令和4年度仙台市既存放射光施設活用事例創出事業(トライアルユース)

課題名

放射光施設を利用した 完全無機塗膜中Siの化学結合状態解析

株式会社 山形メタル

背景『完全無機塗装金属パネル』のニーズ

サポインでの成果(例)

★現場レベルの評価では塗膜の性能向上を確認(耐久性試験前後での色差)

塗膜の<mark>何が変化し性能が向上したか</mark>を考察するために、 ラボの分析機器(Si-NMR,XPS,GD-OES,XRD)での結果を補完するデータが必要

➡放射光測定:非破壊(塗膜まま),深部,高判別能

塗料成分の設計や硬化条件の設定を再確認

製品説明用の資料へ放射光測定データを活用 ➡ ユーザー側へ新製品の優位性、信頼性をアピール

実施体制

利用施設:あいちシンクロトロン光センター(あいちSR)

事前相談:八木直人先生((公財)高輝度光科学研究センター:JASRI) 測定手法、利用BL選定等の助言

全体スケジュール

塗膜サンプル5種類、参照サンプル4種類

	塗膜サンプル	塗料	硬化条件		
	А	ア	(1)]	
	В	ア	2		
	С	ア	3	-	アルミ合金
耐久性	良好 D	ア	4		#JIO × 10m
	E	イ	3		
	参照サンプル	説明			
	F(原料1)	ł	份末	_	両面テープ
	G(原料2)	液体			アルミ板上で
	H(原料3)	液体			大気圧He雰
	SiO ₂ (ref)	Si基板上SiO2(25nm) ※参照サンプルとしてBL品を借用			

アルミ合金板に塗装し、 約10×10mmに切断

両面テープで試料台に固定 アルミ板上で常温で乾燥させ、 大気圧He雰囲気でXAFS測定

サンプル導入

サンプルホルダ (導電テープで固定) 測定サンプルの導入

ビームライン外観(あいちSR BL6N1)

測定内容(測定条件)

ビームライン	あいちSR『BL6N1』				
測定1:硬X線光電	子分光(HAXPES)				
励起エネルギー:	3keV(分光結晶 InSb(111)) ➡情報深さ 表面から約20nm				
入射角度:	55deg(直出射)				
ビームサイズ:	高さ2.0mm×幅2.0mm(フットプリント 高さ2.0mm×幅3.5mm)				
検出器:	静電半球型、SPECS製PHOIBOS 150 CCD、耐圧7kV				
パスエネルギー:	50eV@wide, 20eV@narrow				
測定領域:	Survey(wide), Si1s, O1s, K ⁺ 2p3/2, K ⁺ 2p1/2, C1s, Si2p				
試料固定方法:	サンプルホルダに1個ずつカーボンテープを用いて固定				
測定雰囲気:	真空(<2.0E-4Pa)				
測 定 2 : X 線 吸 収 端 微 細 構 造 解 析 (XAFS)					
測定吸収端:	Si-K(約1.85keV)				
検出方法:	①全電子収量法(TEY) ➡情報深さ 表面から約30nm				
	②部分蛍光収量法(PFY) ⇒情報深さ 表面から約100nm以上				
測定雰囲気:	真空(<2.0E-4Pa), 大気圧He(サンプルG, Hのみ)				

時刻	試料	測定内容	
9:20~		HAXPES(準備含む)	
	(Au plate)	キャリブレーション(Au4f)	
10:40 ~ 15:40	A∼F	Survey, Si1s, O1s, K ⁺ 2p3/2, K ⁺ 2p1/2, C1s, Si2p ※Fはチャージアップのため測定できず	
15:50~	SiO ₂ (ref試料)	Survey, Si1s, O1s, K ⁺ 2p3/2, K ⁺ 2p1/2, C1s, Si2p	
16:15 ~		Si-K端XAFS	
	(K ₂ SO ₄)	蛍光調整用	
16:30~	SiO ₂ (ref試料)	TEY, PFY	
16:50 ~ 17:50	A∼F	TEY, PFY	
18:00~	G, H	大気圧He測定	
18:30(終了)			

測定結果1-1:HAXPES@3 keV, survey(表面から約20nm)

測定結果1-2:HAXPES@3 keV, narrow(表面から約20nm)

・ピーク位置の高エネルギー(SiO2)側へのシフトは、シロキサン結合生成を反映と推測(Dで最大)

測定結果1-3:HAXPES@3 keV, narrow(表面から約20nm)

測定結果2:Si K端XAFS@TEY(表面から約30nm)

測定結果3-1:SiK端XAFS@PFY(表面から約100nm以上)

YAMAGATA METAL

測定結果3-2:SiK端XAFS@TEY/PFY(微分曲線)

まとめ

(1)硬X線光電子分光(HAXPES)

- ①Si1sおよびO1sにおいて、硬化工程の進展による化学状態変化が認められた。
- ②硬化工程の進展によると考えられるK2pの減少が認められた。
- (2)X線吸収端微細構造解析(XAFS)
 - ①Si-K吸収端のTEY測定(<30 nm)において、硬化工程の進展による

化学状態/局所構造変化が多少認められた。

- ②PFY測定(>100 nm)においては、硬化工程による変化は認められなかった。
- ③塗膜のスペクトルは原料と同一ではないことを確認した。

今後の課題

(1)塗料成分及び硬化条件をさらに検討した塗膜の測定、解析

(2)他の元素(K等)に着目したHAXPES/XAFS測定、解析

(3) 面内分布/位置分解

・微小スポット(10~50 μ m Φ)での位置分解マッピング(HAXPES/XAFS)

(4)深さ分解測定

・非破壊での角度分解HAXPES

(5) EXAFSからSi 周辺の局所構造(配位構造)