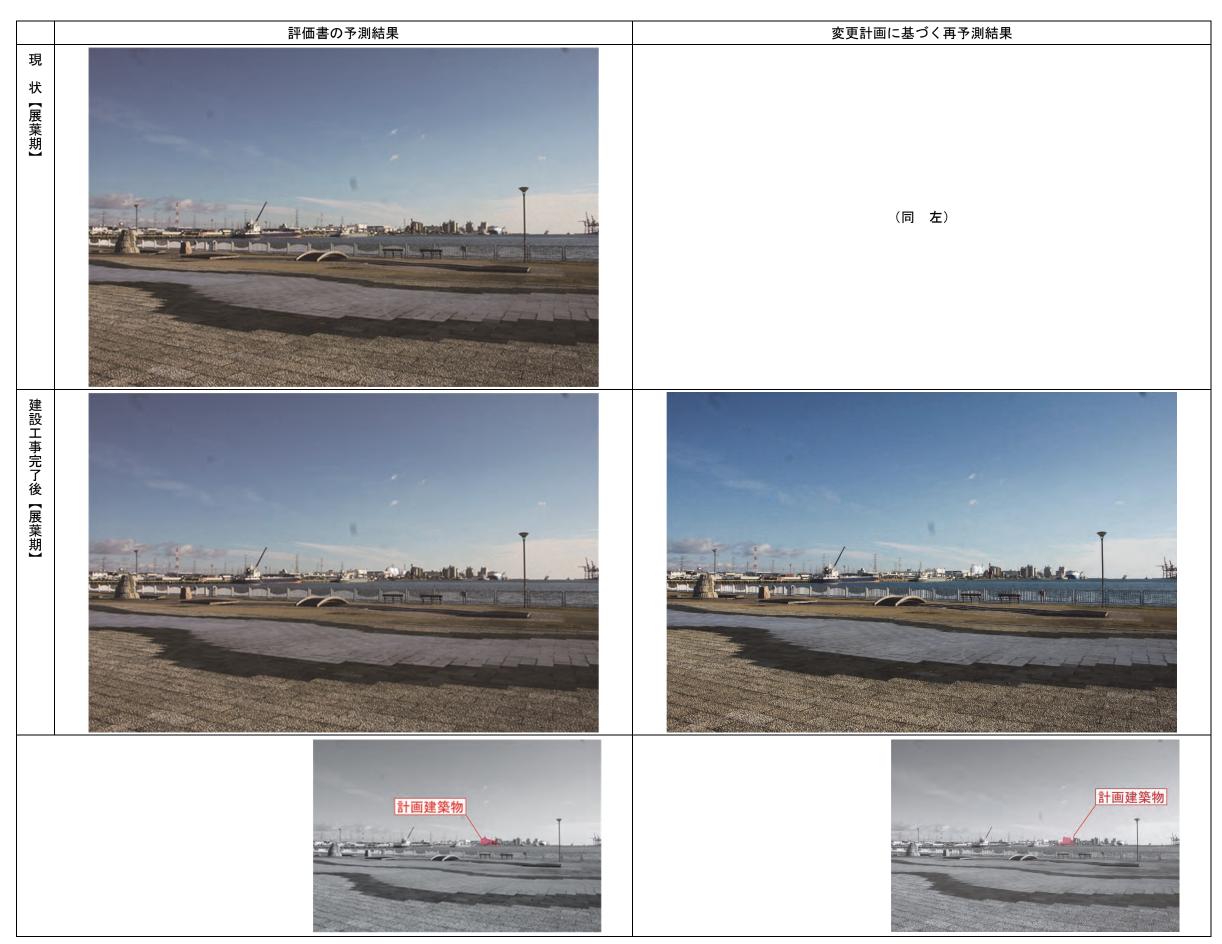



図2-9(6) 眺望景観の変化予測結果の比較 (スリーエム仙台港パーク(仙台港中央公園)【落葉期】)



図2-9(7) 眺望景観の変化予測結果の比較(貞山運河(御舟入堀)【展葉期】)



図2-9(8) 眺望景観の変化予測結果の比較(貞山運河(御舟入堀)【落葉期】)

# 3. 事後調査計画の変更

変更計画に基づく事後調査の項目及び内容は、評価書に示す計画より変更ないが、事業工程の変更に伴い、事後調査スケジュール及び事後調査報告書の提出時期について、以下のとおり変更する。

## (1) 事後調査スケジュールの変更

着工時期、営業運転開始時期等の変更に伴い、表3-1に示すとおり事後調査スケジュールを変更する。

表 3-1(1) 事後調査スケジュール

・工事工程【評価書】

| 工事等の種類 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 2023年 | 2024年 | 2025年 | 2026年 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 土木建築工事 |       |       |       |       |       |       |       |       |       |       |
| 機器工事   |       |       |       |       |       |       |       |       |       |       |
| 試運転    |       |       |       |       |       |       |       |       |       |       |

・工事工程【**変更計画**】

| 工事等の種類 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 2023年 | 2024年 | 2025年 | 2026年 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 土木建築工事 |       |       |       |       |       |       |       |       |       |       |
| 機器工事   |       |       |       |       |       |       |       |       |       |       |
| 試運転    |       |       |       |       |       |       |       |       |       |       |

· 車公園木 (丁重七) 『野**涌車**』

|                             | 項目                          | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 2023年 | 2024年 | 2025年 | 2026年 |
|-----------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 大気質                         | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| 五 報                         | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| 板動                          | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| 自然との触<br>れ合いの場 <sup>3</sup> | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| <b>荞</b> 莱物等                | 切土・盛土・<br>発破・掘削等<br>建築物等の建築 |       |       |       |       |       |       |       |       |       |       |
| 温室効果<br>ガス等                 | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |

・事後調査 (工事中) **【変更計画】** 

| 1                     | 項目                          | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 2023年 | 2024年 | 2025年 | 2026年 |
|-----------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 大気質                   | 資材等の運搬                      |       |       |       |       |       |       | •     |       |       |       |
| 器 岩                   | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| 板動                    | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| 自然との触<br>れ合いの場        | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |
| 及<br>所<br>所<br>多<br>多 | 切土・盛土・<br>発破・掘削等<br>建築物等の建築 |       |       |       |       |       |       |       |       | ı     |       |
| 温室効果<br>ガス等           | 資材等の運搬                      |       |       |       |       |       |       |       |       |       |       |

表 3-1(2) 事後調査スケジュール

事後調査(存在・供用時) 【評価書】

• • • ı i I п [変更計画] . ı п 事後調査(存在・供用時) 施股の稼働 資材・製品・人等 地震の稼働 施設の稼働 資材・製品・人等 の連機・輸送 施股の稼働 施股の稼働 施股の稼働 施股の稼働 施股の稼働 加限の稼働 加限の稼働 施設の稼働 資材・製品・人等 の運搬・輸送 施設の稼働 資材・製品・人等 の運搬・輸送 工作物等の出現 施設の稼働 施設の稼働 工作物等の出現 百件・製品・人等 の運搬・輸送 施設の稼働 施設の稼働 施設の稼働 商設の報酬 工作物等の出現 資材・製品・人等 の運搬・輸送 施設の稼働 資材・製品・人等 の運搬・輸送 施設の稼働 資材・製品・人等 の運搬・輸送 施設の稼働 施設の稼働 施設の稼働 施設の稼働 施設の稼働 施設の稼働 施設の稼働 自然との触 れ合いの場 廃棄物等 景 観 自然との触 れ合いの場 温室効果 ガス等 温室効果 ガス等 廃棄物等 震 氏周波音 氏周波音 大気質 植物 動物 大気質 板動 渖 重 畑 叠 被被 瘦

# (2) 事後調査報告書の提出時期の変更

事後調査スケジュールの変更に伴い、表3-2に示すとおり事後調査報告書の提出時期の変更する予定である。

なお、事後調査により環境影響の程度が著しいことが明らかになった場合には、関係機関と連携を図り、必要な措置を講ずるものとする。

表3-2 事後調査報告書提出の変更時期

| 車業字集作河  | 報告内容                                                            | 提出       | 時期          |
|---------|-----------------------------------------------------------------|----------|-------------|
| 事業実施状況  | 報合的各                                                            | 評価書      | 変更計画        |
| 発電所稼働前  | 発電所稼働前における大気質、騒音、振動、低周波音、悪臭、<br>水質、植物、動物の調査結果                   | 2022年2月頃 | 2024年1月頃    |
| 建設工事中   | 工事用車両の通行に伴う大気質、騒音、振動、自然との触れ<br>合いの場の調査結果                        | 2022年2月頃 | 2024年1月頃    |
| 建設工事完了後 | 工事の実施に伴う廃棄物等、温室効果ガス等の調査結果                                       | 2023年4月頃 | 2025年 5 月頃  |
| 施設の存在時  | 施設の存在に伴う電波障害、日照阻害の調査結果                                          | 2023年4月頃 | 2020年 3 万 頃 |
| 施設の存在時  | 施設の存在に伴う景観の調査結果                                                 |          |             |
| 発電所稼働時  | 施設の稼働に伴う大気質、騒音、振動、低周波音、悪臭、水質、植物、動物、自然との触れ合いの場、廃棄物等、温室効果ガス等の調査結果 | 2025年4月頃 | 2026年10月頃   |